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Introduction

The main purpose of this document is to introduce the theory of deformations of Galois rep-
resentations. The theory was first introduced by Mazur in [Maz89] in the 80’s as a response
to the work of Hida in p-adic families of Galois representations, and highlighted in the proof
of Wiles of the Taniyama-Shimura conjecture in [Wil95]. We will principally follow the first
six lectures of a graduate course taught by Fernando Q. Gouvêa in 1999 published in [Gou99].
Additionally, in Part II a sketch of the construction of Galois representations coming from el-
liptic curves and modular forms is presented, together with some equivalent statements of the
modularity theorem following the book of Diamond and Shurman [DS05].

At first, we will make explicit the kind of profinite groups we are going to deal with,
followed by the construction of our category of rings. More precisely, we shall define the Φp

condition for profinite groups and the class of coefficient rings. Then, we define the deformation
functor Dρ and focus on its representability; we will make use of the Schlessinger’s Theorem on
representability for the case of artinian coefficient rings C0

Λ. We also discuss the deformation ring
of characters. Some important concepts are introduced, such as tangent space or obstruction,
and we state some additional properties in the tame case and in the Galois case. For example,
a more concrete dimension conjecture in terms of the number of infinite places of a number
field.

The final chapter of part one is dedicated to imposing conditions on the deformation functor,
specially being ordinary. This is a quite important feature which plays a huge role in the proof
of modularity conjecture.

The second part can be though as an “additional part” which is developed in order to address
the context of the main aplication. Here we introduce modular forms, modular curves and Hecke
operators. In part three we give a sketch of the construction of Galois representations from
cuspidal eigenforms of weight 2, as well as the construction of Galois representations coming
from elliptic curves. We end the document with a quick look on the role of deformation theory
of Galois representations in the proof of Wiles’ theorem.

Finally, I would like to thank my advisors Jorge Andres Plazas and Guillermo Mantilla,
they were my guides through this gorgeous world of Number Theory. Basically, the subject
covered by this thesis is a consequence of their advise and patience, and my personal goal of
fully understand Fermat’s Last Theorem. I’d also thank professor Jesus Ochoa, who gave to me
some of his time for the discussion of tools I had to learn during the creation of the document.
I want to thank my mother, father and sister because they have been a huge pillar in my
development as mathematician and human being. I finally thank all my professors during my
bachelor, they were the ones who have given to me the basic knowledge to face my future as
mathematician.
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Part I

Deformation theory of representations
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Chapter 1

Galois representations

In this chapter we introduce concepts arising naturally in the study of the absolute Galois group
of Q. Given a field K, let Ks be its separable closure and let GK= Gal(Ks/K) be its absolute
Galois group. Let L/K be a Galois extension of K, we denote the Galois group Gal(L/K)
by GL/K endowed with the Krull topology. Our framework includes global fields (e.g number
fields) and local fields (e.g finite extensions of Qp for p prime). If F/Qp is a finite extension,
there exists a unique extension vF of the valuation vp of Qp to F . We can normalize and suppose
further that vp = evF with e denoting the ramification degree of the extension. The valuation
ring and the prime ideal of the valuation ring of F are denoted by OF and λF respectively, the
residual field is written as kF . If the context is clear we may write instead O, λ and k.

Let L/Q be a number field, we denote the ring of integers of L by OL. Given λ ⊂ OL a
prime ideal or λ a prime at infinity we denote by Lλ the completion of L at λ. Let OL,λ be the
valuation ring of Lλ.

To describe the absolute Galois group of a field is not, in general, an easy problem. For
instance, one of the biggest goals in number theory is to understand as much as possible the
absolute Galois group of the rational numbers, the prototypical example of this challenge is
the inverse Galois problem which asks whether every finite group is a Galois group over Q, or
equivalently whether for every finite groupG there exists a continuous surjective homomorphism

GQ −→ G.

In contrast, the absolute Galois group of the finite field Fq is well understood. In fact, it is
possible to give a complete description of this group in terms of the Frobenius automorphism,
the final outcome is GFq

∼= Ẑ. An intermediate problem is to describe the absolute Galois
group of local fields; there is a partial description of GQp . Let Qur

p be the maximal unramified

extension of Qp, then GQurp /Qp is naturally isomorphic to GFp
∼= Ẑ via Frobenius elements.

Define the inertia subgroup of GQp to be the kernel of the natural homomorphism GQp → GFp ,
it is denoted by Ip . The subgroup Ip has a normal pro-p-Sylow subgroup Wp called the wild
inertia subgroup, this corresponds to the extension Qp/Qtm

p where Qtm
p is the maximal tamely

ramified extension of Qp. The quotient group Ip/Wp is known as the tame inertia group and it
is posible to give an isomorphism

Ip/Wp
∼=
∏
`6=p

Z` (1.0.1)

which depends non-canonically on a choice of roots of unity. We proceed as follows:
By definition Qtm

p =
∏

K/Qp K where K runs over all finite tamely ramified Galois extensions
of Qp. For each such K, let Ku = Qur

p ∩K, hence we have the following tower of fields:
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Qtm
p

Qur
p

K

Ku

Qp

Since K/Ku is totally ramified, there exists π ∈ K such that vK(π) = 1 and K = Ku[π].

Let e = [K : Ku] be the ramification degree of K over Qp, take p
1
e some e-root of p in Qp. In

the splitting field F of xe − p over K the element π/p1/e is a unit, that is

vF

(
π

p1/e

)
= 0.

Let g(x) be the minimal polynomial of π/(p1/e) over K, then g(x) ∈ OK [x], the degree
of g(x) divides e so is relative prime to p, therefore its reduction modulo λK is a separable
polynomial over kK . Thus π/(p1/e) ∈ Qur

p . This proves that

Qtm
p = Qur

p (p1/e : e prime to p). (1.0.2)

Fix a system of primitive e-th roots of unity (µe) for e prime to p. Define Ke := Qur
p (p1/e)

and note that

GKe/Qurp
∼= Z/eZ (1.0.3)

via the system of roots (µe), the group GKe/Qurp is generated by the automorphism p1/e 7→ µep
1/e.

Therefore (1.0.2) and (1.0.3) imply

Ip/Wp = lim
←−

GKe/Qurp
∼=
∏
` 6=p

Z`.

The natural inclusions Q→ Qp → Qp extend to

Q −→ Qp.

Nevertheless, the inclusion is not uniquely specified, with two of them differing by an element
in GQ . Thus we have a family of conjugated subgroups

GQp −→ GQ.

We call GQp the decomposition group at p. Let K/Q be a Galois extension, we say that K is
unramified at p if Ip maps to 1 via Ip → GQp → GQ → GK/Q, K is tamely ramified at p if Wp

is mapped to 1. If our extension is unramified at p then we get a well defined conjugacy class
of Frobenius elements via the maps GQp → GK/Q.

Now we are mainly concerned in two sort of Galois groups, the absolute Galois group of
p-adic local fields and Galois groups of extensions of Q with restrictions on ramification. Let
S be a finite set of primes of Q containing the prime at infinity and let QS be the maximal
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unramified extension of Q outside S. This is a Galois extension and its Galois group is denoted
by GQ,S, its open subgroups can be describe in a similar way; let K be a number field contained
in QS and S1 be the set of primes of K lying over the primes of S (including the primes at
infinity) and let KS1 be the maximal extension of K unramified outside S1, then KS1 = QS

and GK,S1= GKS1/K
is a open subgroup of GQ,S. Conversely, given a open subgroup H of GQ,S

consider K = QH
S its fixed field and let S1 be the set primes of K lying over S, then H = GK,S1 .

The following theorems will motivate an important definition for profinite groups stated
below

Theorem 1.0.1. Let K be a number field and let S be a finite set of primes of K. Then there
exist only finitely many extensions L/K of given degree n which are unramified outside S

Proof. See section III.2 of [Neu99]

Theorem 1.0.2. If F is a finite extension of Qp, then GF is topologically finitely generated.

Theorems 1.0.1 and 1.0.2 imply the following result

Proposition 1.0.1. Let Π be equal to GF where F/Qp is a finite extension or GK,S for K
a number field and S a finite set of primes of K including the primes at infinity. Then for
every prime p and every open subgroup Π0 ⊆ Π of Π, there are only finitely many continuous
homomorphisms Π0 −→ Z/pZ.

Proof. If Π = GF , denote by F ′ the fixed field of Π0, then Π0 = GF ′ is topologically finitely
generated and it is clear that Hom(Π0,Z/pZ) is finite. On the other hand, if Π = GK,S let
K ′ be the fixed field of Π0 and S ′ be the set of primes of K ′ above S, thus Π0 = GK′,S′ . The
non trivial elements of Hom(Π0,Z/pZ) are in correspondence with Galois extensions of K ′ of
degree p, so Theorem 1.0.1 implies that there are only finitely many on them.

Previuos proposition motivates the following definition

Proposition 1.0.2 (Φp-finiteness condition). Let Π be a profinite group and p a prime number.
The following conditions on Π are equivalent

i. The pro-p-completion of Π is finitely generated.

ii. The abelianization of the pro-p-completion of Π is a finitely generated Zp-module .

iii. The p-Frattini quotient of Π is finite.

iv. The set of continuous homomorphisms from Π to Fp is finite.

Definition 1.0.1. If every open subgroup of Π satisfies one of the conditions of the previous
proposition, we say that Π satisfies the Φp-finiteness condition, or simply, the Φp condition.

Remark. In the local case it is not necessary all the power of Theorem 1.0.2. The conditions
of Proposition 1.0.2 can be checked more easily by a explicit description of such extensions.

Finally, we will end this chapter introducing the notion of Galois representation which,
in few words, are continuous representations of Galois groups. We would like to study the
representations of the absolute Galois group of Q, nevertheless, this group is quite difficult to
work with. We evade this problem using some quotients and subgroups which arise naturally in
number theory, these groups are GK,S for K and S as above, and absolute Galois groups of local
fields. The condition Φp provides a setting where the theory becomes much more manageable
as we shall see in next sections.
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Definition 1.0.2. Let A be a topological ring and Π be a profinite group. A representation of
Π over A (of rank n) is a continuous homomorphism

ρ : Π −→ GLn(A), (1.0.4)

equivalently, a representation is given by a continuous action of Π on a free A-module M of
rank n.

Definition 1.0.3. A Galois representation defined over A, unramified outside S (a finite set
of primes of Q including infinity) is a representation of GQ,S over A. Two representations ρ1

and ρ2 are equivalent if there exists a matrix P ∈ GLn(A) such that

ρ2 = P−1ρ1P.

Galois representations coming from modular forms and elliptic curves will be our main
source of examples, indeed, the theory developed in this document is an essential part of the
whole machinery required to proof Fermat’s last theorem. Representations from elliptic curves
and modular forms are defined over p-adic fields, specifically over the valuation ring of the p-
adic field, then we may consider reduction modulo the maximal ideal and get a representation
over a finite field. We are concern with those representations which are equivalent to ones
coming from elliptic curves and modular forms.

The following natural question arises: Let k be a finite field and let A −→ k be a sur-
jective homomorphism, is it posible to lift a representation from k to A? If so, how could
we characterize those liftings? And finally, what can we say about the liftings of modular
representations?

An answer to these questions is provided by the theory of deformation of representations
introduced by Mazur in [Maz89].

In summary, we will study representations of local Galois groups or finitely ramified Galois
groups over some special rings. These rings will be profinite rings, thus we are able to deal with
representations in three different ways:

• A continuous homomorphism ρ : Π −→ GLn(A).

• A continuous action of Π over a free A-module of rank n.

• A continuous homomorphism A[[Π]] −→ Mn(A) of A-algebras.

Here A[[Π]] is the completed group algebra defined as

A[[Π]] = lim←−
H

A[Π/H]

where H runs over all open subgroups of Π.
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Chapter 2

The deformation functor

We are not interested in representations of profinite groups over any topological ring, we would
prefer to restrict our attention to rings similar to valuations rings of p-adic local fields and their
quotients. In order to define the corresponding category of rings, fix a prime number p and
let k be a finite field of characteristic p. Let C be the category whose objects are complete
noetherian local rings with residue field k and whose morphisms are homomorphisms of local
rings which induce the identity on residual fields. This means that if A and B are objects of C
with maximal ideals mA and mB respectively, and f : A −→ B is a morphism of C then

f−1(mB) = mA,

and the following diagram commutes

A
f //

πA

��

B

πB

��
k

where πA and πB are the projections from A and B onto k respectively. It is immediate to
check that these morphisms are continuous in the topology induced by maximal ideals. We call
the objects of C coefficient rings and their morphisms coefficient ring homomorphisms. Note
that k is also an object in C. There are both initial and final objects in C; they are W (k) and k
respectively, with W (k) the ring of Witt vectors of k 1. In other words, for every coefficient ring
A we have natural coefficient ring homomorphisms W (k) −→ A and A −→ k. In particular,
any coefficient ring has a canonical W (k)-algebra structure.

Let Λ be a coefficient ring. Sometimes we do not work with all coefficient rings but with
coefficient rings which are Λ-algebras as well. We denote by CΛ the subcategory of C consisting of
coefficient rings which are Λ-algebras and whose morphisms are coefficient ring homomorphisms
which preserve the structure of Λ-algebra. We refer to the objects of CΛ as Λ-coefficient rings
and their morphisms as Λ-algebra homomorphisms. Note that CW (k) = C.

Let A be a coefficient ring and mA be its maximal ideal. Since A is Noetherian the ideal
mA is finitely generated, let’s say mA = 〈x1, . . . , xn〉. Since A is complete we get

A ∼= lim←−−
n∈N

A/mn. (2.0.1)

1Witt vectors are defined over more general rings. In the case of k a finite field, W (k) is the valuation ring
of the unramified extension of Qp associated to k.
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The successive quotients mn/mn+1 are finite dimensional vector spaces over k. Therefore,
the quotients in the following sequence are finite

A/mn ⊇ m/mn ⊇ m2/mn ⊇ · · · ⊇ mn−1/mn,

showing that A/mn is finite. Therefore A is a profinite ring.
Let Π be a profinite group satisfying the Φp condition and let ρ : Π −→ GLn(k) be a

representation, we say that ρ is a residual representation. Let A −→ B be a coefficient ring
homomorphism, it induces a group homomorphism

GLn(A) −→ GLn(B).

Let Γn(A) be the kernel of GLn(A) −→ GLn(k).

Definition 2.0.1. Let A be a coefficient ring and ρ1, ρ2 : Π −→ GLn(A) be representations.
We say that ρ1 and ρ2 are strictly equivalent if there exists a matrix M ∈ Γn(A) such that

ρ2 = M−1ρ1M.

Definition 2.0.2 (Deformation of a representation). Let A be a coefficient ring and let ρ :
Π −→ GLn(k) be a residual representation. A deformation of ρ to A is a strict equivalent class
of representations {θi : Π −→ GLn(A)}i∈I such that θi induces ρ in k for all i ∈ I, i.e.

θi = ρ for all i ∈ I (2.0.2)

where θi is the reduction of θi to k.

Remark. Two strict equivalent representations over A induce the same residual representation.
Hence it is only necessary to check (2.0.2) for one element in the strict equivalent class.

Coefficient ring homomorphisms A −→ B send strict equivalent representations of A to
strict equivalent representations of B. Indeed, the group homomorphism GLn(A) −→ GLn(B)
gives a group homomorphism

Γn(A) −→ Γn(B).

Therefore, we may think deformations as a covariant functor in the following way: given
a residual representation ρ define the deformation functor Dρ : C −→ Sets to be the functor
defined on objects by

Dρ : A {Deformations of ρ to A}.
If we restrict C to the subcategory CΛ we write Dρ,Λ for the restricted functor. If ρ is fixed

we write for simplicity D and DΛ instead Dρ and Dρ,Λ respectively.
To study the deformation functor in the whole category C is not practical, luckily it is

possible to simplify our setting. Consider the full subcategory C0
Λ of CΛ consisting of artinian

local Λ-algebras with residue field k.

Lemma 2.0.1. Every object in CΛ is a pro-object of C0
Λ.

Proof. Let A be a coefficient Λ-algebra and m be its maximal ideal. Then A/mk is an artinian
coefficient Λ-algebra since its maximal ideal is nilpotent. Therefore

A ∼= lim←−−
k∈N

A/mk

proving our claim.
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If F is a functor from CΛ to Sets, the sets F(A/mk) will form a inverse limit of sets. The
coefficient ring homomorphisms A −→ A/mk give compatible functions

F(A) −→ F(A/mk).

This package of information defines a function

F(A) −→ lim←−−
k∈N

F(A/mk).

Definition 2.0.3. We say a functor F : CΛ −→ Sets is continuous if the canonical function

F (A) −→ lim←−−
k∈N

F(A/mk)

is a bijection.

Lemma 2.0.2. DΛ is a continuous functor.

Proof. First note that

GLn(A) = lim←−−
k∈N

GLn(A/mk)

and
Γn(A) = lim←−−

k∈N

Γn(A/mk).

Furthermore, the maps

GLn(A/mk+1) −→ GLn(A/mk), Γn(A/mk+1) −→ Γn(A/mk)

are all surjective. The canonical map

DΛ(A) −→ lim←−−
k∈N

DΛ(A/mk)

maps a deformation ρ of ρ to a compatible sequence (ρk), where ρk is the corresponding defor-
mation to A/mk.

We will show that the canonical map is surjective. Let (ρk) be a coherent sequence of
deformations, for each k choose θk a representation in the strict equivalent class ρk. Suppose
that we have chosen θ1, . . . , θk−1 such that θi+1 reduces to θi. Consider the map

πk : A/mk −→ A/mk−1,

then πk ◦ θk and θk−1 are strictly equivalent and there is a matrix P ∈ Γn(A/mk−1) such that

θk−1 = P
−1
πk ◦ θkP .

Take P a lifting of P to Γn(A/mk) and replace θk by θ′k = P−1θkP . Then θ′k is in the same
class of θk and reduces to θk−1. Therefore we get a compatible sequence of representations (θk)
which represents the sequence of deformations (ρk). Take θ as the inverse limit of (θk) and
define ρ to be the strict equivalent class of θ, so ρ is the desired element.

To prove injectivity choose two deformations ρ, ρ′ such that (ρk) = (ρ′k). Take θ and θ′

elements of ρ and ρ′ respectively, we want to show that θ and θ′ are strict equivalent. Let θk,
θ′k be the representations θ, θ′ modulo mk respectively. So θ1 = θ′1 = ρ. Suppose we have a
coherent set of matrices Pi ∈ Γn(A/mi) for i = 1, . . . , k − 1 such that
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θi = P−1
i θ′iPi (1 ≤ i ≤ k − 1).

We would like to take a lifting Pk of Pk−1 to Γn(A/mk) such that θk = P−1
k θ′kPk, then we

could take P as the inverse limit of (Pk) and we are done. However, we need to guarantee that
such matrix exists. Let Pk be the set of those matrices Q in Γn(A/mk) such that

θk = Q−1θ′kQ.

The homomorphisms Γn(A/mk) −→ Γn(A/mk−1) restricts to a map Pk −→ Pk−1. An
important fact is that the sets Pk are all finite and non empty. These two conditions imply
that

P = lim←−−
k∈N

Pk ⊂ Γn(A)

is non empty. Then for P ∈ P we get

θ = P−1θ′P

and our canonical map is injective.

With the previous lemma in our hands, we now can restrict the study of deformations to
artinian coefficient Λ-algebras and recover the whole theory via inverse limits. An important
property of coefficient Λ-algebras is that they are quotients of power series over Λ as we will in
upcoming sections.
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Chapter 3

Criteria of representability

A question which Mazur solved in [Maz89] using techniques of Schelssinger exposed in [Sch68],
is whether the deformation functor D = Dρ is representable. We shall tackle this issue in next
chapter. For now, we need some preliminaries: fix a residual representation ρ and suppose that
the deformation functor is representable, so there exists a coefficient ring R = Rρ and a natural
equivalence of functors

Φ : D −→ Hom(R, · ),

i.e. compatible bijections

D(A)
Φ(A)−−−→ Hom(R, A)

for every coefficient ring A. In particular, taking A = R we get a bijection

D(R)
Φ(R)−−→ Hom(R,R),

the identity corresponds to a unique deformation ρρρ ∈ D(R). This deformation has the
following property: for any deformation ρ : Π −→ GLn(A) there exists a unique coefficient ring
homomorphism ϕ : R −→ A such that ρ = ϕ ◦ρρρ. We call ρρρ the universal deformation of ρ, and
Rρ the universal deformation ring.

If D is representable what can we say about DΛ? The answer is simple provide we know
how to construct complete tensor products. If R represents D then R⊗̂W (k)Λ represents DΛ.
For the definition of complete tensor products see Appendix A.

3.1 Fiber products

Let S be a category, let A,B,C be objects of S and let α : A −→ C, β : B −→ C be morphisms.

A

α ��

B

β��
C

The fiber product of A and B over C is a tuple (A ×C B, p, q) where p : A ×C B −→ A,
q : A×C B −→ B are morphisms of S such that: α ◦ p = β ◦ q, and for every triple (D, f, g)

f : D −→ A, g : D −→ B

such that α◦f = β◦g we have a unique morphism h : D −→ A×CB which makes commutative
the following diagram

13



D

f





g

��

h

��
A×C B

p

zz

q

$$
A

α
$$

B

βzz
C

Proposition 3.1.1. Fiber products exist in C0
Λ.

Proof. Define

A×C B = {(a, b) ∈ A×B : α(a) = β(b)}.
Consider m = {(a, b) ∈ A×C B : a ∈ mA and b ∈ mB}. Since A and B have finite length

as Λ-module then so A × B and A ×C B. This proves that A ×C B is artinian. Clearly m is
the unique maximal ideal of A×C B and its quotient is k.

Remark. The ring-theoretical fiber product of objects in C is probably not Noetherian, for
instance taking A = k[[X, Y ]], B = k, C = k[[X]] with α : A −→ C the map sending Y to 0,
and β : B −→ C the inclution. Then

A×C B = k + Y k[[X, Y ]]

is not Noetherian.

A representable functor preserves fiber products. Moreover, a representable functor pre-
serves finite limits. A necessary and sufficient condition for a functor to preserve finite limits
is to preserve equalizers, and finite products. The reason is because every finite limite can be
built recursively by finite products and equalizers.

Let F : S −→ Sets be a set-valued functor. We have the following commutative square

F(A×C B)
F(p)

xx

F(q)

&&
F(A)

F(α) &&

F(B)

F(β)xx
F(C)

By the universal property of fibre products we have a natural function

F(A×C B) −→ F(A)×F(C) F(B).

If this function is a bijection for every fibre product we say that F satisfies the Mayer-
Vietoris property.

We return to our category C. Suppose F is a continuous set-valued functor on C. Then F
is representable if and only if there exists a coefficient ring R such that for all object A in C0

we have
Hom(R, A) = F(A),
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this is because objects of C are pro-objects of C0. If this condition holds we say that F is
pro-representable.

There are two reasons to deal only with the subcategory C0. First, we can use inductive
arguments in the length of the ring as a W (k)-algebra. Second, we cannot guarantee the
existence of fiber products in C.

The reason why we introduced fiber products is that they provide a criteria which is close to
be a sufficient condition for representability. The appropiate theorem is due to Grothendieck:

Theorem 3.1.1 (Grothendieck). Let

F : C0
Λ −→ Sets

be a covariant functor such that F(k) is a singleton. Then F is pro-representable if and only if

i. F satisfies the Mayer-Vietoris property.

ii. F(k[ε]) is a finite dimensional vector space.

The ring k[ε] is by definition k[[X]]/(X2) whit ε = X( mod X2). We call it the ring of dual
numbers.

See [Gro60] for the original and more general proof of Grothendieck and Appendix B for a
down to earth proof following the above reference.

3.2 Tangent Space

Through this section we fix a coefficient ring Λ. A shall denote an element in CΛ usually an
artinan coefficient Λ-algebra, mA will be used for its maximal ideal.

As in the case of local rings, some set valued functors of CΛ have an associated tangent
space, both definitions agree when the functor is representable.

Definition 3.2.1. Let A be a coefficient Λ-algebra. The Zariski cotangent space t∗A of A is the
quotient

tA∗ = mA/〈m2
A,mΛ〉.

The Zariski tangent space tA is

tA = Homk(t
∗
A, k) = Homk(mA/〈m2

A,mΛ〉, k).

Since mA is finitely generated over A, t∗A is a finite dimensional vector space. Let f : A −→ B
be a coefficient ring homomorphism, f induces a k-linear map f∗ : t∗A −→ t∗B.

Proposition 3.2.1. f is surjective if and only if f∗ is surjective.

Proof. If f is surjective clearly f∗ is surjective. Conversely, suppose f∗ is surjective. Consider
the following diagram with exact rows

0 // mΛA/(mΛA ∩m2
A) //

��

mA/m
2
A

//

��

t∗A
//

��

0

0 // mΛB/(mΛB ∩m2
B) // mB/m

2
B

// t∗B
// 0

Since mΛ/m
2
Λ −→ mΛA/(mΛA∩m2

A) is surjective, the left column in the diagram is surjective.
Therefore, mA/m

2
A −→ mB/m

2
B is surjective. This gives a surjection on the associated graded

rings and Lemma 10.23 of [AM69, Ch. 10] implies that f is a surjection.
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Corollary 3.2.1.1. Every coefficient Λ-algebra is a quotient of a ring of power series over Λ.

Proof. Take {x1, . . . , xl} to be generators of mA. Consider R = Λ[[X1, . . . , Xl]] and send Xi 7→
xi.

Lemma 3.2.1. Let A be a coefficient Λ-algebra. There are a natural bijections

Homk(mA/〈m2
A,mΛ〉, k) ∼= HomΛ(A, k[ε]) ∼= DerΛ(A, k).

Here DerΛ(A, k) denotes the set of Λ-derivations with values in k.

Proof. First we are going to prove HomΛ(A, k[ε]) ∼= DerΛ(A, k). Let ϕ : A −→ k[ε] be a Λ-
algebra homomorphism. Let a, b ∈ A and a, b be their reduction mod mA respectively. Denote
by ϕ̃(a) the element of k such that

ϕ(a) = a+ εϕ̃(a).

Additivity of ϕ implies additivity of ϕ̃. Let λ ∈ Λ, then

λ(a+ εϕ̃(a)) = ϕ(λa) = λa+ εϕ̃(λa). (3.2.1)

Hence ϕ̃ is Λ-linear. Moreover,

ϕ(ab) = ϕ(a)ϕ(b)

ab+ εϕ̃(ab) = (a+ εϕ̃(a))(b+ εϕ̃(b))

ab+ εϕ̃(ab) = ab+ ε(ϕ̃(a)b+ aϕ̃(b))

implies

ϕ̃(ab) = ϕ̃(a)b+ aϕ̃(b). (3.2.2)

Therefore ϕ̃ is a Λ-derivation. Conversely, if ϕ̃ is a Λ-derivation define

ϕ := π + εϕ̃

where π : A −→ k is the canonical projection. The above equations shows that ϕ is a coefficient
ring homomorphism.

Now we are going to show DerΛ(A, k) ∼= tA. Let ϕ̃ be a Λ-derivation, consider the restriction
of ϕ̃ to mA. Equation (3.2.2) shows that m2

A is annihilated by ϕ̃. Note that ϕ̃ also annihilates
mΛ because it is a Λ-derivation. So ϕ̃ defines a k-linear function

ϕ̂ : mA/〈m2
A,mΛ〉 −→ k.

Conversely, let ϕ̂ : mA/〈m2
A,mΛ〉 −→ k be an element in the tangent space and write its

extension to mA identically. Let a ∈ A and λ ∈ Λ such that a = λ in k. Define ϕ̃(a) := ϕ̂(a−λ).
Note that ϕ̃ does not depend on λ. Indeed, if λ′ is such that λ = λ′ then ϕ̂(a − λ′) =
ϕ̂(a− λ+ λ− λ′) = ϕ̂(a− λ). Let ω ∈ Λ such that ω = b, then

ϕ̃(ab) = ϕ̂(ab− λω)
= ϕ̂((a− λ)b+ λ(b− ω))

= ϕ̂((a− λ)b) + λϕ̂(b− ω)

= ϕ̂((a− λ)ω + (a− λ)(b− ω)) + λϕ̂(b− ω)
= ϕ̂(a− λ)ω + aϕ̂(b− ω)

= ϕ̂(a− λ)b+ aϕ̂(b− ω)

= ϕ̃(a)b+ aϕ̃(b).

16



We also get

ϕ̃(ωa) = ϕ̂(ωa− ωλ)
= ϕ̂(ω(a− λ))
= ωϕ̂(a− λ)
= ωϕ̃(a).

This proves that ϕ̃ is a Λ-derivation.

Remark. All bijections described above are actually isomorphisms of vector spaces, but is
necessary to endow HomΛ(A, k[ε]) with a canonical vector space structure.

We end this section endowing HomΛ(A, k[ε]) with a vector space structure. Indeed, we will
define more generally the tangent space for functors F satisfying two additional properties.
Then, we shall give a vector space structure to F(k[ε]).

Let F be a functor such that F(k) has only one element (note that deformation functors
salisfy this property). We know that finite products exist in C0

Λ, indeed, the product of A and
B is A×k B. Taking k[ε] = A = B we get a canonical function

F(k[ε]×k k[ε]) −→ F(k[ε])× F(k[ε]). (3.2.3)

Suppose this function is a bijection1. For α ∈ k consider

α̃ : k[ε] −→ k[ε], a+ εb 7→ a+ εαb.

and
p : k[ε]×k k[ε] −→ k[ε], (a+ εb1, a+ εb2) 7→ a+ ε(b1 + b2).

A straightforward computation shows that α̃ and p are coefficient ring homomorphisms,
even coefficient Λ-algebra homomorphisms. In particular, note that 0̃ is the composition

k[ε] −→ k −→ k[ε].

The following commutative diagrams show that, as long as (3.2.3) is a bijection, F(k[ε]) has
a vector space structure. Let s : k[ε] ×k k[ε] −→ k[ε] ×k k[ε] be the “switching” map, i.e the
map which permutes both components. Let ij : k[ε] −→ k[ε]×k k[ε] be the inclusion in the j-th
component.

k[ε]
β̃ //

α̃β !!

k[ε]

α̃}}

k[ε] 1̃ //

id !!

k[ε]

id}}
k[ε] k[ε]

k[ε]×k k[ε]
p

%%
s

��

k[ε]×k k[ε]×k k[ε]
p×kid //

id×kp
��

k[ε]×k k[ε]

p

��
k[ε]×k k[ε]

p // k[ε] k[ε]×k k[ε]
p // k[ε]

k[ε] id //

i1
��

k[ε] k[ε]×k k[ε] //

−̃1×kid
��

k

��
k[ε]×k k[ε]

id×k0̃ // k[ε]×k k[ε]

p

OO

k[ε]×k k[ε]
p // k[ε]

1This condition is usually named as the tangent space hypothesis.
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k[ε]×k k[ε]
α̃×kα̃ //

p

��

k[ε]×k k[ε]

p

��

k[ε]
α̃+β //

∆
��

k[ε]

k[ε] α̃ // k[ε] k[ε]×k k[ε]
α̃×kβ̃ // k[ε]×k k[ε]

p

OO

Definition 3.2.2. Let F : C0
Λ −→ Sets be a covariant functor such that F(k) is a singleton and

(3.2.3) is a bijection. The tangent space of F is the vector space F(k[ε]) and is denoted by tF.
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Chapter 4

Representability of deformation
functors

The plan for this chapter is to show that the deformation functor is representable under certain
hypothesis on the residual representation ρ. Grothendieck’s Theorem is a possible but inefficient
path, the main reason is that to check exactness for an arbitrary Mayer-Vietoris diagram of
artinian rings is quite general and wild. We need a weaker criteria for representability (or pro-
rerpesentability) in our category C0

Λ, and Schlessinger’s Criteria fits perfectly in this framework.

4.1 Schlessinger’s Theorem

We shall introduce some terminology in order to state the theorem, see [Sch68] for Schlessinger’s
original article where the proofs of the theorems in this section can be found.

We say that a coefficient ring homomorphism p : A −→ B is small if it is surjective,
ker p = 〈f〉 with mAf = 0 and f 6= 0. Every surjective coefficient ring homomorphism can be
factorized in finitely many small homomorphisms.

Let F : C0
Λ −→ Sets be a covariant functor such that F(k) is a singleton. Let A0, A1, A2 be

artinian coefficient Λ-algebras and suppose we have coefficient ring homomorphisms

A1

  

A2

~~
A0

(4.1.1)

Let A3 = A1 ×A0 A2 be their fiber product. We get a canonical map

F(A3) −→ F(A1)×F(A0) F(A2). (4.1.2)

We define the following properties for the functor F.

H1: If the map A2 −→ A0 is small, then (4.1.2) is surjective.

H2: If A0 = k and A2 = k[ε], then (4.1.2) is bijective.

Remark. If H2 holds, take A1 = k[ε]. Then

F(k[ε]×k k[ε]) −→ F(k[ε])F(k)F(k[ε])

is a bijection and we are able to define a vector space structure in F(k[ε]). We refer to the
existence of this particular bijection as the vector space hypothesis.
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H3: The vector space tF = F(k[ε]) is finite dimensional.

H4: If A1 = A2, Ai −→ A0 are the same, and Ai −→ A0 are small, then (4.1.2) is bijective.

Definition 4.1.1. A morphism of functors F −→ G is smooth if for every surjective homo-
morphism A −→ B, the function

F(A) −→ F(B)×G(B) G(A)

is surjective.

Definition 4.1.2. Let R be a coefficient Λ-algebra. A Hull of F is a natural transformation
ϑ : Hom(R, · ) −→ F such that ϑ is smooth and ϑ(k[ε]) is a bijection.

Yoneda’s lemma implies that ϑ depends only on the image of the identity of R (if we extend
the functor continuously to all CΛ)1, call this element ξ ∈ F̂(R). We also say that (R, ξ) is a
hull of F. A hull of a functor is unique in the following sense:

Theorem 4.1.1. Let (R, ξ) and (R′, ξ′) be hulls of F. Then there exists a (no canonical)
isomorphism u : R −→ R′ such that F̂(u)(ξ) = ξ′.

Theorem 4.1.2 (Schlessinger’s Criteria). Let F : C0
Λ −→ Sets be a covariant functor such that

F(k) is a singleton. Then F has a hull if and only if the properties H1, H2 and H3 holds.
Moreover, F is pro-representable if and only if in addition property H4 holds.

We usually will impose properties on the deformation functor so we are going to deal with
subfunctors of Dρ. We would like to know when such subfunctors are pro-representable. The
next proposition is useful for that purpose

Proposition 4.1.1. Let F : C0
Λ −→ Sets be a set-valued covariant functor. Let F1 be a

subfunctor of F such that F1(k) = F(k) is a singleton and suppose F is pro-representable. If
F1 satisfies condition H1, then it satisfies the other three conditions, and therefore it is also
pro-representable.

We can also prove that the ring which pro-represents F1 is a quotient of the ring which
represents F. In [Maz97] Mazur suggests another approach to face this issue, we need one bit
of language: in any category, we say that a diagram

D

��   
A

α   

B

β~~
C

is cartesian if the induced map D −→ A ×C B is an isomorphism. Now suppose F1 is a
subfunctor of F such that F1(k) = F(k) is a singleton. Given a diagram in C0

Λ

A

α ��

B

β��
C

consider the square

1Denote the extended functor by F̂.
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F1(A×C B)

��

// F1(A)×F1(C) F1(B)

��
F(A×C B) // F(A)×F(C) F(B)

If every such diagram is cartesian, we say that F1 ⊂ F is relatively representable.

Proposition 4.1.2. If F1 ⊂ F is relatively representable, then, for each i, F1 satisfies Hi if F
does. The analogous result holds for the tangent space hypothesis.

4.2 Absolutely irreducible representations

The existence theorem of the universal ring proved by Mazur in [Maz97] holds for absolutely
irreducible representations, so it is important to give conditions for a representation to be
absolutely irreducible. Let ρ : Π −→ GLn(k) be a residual representation and let C(ρ) be the
center of ρ in Mn(k).

Definition 4.2.1. Let L be a field and let ρ : Π −→ GLn(L) be a representation. We say
that ρ is reducible if there exist a non-zero proper Π-invariant subspace of Ln, otherwise we
say that ρ is irreducible. We call ρ absolutely irreducible if for every field extension L′/L the
representation ρ⊗ L′ is irreducible.

Proposition 4.2.1. Let k be a finite field and let ρ : Π −→ GLn(k) be a continuous represen-
tation. The following are equivalent

i. ρ is absolutely irreducible.

ii. ρ⊗ k is irreducible, where k denotes the algebraic closure of k.

Proof. Clearly (i) implies (ii). Let L′′/k be a extension and let L′′/L′/k be an intermediate
field, if ρ⊗ L′′ is irreducible then ρ⊗ L′ is so; indeed, if ρ⊗ L′ has a proper non-zero invariant
subspace E then E ⊗ L′′ is a proper non-zero invariant subspace of ρ⊗ L′′.

For (ii) implies (i) suppose L′/k is an extension such that ρ⊗ L′ is reducible, without loss
of generality we may assume that k ⊂ L′. Let H ⊂ Π be a set of representatives of the image
of Π in GLn(k) 2 and denote

ρ(g) = (rgij), g ∈ H.

Since ρ⊗L′ is reducible there is a basis ej = (xij) for j = 1, . . . , n such that E = 〈e1 . . . , el〉
(0 < l < n) is a non-zero proper Π-invariant subspace, i.e. there are elements ygij with

ρ(g)ek = (rgij)(xjk) =
n∑
s=1

ygskes

and such that ygsk = 0 for k ≤ l and s > l for all g ∈ H. Let I be the ideal in k[xij, y
g
sk, z]

generated by the previous equations together with the condition det(xij)z = 1, hence I is not
the unit ideal and the Hilbert’s Nullstellenzats implies the existence of a common zero for the
elements of I in k. The existence of this zero implies that ρ⊗ k is reducible.

2Actually what we need for the proof is H to be finite, so we could extend this result to representations of
finite groups over arbitrary fields.
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Theorem 4.2.1 (Schur’s Lemma). Let ρ : Π −→ GLn(k) be an absolutely irreducible residual
representation. Then C(ρ) = k.

Proof. Note that ρ⊗ k is irreducible. If M : k
n −→ k

n
is a endomorphism of representations,

let λ be an eigenvalue of M , then ker(M −λ Id) is a non-zero invariant subspace of kn and thus
equal to kn. This shows that M = λ Id and that C(ρ) = k in GLn(k).

The following propositions are important for representations defined in terms of elliptic
curves and modular forms.

Proposition 4.2.2. Let ρ : Π −→ GL2(k) be a irreducible representation such that its image
contains an element of order 2 and determinant −1, then C(ρ) = k.

Proof. Let g ∈ Π be an element such that A = ρ(g) has order two and whose determinant is
−1. As above we denote by p the characteristic of the field k. We need to consider two cases.

Case p 6= 2. Consider the scalar’s extension ρ⊗ k, the order of A and the condition on the
determinant implies that the Jordan’s form of the matrix A is

JAJ−1 =

(
1 0
0 −1

)
Let v1, v2 be a basis of eigenvectors of A with eigenvalues 1 and −1 respectively. If M ∈

C(ρ) ⊂ Mn(k), then, in particular, AM = MA, and J diagonalizes M as well, i.e. v1, v2 is also
a basis of eigenvectors of M . However, note that vi can be taken with entries in k, indeed

〈v1〉 = ker(A− Id), 〈v2〉 = ker(A+ Id).

Suppose that the eigenvalues of M are a1, a2 with a1 6= a2 and Mvi = aivi. Then M ′ =
1

a1−a2 (M − a2 Id) also commutes with ρ and M ′v1 = v1, M ′v2 = 0. Therefore M ′ has entries in
k and kerM ′ is a invariant subspace of ρ of dimension 1. This contradicts the assumption that
ρ is irreducible.

Case p = 2.
The Jordan’s canonical form of A is

JAJ−1 =

(
1 r
0 1

)
where r 6= 0. Note that we can choose a Jordan basis v1, v2 with entries in k because 1 is a
eigenvalue of A. Let M ∈ C(ρ) ⊂ Mn(k). In particular MA = AM , then a direct computation
shows

JMJ−1 =

(
a b
0 a

)
.

Assume M /∈ k, so b 6= 0. If a = 0, ker(M) is a ρ-invariant subspace of ρ, a contradiction. If
a 6= 0, since the entries of J are in k we get that a, b ∈ k and taking the kernel of M ′ = M−a Id
we get an invariant subspace of dimension one, a contradiction.

Proposition 4.2.3. Let ρ : Π −→ GLn(k) be a residual representation and let fρ : k[[Π]] −→
Mn(k) be the corresponding continuous homomorphism of algebras. The following are equivalent

i. ρ is absolutely irreducible

ii. fρ is surjective
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iii. ρ is irreducible and C(ρ) = k.

Proof. ii implies i. If fρ is surjective then the extension to k, fρ⊗k = fρ⊗k remains surjective,

so the k[[Π]]-module generated by a non-zero element in k
n

is all k
n

and therefore ρ ⊗ k is
irreducible.

i implies iii. If ρ is absolutely irreducible then in particular ρ is irreducible and by Schur’s
Lemma C(ρ) = k.

iii implies ii. Wedderburn’s Theorem (Corollary 3.5 of Chapter XVII in Lang’s Algebra
[Lan02]) shows that the image of fρ is EndC(ρ)(k

n) = Endk(k
n) = Mn(k).

4.3 Existence of the universal deformation ring

In this section we apply Schlessinger’s criteria to the deformation functor Dρ. Once all the
groundwork is done, the statement of the main result of this section is the following:

Theorem 4.3.1 (Mazur, Ramakrishna). Suppose Π is a profinite group satisfying the Φp con-
dition, ρ : Π −→ GLn(k) is a continuous representation, and Λ is a complete noetherian local
ring with residue field k. Then the deformation functor DΛ has a hull. Moreover, if C(ρ) = k
then DΛ is representable.

Particularly, the condition C(ρ) = k holds for absolutely irreducible representations.

Corollary 4.3.1.1 (Mazur). Suppose Π is a profinite group satisfying the Φp condition and
let ρ : Π −→ GLn(k) be an absolutely irreducible continuous representation. Then there exists
a ring Rρ and a deformation ρρρ : Π −→ GLn(Rρ) such that: for every coefficient ring A, and
for every deformation ρ : Π −→ GLn(A) there is a unique coefficient ring homomorphism
ϕ : Rρ −→ A such that ρ = ϕ ◦ ρρρ.

The ring R(Π, k, ρ) = Rρ is called the universal deformation ring and the deformation ρρρ is
the universal deformation. The ring R(Π, k, ρ) is unique in the following strong sense.

Theorem 4.3.2 (Mazur). Suppose

ρ : Π −→ GLn(k)

is a continuous representation such that C(ρ) = k. If ρ′ is a representation equivalent to
ρ⊗ χ, where χ is a representation of dimension one, then there is a canonical isomorphism

r(ρ′, ρ) : R(Π, k, ρ) −→ R(Π, k, ρ′)

mapping the universal deformation of ρ to the universal deformation ρ′. This system of
canonical isomorphisms satisfies the natural compatibility conditions.

Proof. In chapter 5 we will give the proof.

Definition 4.3.1. Let ρ be a residual representation, and let ρ be a deformation of ρ to a
coefficient Λ-algebra A. We define

CA(ρ) = HomΠ(An, An) = {P ∈ Mn(A) : Pρ(g) = ρ(g)P for all g ∈ Π}.

In particular, C(ρ) = Ck(ρ).
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In order to prove Theorem 4.3.1 we fix the following notation. Let A0, A1, A2 be artinian
coefficient Λ-algebras, and suppose we are given φ1 : A1 −→ A0 and φ2 : A2 −→ A0 morphisms
of C0

Λ. Let
Ei = Homρ(Π,GLn(Ai))

be the set of homomorphisms from Π to GLn(Ai) which reduce to ρ modulo the maximal ideal.
Then Γn(Ai) acts on Ei by conjugation and we have

DΛ(Ai) = Ei/Γn(Ai).

Denote A3 = A1 ×A0 A2. The map in (4.1.2) is then

b : E3/Γn(A3) −→ E1/Γn(A1)×E0/Γn(A0) E2/Γn(A2).

Remark. If A2 −→ A0 is surjective then Γn(A2) −→ Γn(A0) is also surjective.

For the remaining lemmas of the section we assume Π, ρ and Λ as in Theorem 4.3.1.

Lemma 4.3.1. Property H1 is true.

Proof. Suppose A2 −→ A0 is small. Let (ρ1, ρ2) be a pair of deformations to A1 and A2 which
induce the same deformation in A0, we want to show that we can paste them together to get
a deformation to A3. Let φ1 and φ2 be representatives of ρ1 and ρ2 respectively. There is a

matrix M ∈ Γn(A0) such that φ1 = M
−1
φ2M in A0. Take M ∈ Γn(A2) a lifting of M , then φ1

and M−1φ2M reduce to the same representation in A0.
Note that GLn is a representable functor from commutative rings to groups. Indeed,

GLn(A) = Hom(Z[xi,j, y]/(det(xi,j)y − 1), A). Therefore it preserves fibre products and

GLn(A3) = GLn(A1)×GLn(A0) GLn(A2).

Then φ1 and M−1φ2M induce a continuous homomorphism φ3 : Π −→ GLn(A3) whose
strict equivalence class reduces to ρ1 and ρ2 in A1 and A2 respectively.

Let φ2 ∈ E2 and let φ0 ∈ E0 be its image. Set

Gi(φi) = {g ∈ Γn(Ai) : g commutes with the image of φi in GLn(Ai)}.

Lemma 4.3.2. If for all φ2 ∈ E2 the map

G2(φ2) −→ G0(φ0)

is surjective, then the map b is injective.

Proof. Suppose φ and ψ are elements of E3 that induce elements φi and ψi in Ei for each
i = 0, 1, 2. Saying that φ and ψ have the same image under b means that for each i = 1, 2 there
is an Mi ∈ Γn(Ai) such that ψi = M−1

i φiMi. Mapping down to E0 we see that

ψ0 = M
−1

1 φ0M1 = M
−1

2 φ0M2,

and so that M2M
−1

1 commutes with the image of φ0, i.e., M2M
−1

1 ∈ G0(φ0). Now find N ∈
G2(φ2) which maps to M2M

−1

1 . Let N2 = N−1M2. Then we have

N−1
2 φ2N2 = M−1

2 Nφ2N
−1M2 = M−1

2 φ2M2 = ψ2.

On the other hand, the image of N2 in Γn(A0) is
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N2 = (M2M
−1

1 )−1M2 = M1.

Since M1 and N2 have the same image in Γn(A0), the pair (M1, N2) defines an element
M ∈ Γn(A3) and we have M−1φM = ψ. Thus, φ and ψ are strictly equivalent.

Lemma 4.3.3. Property H2 is true.

Proof. If A0 = k and A2 = k[ε], then b is already surjective by H1. Injectivity will follow
because G2(φ2) −→ G0(φ0) is always surjective. Indeed, when A0 = k, Γn(k) consists only of
the identity matrix.

Lemma 4.3.4. Property H3 is true.

Proof. In chapter 5 we are going to show the existence of a canonical isomorphism of vector
spaces tD ∼= H1(Π,Ad(ρ)), where Ad(ρ)) consists of Mn(k) with conjugation by ρ.

Now, let Π0 be the kernel of ρ. Inflation-restriction sequence gives us an exact row

0 // H1(Π/Π0,Ad(ρ)) // H1(Π,Ad(ρ)) // H1(Π0,Ad(ρ)) .

But Π/Π0 is a finite group and H1(Π0,Ad(ρ)) = Hom(Π0,Ad(ρ)). Since Π0 acts trivially
on Ad(ρ). The Φp-condition implies that Hom(Π0,Ad(ρ)) is finite dimensional showing that
H1(Π,Ad(ρ)) is a finite dimensional vector space over k.

Lemma 4.3.5. If C(ρ) = k, then for any i the group Gi(φi) ⊂ Ai, i.e., Gi(φi) consists of the
scalar matrices in Γn(Ai).

Proof. We are going to prove that actually for every deformation ρ of ρ to any artinian coefficient
ring A we have CA(ρ) = A.

Since the map A −→ k is surjective, it factors as a sequence of small homomorphisms.
Since we know that Ck(ρ) = k, the lemma will follow, by induction, from the claim that if
CB(ρB) = B and A −→ B is small, then CA(ρA) = A.

Take c ∈ CA(ρA). By our assumption, the image of c in Mn(B) is an scalar matrix. Suppose
c = r + tM where t is a generator of the kernel of A −→ B and M ∈ Mn(A).

Now, for all g ∈ Π
(r + tM)ρA(g) = ρA(g)(r + tM)

therefore
Mρ = ρM

where M is the reduction to k. Recall Ck(ρ) = k. Therefore M = s + M1 with s an scalar
matrix and all entries of M1 in mA. Since A −→ B is small we get tmA = 0, it follows that
M = r + ts is a scalar matrix.

Lemma 4.3.6. Suppose C(ρ) = k, then H4 is true.

Proof. From the previous lemma Gi(φi) consists only on scalar matrices and the statement
follows.
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4.4 Case n = 1; Characters

A complete description of the universal deformation ring and the universal deformation for
characters is given in this section. According to Theorem 4.3.2 the universal deformation ring
is the same for all characters.

Let χ : Π −→ k∗ be a character and let χ0 : Π −→ W (k)∗ be its Teichmüller lifting3, in this
case it is just the lifting of k∗ into the roots of unity of W (k)∗. Let A be any coefficient ring,
the natural homomorphism W (k) −→ A induces the Teichmuller lifting of χ to A. Let χ be a
deformation of χ to A, then χχ−1

0 is a homomorphism of Π to 1 + mA.
The group 1 + mA is an abelian pro-p-group because

1 + mA = lim←−−
k∈N

(1 + mA)/(1 + mk
A) = lim

←−
(1 + mA/mkA

).

Therefore χχ−1
0 factors through Γ = Πab,p, i.e. the abelianization of the pro-p-completion of

Π. We have then the following result:

Lemma 4.4.1. Deformations of χ to A are in bijective correspondence with group homomor-
phisms Γ −→ 1 + mA.

Let Λ be a coefficient ring. Let Λ[[Γ]] be the completed group algebra of Γ with coefficients
in Λ

Λ[[Γ]] = lim←−
H

Λ[Γ/H].

If u ∈ Γ, we write [u] for the corresponding element in Λ[Γ].

Proposition 4.4.1. Λ[[Γ]] is a coefficient Λ-algebra.

Proof. It suffices to show that Λ[Γ/H] is local because Γ is finitely generated as Zp module. We
contend that the kernel of augmentation and reduction ε : Λ[Γ] −→ k is the unique maximal
ideal. Indeed, if r ∈ ker ε then

r =
∑
g∈Γ/H

ag[g] =
∑
g∈Γ/H

ag([g]− [1]) +
∑
g∈Γ/H

ag

Therefore r is nilpotent provided [g]− [1] is. Let pα be the order of Γ/H, then

([g]− [1])p
α

= [gp
α

] +

pα−1∑
s=1

(−1)s
(
pα

s

)
[gp

α−s] + (−1)p
α

[1] = pr′ + (1 + (−1)p)[1]

where pr′ is the summation term. In any situation (p even or p odd) we get that this term is
divisible by p and hence is nilpotent.

We denote by γ : Π −→ Γ the canonical projection.

Proposition 4.4.2. The universal deformation ring of a character χ : Π −→ k∗ is

R(Π, k, χ) = Λ[[Γ]].

The universal deformation is given given by

χχχ(x) = χ0(x)[γ(x)].
3 See [Ser79, Ch II. §4-§6] for the construction of Witt vectors W (k) and the Teichmüller lifting, also called

multiplicatively system of representatives.
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Proof. We already know that Λ[[Γ]] is a coefficient Λ-algebra and that χχχ is a deformation of
χ. Let χ : Π −→ A∗ be a deformation of χ and consider ψ = χχ−1

0 . Then ψ is a character
taking values in 1 + mA which is a pro-p-group, hence ψ factors through Γ and defines a map
fχ : Γ −→ 1 +mA which extends to a homomorphism of Λ-algebras fχ : Λ[[Γ]] −→ A. We then
have χ = fχ ◦χχχ, proving our claim.
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Chapter 5

Properties of representable
deformation functors

From now on Π will denote a profinite group satisfying the Φp-condition and ρ : Π −→ GLn(k) a
residual representation. Furthermore, through this chapter all residual representations will also
satisfy C(ρ) = k, in particular the universal deformation ring Rρ and the universal deformation
ρρρ exist.

5.1 Functorial properties

These properties arise from the representavility of the deformation functor. First, we study the
determinant

det : GLn −→ GL1 .

The determinant sends Γn to Γ1, therefore it gives a well defined morphism of functors
Dρ −→ Ddet ρ. Equivalently, by Yoneda’s lemma, we have a well defined coefficient ring homo-
morphism

R(Π, k, det ρ) −→ R(Π, k, ρ),

we have already shown that R(Π, k, det ρ) = Λ[[Γ]], where Γ = Πab,p is the abelianization of
the pro-p-completion of Π. This shows that the universal deformation rings has a canonical
structure of Λ[[Γ]] algebra. Let ρρρ be the universal deformation of ρ, note that this coefficient
ring homomorphism sends the universal deformation of det ρ to detρρρ.

Another example of this kind of property is conjugation. Suppose ρ and ρ′ are residual
equivalent representations. There exists a matrix x ∈ GLn(W (k)) (which we can think of as
in GLn(Λ)) such that ρ = x−1ρ′x. Conjugation by x is a morphism of functors (indeed it is an
isomorphism)

δx : GLn −→ GLn

which preservers Γn, so it reduces to a morphism of strict equivalent representations and there-
fore to a morphism

δx : Dρ′ −→ Dρ.

If y ∈ GLn(W (k)) is another matrix such that ρ = y−1ρ′y then the condition C(ρ) = k
implies y = αxN , where α ∈ W (k)∗ is scalar matrix and N ∈ Γn(W (k)). Therefore conjugation
by y induces the same functor at the level of deformations and r(δx) does not depend on x.
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Then, we have a coefficient ring isomorphism

r(ρ′, ρ) : R(ρ) −→ R(ρ′)

sending ρρρ to x−1ρρρ′x. Note that the independence on the conjugation matrix implies that if ρ′′

is equivalent to ρ′ then

r(ρ′′, ρ′) ◦ r(ρ′.ρ) = r(ρ′′, ρ).

Other important functorial property appears when tensoring representations. Let ρ1 and
ρ2 be residual representations such that C(ρ1) = C(ρ2) = C(ρ1 ⊗ ρ2) = k, we have universal
deformation rings R(ρ1), R(ρ2), R(ρ1 ⊗ ρ2), and universal deformations ρρρ1, ρρρ2, ρρρ3 of ρ1, ρ2,
ρ1 ⊗ ρ2 respectively.

Let ρ1, ρ2 be deformations of ρ1 and ρ2 to A1 and A2 respectively. We can consider the tensor
product ρ1⊗ρ2 : Π −→ GLn(A1⊗̂ΛA2), this is a deformation of ρ1⊗ρ2. Indeed, since tensoring
sends Γn(A1) ⊗ Γn(A2) −→ Γn(A1⊗̂ΛA2) then it preserves strict equivalence representations.
In particular, consider A1 = R(ρ1), A2 = R(ρ2), we then form the deformation ρρρ1 ⊗ ρρρ2. Thus,
we get a coefficient ring homomorphism

R(ρ1 ⊗ ρ2) −→ R(ρ1)⊗̂ΛR(ρ2)

sending ρρρ3 to ρρρ1 ⊗ ρρρ2.
Now, choose a lift ρ1 of ρ1 to GLn(Λ). By the universal property, this corresponds to a map

h1 : R(ρ1) −→ Λ. The composition

h(ρ1, ρ2) : R(ρ1 ⊗ ρ2) −→ R(ρ1)⊗̂ΛR(ρ2)
h1⊗id−−−→ R(ρ2)

is called contraction by ρ1.
Particularly, if ρ1 = χ1 is a character we may choose ρ1 = χ1 as the Teichmüller lifting and

get an isomorphism of coefficient rings

h(χ1, ρ2) : R(χ1 ⊗ ρ2) −→ R(ρ2)

sending the universal deformation of χ1 ⊗ ρ2 to χ1 ⊗ ρρρ2. This is an isomorphism of rings with
inverse h(χ−1

1 , χ1⊗ρ2). Thus, we have coefficient ring isomorphisms r(ρ1, ρ2) : R(ρ2) −→ R(ρ1)
of twisted representations satisfying the natural compatibility condition.

Finally, given ρ : Π −→ GLn(R) we can consider the contragredient representation

ρ#(g) = (ρ(g)−1)t

which is the transpose of the inverse. It is actually an isomorphism of GLn, therefore it induces
an isomorphism of functors

Dρ −→ Dρ# ,

and consequently an isomorphism of coefficient rings

Rρ# −→ Rρ.

5.2 The tangent space

In this section we will show the connection between the tangent space tD, cohomology and
extension of modules. Basically the motivation is to give different points of view about how we
can describe the tangent space, in particular we would wish to compute its dimension.
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As in previous chapters, let ρ : Π −→ GLn(k) be a residual representation. Let D = Dρ,Λ

be the deformation functor. We have defined the tangent space

tD = D(k[ε]).

If in addition ρ is representable by R then also

tD = D(k[ε]) = HomΛ(R, k[ε]) = Homk(mR/(mR,mΛ), k)

Suppose ρ1 is a deformation of ρ to k[ε], for g ∈ Π we may write

ρ1(g) = (1 + εbg)ρ(g)

with bg ∈ Mn(k). The condition on the map ρ1 to be a group homomorphism is equivalent for
bg to be a 1-cocicle of Ad(ρ). Indeed,

ρ1(gh) = ρ1(g)ρ1(h)

(1 + εbgh)ρ(gh) = (1 + εbg)ρ(g)(1 + εbh)ρ(h)

(1 + εbgh)ρ(gh) = (1 + εbg)(1 + ερ(g)bhρ(g)−1)ρ(gh)

(1 + εbgh)ρ(gh) = (1 + ε(bg + ρ(g)bhρ(g)−1))ρ(gh).

Two representations ρ1 and ρ2 are strictly equivalent if and only if their respective associated
cocycles bg and b′g are in the same cohomology class. Since Γn(k[ε]) = 1 + εMn(k), then, for
M ∈ Mn(k),

ρ1(g) = (1− εM)ρ2(g)(1 + εM)

(1 + εbg)ρ(g) = (1− εM)(1 + εb′g)ρ(g)(1 + εM)

(1 + εbg)ρ(g) = (1 + ε(b′g + ρMρ(g)−1 −M))ρ(g).

Therefore we get a natural bijection

tD −→ H1(Π,Ad(ρ)), ρ1 7→ bg.

An straightforward computation shows that this correspondence is indeed an isomorphism
of vector spaces. Therefore we have shown:

Proposition 5.2.1. Let ρ : Π −→ GLn(k) be a residual representation, then there is a natural
isomorphism of vector spaces

tD ∼= H1(Π,Ad(ρ)).

Moreover, if C(ρ) = k and R is its universal deformation ring, then we also get natural
isomorphisms

tD ∼= Homk(mR/(m
2
R,mΛ), k) ∼= DerΛ(R, k)

where DerΛ(R, k) denotes Λ-derivations of R with values in k.

Corollary 5.2.1.1. Let ρ be a residual representation such that C(ρ) = k and let d1 be the
dimension of H1(Π,Ad(ρ)). Then R = R(Π, k, ρ) is a quotient of a power series ring on d1

variables which induces an isomorphism on tangent spaces.
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Proof. Let e1, . . . , ed1 be a basis of the cotangent space of R and let e1, . . . , ed1 be a lifting to
the maximal ideal mR. Consider the coefficient Λ-algebra homomorphism

Λ[[X1, . . . , Xd1 ]] −→ R

which sends Xi 7→ ei, then by Nakayama’s lemma it is surjective and induces an isomorphism
on tangent spaces.

We finally describe the relation between the tangent space and extension of modules. At
the end of chapter 1 we mentioned that we may think of representations as Π-modules over free
A-modules where A is a coefficient ring, denote by Vρ the Π-module given by ρ.

Proposition 5.2.2. Let ρ be a residual representation with representation module Vρ. Then the
set of deformations of ρ to k[ε] is in bijective correspondence with the set of isomorphism classes
of extensions of k[[Π]]-modules of Vρ by Vρ, that is, isomorphism classes of exact sequences

0 // Vρ // E // Vρ // 0

of k[[Π]]-modules.

Proof. Suppose that we are given an element of tD, that is, a deformation of ρ to k[ε]. Let M
be k[ε]n with the action of Π given by ρ. Clearly M is of dimension 2n as a vector space over
k. Consider the submodule εM and the module M/εM . These are both clearly n-dimensional
over k, and are in fact isomorphic to Vρ. Hence we get an exact sequence

0 // Vρ //

��

M //

id
��

Vρ //

��

0

0 // εM //M //M/εM // 0

where the vertical arrows are isomorphisms of k[[Π]]-modules.
If ρ1 and ρ2 are strictly equivalents, say, ρ1 = (1 − εM)ρ2(1 + εM) then (1 + εM) is an

isomorphism of k[[Π]] modules between both actions and leaves εM and M/εM invariant, so
they give the same isomorphism class of extensions. For the converse, suppose we are given a
2n-dimensional k-vector space E which fits into an exact sequence

0 // Vρ
α // E

β // Vρ // 0 .

We then make E into a k[ε]-module by defining multiplication by ε to be

α ◦ β : E −→ E.

It is easy to see that (α ◦ β)2 = 0, since β ◦ α = 0. In addition, since both α and β are
morphisms of k[[Π]]-modules, this k[ε]-structure commutes with the action of Π. We can check
that the k[ε]-structure of E makes it a free k[ε]-module of rank n.Indeed, take e1, · · · , en to be
the canonical basis of Vρ and let f1, . . . , fn be a lifting to E. Then f1, . . . , fn is a basis of E
over k[ε].

Fixing this basis we get a homomorphism

ρ1 : Π −→ GLn(k[ε])

which is clearly a deformation of ρ.
It is straightforward to check that two different liftings of e1, . . . , en to E give strict equivalent

deformations of ρ. This proves our assertion.
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It is well known that isomorphism classes of extensions of Vρ by Vρ are in bijective corre-
spondence with elements in Ext1

k[[Π]](Vρ, Vρ), under this bijection the correspondence between

tD and Ext1
k[[Π]](Vρ, Vρ) is an isomorphism of vector spaces.

5.3 Obstruction problems

The natural way to construct deformations is by lifting the residual representation recursively.
Therefore, we should be aware of when we are able to lift a deformation, this problem is called
an obstruction problem.

Let A1 and A0 be objects of C0
Λ and let A1 −→ A0 be a surjective homomorphism with

kernel I. Suppose further that mA1I = 0, then I is a vector space over k. Note that every
surjective homomorphism can be factorized into finitely many of these sort or coefficient ring
homomorphisms, for instance in small homomorphisms.

Suppose we are given a homomorphism ρ0 : Γ −→ GLn(A0). We can find a set-theoretic lift
γ : Π −→ GLn(A1) that lifts ρ0. To test whether this is a homomorphism, we would have to
compute

c(g1, g2) = γ(g1g2)γ(g2)−1γ(g1)−1

for every g1, g2 ∈ Π. We see that γ is an homomorphism if and only if c(g1, g2) = 1 for all g1, g2.
Since it is a homomorphism modulo I, we do know that

c(g1, g2) = 1 + d(g1, g2)

with d(g1, g2) ∈ Mn(I) ∼= Ad(ρ) ⊗ I. The following computation shows that actually d(g1, g2)
is a cocycle

(1 + d(g1g2, g3)) = γ(g1g2g3)γ(g3)−1γ(g1g2)−1

= γ(g1g2g3)γ(g2g3)−1γ(g1)−1γ(g1)γ(g2g3)γ(g3)−1γ(g2)−1γ(g1)−1

(γ(g1g2)γ(g2)−1γ(g1)−1)−1

= (1 + d(g1, g2g3))γ(g1)(1 + d(g2, g3))γ(g1)−1(1− d(g1, g2))
= (1 + d(g1, g2g3))(1 + ρ(g1)d(g2, g3)ρ(g1)−1)(1− d(g1, g2)).

Replacing γ by a different lift changes this cocycle by a coboundary. If γ′ is another lift
then γ(g) = (1 + e(g))γ′(g) with e(g) ∈ I, we compute

(1 + d(g1, g2)) = γ(g1g2)γ(g2)−1γ(g1)−1

= (1 + e(g1g2))γ′(g1g2)γ′(g2)−1(1− e(g2))γ′(g1)−1(1− e(g1))
= (1 + e(g1g2))γ′(g1g2)γ′(g2)−1γ′(g1)−1(1− ρ(g1)e(g2)ρ(g1)−1)(1− e(g1))
= (1 + e(g1g2))(1 + d′(g1, g2))(1− ρ(g1)e(g2)ρ(g1)−1)(1− e(g1))
= (1 + d′(g1, g2)− ρ(g1)e(g2)ρ(g1)−1 + e(g1g2)− e(g1)).

All this proves that the cocycle d(g1, g2) gives an element O(ρ0) in the cohomology group
H2(Π,Ad(ρ)⊗k I) ∼= H2(Π,Ad(ρ))⊗k I, and this element is trivial if and only if there exists a
homomorphism Π −→ GLn(A1) lifting ρ0. We call O(ρ0) the obstruction class of ρ0 relatively
to A1 −→ A0.

It is to be expected that the deformation theory of unobstructed representations, i.e. when
d2 = 0, behaves quiet well. The following theorem due to Mazur shows that this is indeed the
case:
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Theorem 5.3.1. Suppose C(ρ) = k and let R = R(Π, k, ρ) be the universal deformation ring
representing the deformation functor DΛ. Let

d1 = dimH1(Π,Ad(ρ)) and d2 = dimH2(Π,Ad(ρ)).

Then we have

dim(R/mΛR) ≥ d1 − d2. (5.3.1)

Furthermore, if d2 = 0 we have equality in (5.3.1), and in fact

R ∼= Λ[[X1, X2, . . . , Xd1 ]]

Proof. We already know that there is a surjective homomorphism of coefficient Λ-algebras

Λ[[X1, . . . , Xd1 ]] −→ R

which induces an isomorphism on tangent spaces. Reducing modulo the maximal ideal gives a
surjective homomorphism

k[[X1, . . . , Xd1 ]] −→ R/mΛR

which still induces an isomorphism on tangent spaces. Let J be the kernel of this surjection.
Write F = k[[X1, . . . , Xd1 ]] and let mF be its maximal ideal. We have an exact sequence

0 // J // F // R/mΛR // 0 .

What we need to prove is that the minimal number of generators of J is at most d2, this
because the dimension of R/mΛR is d1 − height(J) and height(J) is less than or equal to the
minimal number of generators. Since mFJ ⊂ J , the sequence of k-vector spaces

0 // J/mFJ // F/mFJ // R/mΛR // 0

is still exact. Hence the Krull dimension of R/mΛR is at least d1 − dimk(J/mFJ) because the
dimension as k-vector space of J/mFJ is the minimal number of generators of J (Nakayama’s
lemma).

Let ρρρp be the image of the universal deformation ρρρ under the quotient map R −→ R/mΛR.
It is clear that ρρρp is the universal deformation over all the deformations to k-algebras. The
construction above gives a cohomology class

O(ρρρp) ∈ H2(Π,Ad(ρ))⊗ J/mFJ

which is the obstruction to lifting ρρρp to F/mJ .
Consider the k-linear map

Hom(J/mFJ, k)
α−→ H2(Π,Ad(ρ))

given by

f 7→ (1⊗ f)(O(ρρρp)).

If we can show that α is injective, then we will have dimk(J/mFJ) ≤ d2 which implies our
claim.

To prove injectivity, let f be a nonzero element in the kernel of α, let A be the quotient
of F/mFJ by the kernel of f and let I be the image of J/mFJ in the quotient, so that I =
(J/mFJ)/ ker(f) = k. We get an exact sequence
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0 // I // A // R/mR // 0

where I is isomorphic to k and which still induces an isomorphism on tangent spaces. But now
the obstruction to lifting ρρρp to A vanishes. Thus we get a deformation of ρ to A lifting ρρρp. But
A is a k-algrebra and ρρρp is universal among lifts to such rings, so this lift must be induced by an
homomorphism R/mΛR −→ A. This means that the sequence splits, but Lemma 1.4 of [Sch68]
contradicts this fact 1. Thus, α is injective proving the inequality.

If d2 = 0, then we can lift a deformation of the universal deformation relatively to

Λ[[X1, . . . , Xd1 ]] −→ R.

Universality of ρρρ shows that the above homomorphism splits and since Λ[[X1, . . . , Xd1 ]] −→
R is an isomorphism on tangent spaces then the spliting homomorphism R −→ Λ[[X1, . . . , Xd1 ]]
does too. This shows the isomorphism Λ[[X1, . . . , Xd1 ]]

∼= R.

The asertion of the equality in 5.3.1 is known as the Dimension Conjecture.
Finally, we will down-to-earth all this machinery in the Galois case for n = 2. Let K be a

number field, S a finite set of primes containing all primes above p and all primes at infinity.
Let S∞ ⊂ S be the set of primes at infinity and set Π = GK,S. Let

ρ : Π −→ GLn(k)

5 be a residual representation such that C(ρ) = k, and let R be its universal deformation ring.
In previous sections we have given a lower bound for the dimension of R/mΛR in terms of the
dimensions of two cohomology groups, the tool we will use in order to compute the difference
d1 − d2 is the global Euler characteristic formula due to Tate, see [Hid00, Ch. 4] for a proof of
the global and local Euler characteristic formula.

Take an extension K/Q of degree d and let S be a finite set of primes of K containing all
primes at infinity. Let M be a finite GK,S-module and suppose all primes dividing the order of
M are in S. For each prime v of K let Kv be the completion at v, so if v is a prime at infinity
then Kv is R or C. The global Euler characteristic formula states that

|H0(GK,S,M)||H2(GK,S,M)|
|H1(GK,S,M)|

=
1

|M |d
∏
v∈S∞

|H0(GKv ,M)|.

In our situation M will be Ad(ρ), which has order a power of p and S contains all primes
dividing p. Then the global Euler characteristic formula in terms of the dimension over k is

dimH0(GK,S,Ad(ρ))− dimH1(GK,S,Ad(ρ)) + dimH2(GK,S,Ad(ρ)) =

=
∑
v∈S∞

dimH0(GKv ,Ad(ρ))− d dim Ad(ρ).

Write di = dimH i(GK,S,Ad(ρ)) as before. Then the formula becomes

d0 − d1 + d2 =
∑
v∈S∞

dimH0(GKv ,Ad(ρ))− dn2

and therefore

1The argument involves the dimension of the tangent spaces.The dimension of tA would be grater than the
one of tR.
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d1 − d2 = d0 + dn2 −
∑
v∈S∞

dimH0(GKv ,Ad(ρ)).

We can compute d0:

H0(GK,S,Ad(ρ)) = (Ad(ρ))GK,S = k,

so d0 = 1.
Then we have the following proposition

Proposition 5.3.1. Let K be a number field of degree d over Q, let ρ : GK,S −→ GLn(k) be a
residual representation such that C(ρ) = k, and let R be its universal deformation ring. Then

Krull dimR/mΛR ≥ 1 + dn2 −
∑
v∈S∞

dimH0(GKv ,Ad(ρ)). (5.3.2)

We have already computed the case n = 1, i.e. when ρ is a character. We showed that

R = Λ[[Gab,p
K,S]].

Notice that

R/mΛR = k[[Gab,p
K,S]],

so the Krull dimension of this ring is equal to the rank of G
ab,(p)
K,S as a Zp-module, or equivalently,

the rank of Hom(GK,S,Zp) as Zp-module.
On the other hand, the formula above shows that the Krull dimension is at least 1 + r2,

where r2 is the number of complex primes of K. So we have shown that

rank Zp Hom(GK,S,Zp) ≥ 1 + r2.

The assertion that these two numbers are equal is equivalent to the Leopoldt Conjecture for
the field K. See Appendix C.

The next case we want to check is the one related to modular forms and elliptic curves:
n = 2, p an odd prime, K = Q, S containing p and ∞. In this case G∞ is a group if order two
generated by a complex conjugation σ. Since σ2 = 1 and p is odd, ρ(σ) is a matrix of order 2
in GL2(k), and hence we must have

ρ(σ) ∼ ±
(

1 0
0 1

)
or ρ(σ) ∼

(
1 0
0 −1

)
.

In the first case det ρ = 1, and we call ρ an even representation. In the second, det ρ = −1
and we say ρ is odd.

Now its easy to compute the dimension d0 of H0(G∞,Ad(ρ)). If ρ is even, then ρ is an
scalar matrix and hence the action of G∞ on Ad(ρ) is trivial, so d0 = 4. If ρ is odd, then

(
1 0
0 −1

)(
a b
c d

)
=

(
a b
c d

)(
1 0
0 −1

)
(

a b
−c −d

)
=

(
a −b
c −d

)
.

Hence c = b = 0 and d0 = 2. Putting all together we have
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Proposition 5.3.2. Let p be an odd prime, let S be a set of rational primes including p and
∞, let ρ : GQ,S −→ GL2(k) be a residual representation satisfying C(ρ) = k, and let R be the
universal deformation ring of ρ. Then:

• if ρ is even, then Krull dim R/mΛR ≥ 1, and

• if ρ is odd, then Krull dim R/mΛR ≥ 3.

Finally, we will use the local Euler characteristic formula to compute d1 − d2 in the local
case. Let K be a finite extension of Qp of order d and let M be a GK-module of order m. Then

|H0(GK ,M)||H2(GK ,M)|
|H1(GK ,M)|

= p−dvp(m)

where vp is the p-adic valuation in Q. We will put M = Ad(ρ), denote di = dimkH
i(GK ,Ad(ρ)),

the formula rewrites in dimensions as

d0 − d1 + d2 = −dn2.

If C(ρ) = k then d0 = 1 and

d1 − d2 = 1 + dn2.
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Chapter 6

Explicit deformations

So far we have only determined the deformation ring and the universal deformation for charac-
ters. Throughout this chapter we will try to say more about R, particularly in the tame case
of Galois representations.

6.1 Some group theory

Just like in previous sections, let S be a finite set of primes of Q including p and ∞. Let QS

be the maximal extension of Q unramified outside S, Π = GQ,S be the Galois group of QS over
Q and ρ : Π −→ GLn(k) be a residual representation such that C(ρ) = k.

Let Π0 be the kernel of ρ and K be its fixed field. We have a tower of fields

QS

Π0

Π K

Π/Π0
∼=Im(ρ)

Q
Let S1 be the primes of K above S. Let ρρρ : Π −→ GLn(R) be the universal deformation of

ρ. Thus, the restriction of ρρρ to Π0 gives an homomorphism Π0 −→ Γn(R). Since Γn(A) is a
pro-p-group for every coefficient ring A, Π −→ Γn(R) factorizes through the pro-p-completion
of Π0. Therefore, let L be the maximal p-extension of K unramified outside S1, denote the
Galois group of L over Q by Π̃. We have shown that the universal deformation ρρρ factors through
Π̃ and hence every deformation must factor through Π̃. We call Π̃ the pro-p-completion of Π
relatively to ρ. We can replace Π by Π̃ for the deformation theory of ρ. Let P be the kernel of
ρ : Π̃ −→ GLn(k), so P is a pro-p-group and we get the exact sequence

1 // P // Π // Im(ρ) // 1 .

Definition 6.1.1. We say that a residual representation ρ is tame if the order of Im(ρ) is not
divisible by p.

Before considering a more general case we will study the tame representations, for this we
must introduce some results in group theory.

Theorem 6.1.1 (Schur-Zassenhaus). Let G be a profinite group with normal pro-p-Sylow sub-
group P of finite index in G. Let π : G −→ G/P be the projection on the quotient. Then G
contains a subgroup A such that π induces an isomorphism of A onto G/P . Furthermore, any
two subgroups with this property are conjugated by an element of P .
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See [Rob96, Ch. 9]. The original statement is more general but this is enough for our
purposes in the theory. An immediate consequence of this theorem is the following:

Proposition 6.1.1. Let A be a finite group whose order is not divisible by p and let ρ : A −→
GLn(k) be a faithful residual representation such that C(ρ) = k. Then Λ is the deformation
ring of DΛ and the unique lifting of ρ to GLn(Λ) is the universal deformation of ρ.

The Schur-Zassenhaus theorem also implies that G is the semidirect product of P and G/P .
If P is topologically finitely generated denote by d(P ) the minimal number of generators of P ,
it is called the generator rank. The kernel of the map from the free pro-p-group on d(P )
generators is still a pro-p-group which is finitely generated. The minimal number of generators
of the kernel is called the relation rank and is denoted by r(P ).

The Burnside Basis Theorem shows that d(P ) is the dimension over Fp of the p-Frattini
quotient P = Fr(P ) of P . Indeed, a section of a generator set of P is a generator set of P .

Boston improved this theorem for the case we are concern with, see [Bos91].

Theorem 6.1.2. Let G be a profinite group with normal pro-p-Sylow subgroup P of finite index
in G, and let A be a subgroup of G mapping isomorphically to G/P . Let A act on P and on P
by conjugation. If V is an Fp[A]-module of P , then there exist an A-invariant subgroup V of
P with dimFp V generators which maps onto V under π.

In the case we are dealing with, the Galois case, one can give explicitly d(P ) and r(P ) in
terms of number theoretic objects, see [CR01, pg. 295] for the formulas and some references.
Even more, there is an exact sequence which helps to describe the structure of P as an k[H]-
module, where H = Im(ρ).

Let ZS be the set of non zero elements x ∈ K such that the fractional ideal (x) is a p-th
power and such that x is a p-th power in each completion Kv of K for v ∈ S1. Both groups
ZS and (K∗)p are stable under the Galois group H. ZS/(K

∗)p is a Fp[H]-modulo denoted by
BS. Let E be the units of K modulo p-th powers, and let Ev denote the group of units in Kv

modulo p-th powers. If the class number of K is prime to p we deduce from global class field
theory the existence of an exact sequence of Fp[H]-modules

0 −→ Bs −→ E −→
⊕
v∈S1

Ev −→ P −→ 0

which give us the next theorem:

Theorem 6.1.3 (Boston-Mazur). For each rational prime `, let H` be the decomposition sub-
group of H at `, and let H∞ be the subgroup of H generated by a complex conjugation. Let
µp(K) be the group of p-th roots of unity in K. If H has order prime to p, then we have the
following isomorphisms of Fp[H] modules:⊕

v∈S1

Ev
∼= Fp[H]⊕

(⊕
`∈S

IndHH`µp

)

E ⊕ Fp ∼= µp ⊕ IndHH∞Fp.

A proof is found in [BM89]. We say an H-module is prime to adjoint if it does not have
common factors with the adjoint representation. The importance on describing explicitly P lies
in the relation among deforming representations and the adjoint representation Ad(ρ). Indeed,
let

Kr = ker (Γn(R) −→ Γn(R/mr
R)) ,

then Kr−1/Kr is a F[H]-module isomorphic to a multiple of the adjoint representation provided
the order of H is prime to p.
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6.2 Tame representations

Now we discuss the case when our residual representation ρ is tame. Consider Π̃ to be the pro-
p-completion of Π relatively to ρ. Making an abuse of language we can write ρ : Π̃ −→ GLn(k).
Let P be the kernel of ρ, then P is a pro-p-group and since ρ is tame, by Schur Zassenhaus
theorem, Π̃ is the semidirect product P oA where A is some lifting of H = Im(ρ) to Π̃ (recall
that two of such liftings are conjugated by an element in P ).

Recall also that for any coefficient ring R the group Γn(R) is a p-group. Let π : GLn(R) −→
GLn(k) be the canonical projection, then π−1(H) splits as a semidirect product of Γn(R) and
H. This proves that H has a section in GLn(R) and even more, that two of such sections are
conjugated by an element in Γn(R). In particular if we take R = W (k), we obtain a inclusion
σ : A ∼= H −→ GLn(W (k)) which induces a representation

σ1 : Π̃ −→ GLn(W (k)).

It is clear that if we change the lifting of A the representation σ1 differs by a conjugation of
an element in Γn(W (k)). Let’s fix σ and therefore σ1, recall that every coefficient ring admits a
unique structure ofW (k)-algebra, composing with σ1 we get representations σR : Π̃ −→ GLn(R)
commuting with coefficient ring homomorphisms, i.e. for ϕ : R −→ R′ we have

ϕ ◦ σR = σ′R.

Then Γn(R) has an action of A by conjugation via σR.
Define the functor Eρ on C by imposing

Eρ(R) = HomA(P,Γn(R)),

where HomA(P,Γn(R)) denotes the set of continuous homomorphisms from P to Γn(R) which
commute with the A-action. Note that an element in γ ∈ HomA(P,Γn(R)) gives a representa-
tion Π̃ −→ GLn(R) by

γ o σR : Π̃ ∼= P o A −→ GLn(R).

Theorem 6.2.1 (Boston). The functor Eρ is always representable. Furthermore,

i. If C(ρ) = k, the natural morphism of functors Eρ −→ Dρ is an isomorphism.

ii. Otherwise, the morphism is smooth and induces an isomorphism on tangent spaces (is a
hull of Dρ).

Proof. First, we’ll prove that Eρ is representable, then (ii) implies (i) since the condition
C(ρ) = k implies that Dρ is representable. Nevertheless, we will give a direct proof of (i).

Choose generators x1, x2, . . . , xd of P . The image of xr in Γn(R) is a matrix of the form
1 +m

(r)
11 m

(r)
12 · · · m

(r)
1n

m
(r)
21 1 +m

(r)
22 · · · m

(r)
2n

· · · · · ·
m

(r)
n1 m

(r)
n2 · · · 1 +m

(r)
nn


where the m

(r)
ij belong to mR.

Consider the power series ring W (k)[[T
(r)
ij : 1 ≤ i, j ≤ n, 1 ≤ r ≤ d]]. Let F be the free

pro-p-group on x1, . . . , xd, so we get an exact sequence

39



1 // N // F // P // 1 .

A continuous homomorphism from P to Γn(R) is equivalent to a homomorphism from F to

Γn(R) such that N vanishes. Define a homomorphism from F to Γn(W (k)[[T
(r)
i,j ]]) by sending

xr to 
1 + T

(r)
11 T

(r)
12 · · · T

(r)
1n

T
(r)
21 1 + T

(r)
22 · · · T

(r)
2n

· · · · · ·
T

(r)
n1 T

(r)
n2 · · · 1 + T

(r)
nn

 .

If we impose N to be in the kernel and the homomorphism to commute with the action
of A, then we get a family of equations involving the variables T

(r)
ij . Let I be the closed

ideal generated by all these equations. If we set R = W (k)[[T
(r)
ij ]]/I, we have a well defined

homomorphism φ : P −→ Γn(R). It is easy to check that it is the universal representation and
that R represents Eρ.

Now we proceed to prove (i), let R be a coefficient ring and suppose C(ρ) = k. We want to
show that

Eρ(R) −→ Dρ(R)

is a bijection.
Surjectivity; let ρ be a deformation of ρ to R. Then ρ induces a lift of A −→ GLn(R). Since

all such liftings are conjugate by elements of Γn(R), we can choose a homomorphism ψ in the
strict equivalent class of ρ such that ψ|A = σR. Then ψ|P is an element of Eρ(R) which maps
to ρ.

Injectivity; suppose φ1 and φ2 produce strictly equivalent lifts ψ1 and ψ2 of ρ. Since both
ψ1 and ψ2 induce σR in A, the matrix realizing the strict equivalence must be an element in
Γn(R) acting trivially on A. Since C(ρ) = k then the matrices in Γn(A) commuting with A are
scalars. Hence they also act trivially by conjugation and ψ1 = ψ2 showing that φ1 = φ2.

Finally, we are going to prove (ii). To prove smoothness consider a surjective morphism
ϕ : R2 −→ R1 of artinian coefficient rings. Since we can factor ϕ as a composition of small
homomorphisms, it is enough to check the result for ϕ small. Suppose ϕ small and let (f) =
kerϕ. We get the following diagram

Eρ(R2) //

��

Dρ(R2)

��
Eρ(R1) //Dρ(R1)

Let φ1 ∈ Eρ(R1) and ρ2 ∈ Dρ(R2) be two elements such that they reduce to the same
representation ρ1 ∈ Dρ(R1). Then, choosing a representation ψ2 in the class of ρ, we may
assume that the reduction of ψ2 to R1 is exactly φ1 o σR1 . We want an element in Eρ(R2)
which reduces to ρ2 and φ1. The restriction of ψ2 to A has the form

ψ2(a) = (1 + fba)σR2(a), a ∈ A.

Note that the conditions of ψ2 to be a homomorphism and ba to be a 1-cocicle in Ad(ρ) are
equivalent. Since p - |A| then H1(A,Ad(ρ)) = 0 and there exist M ∈Mn(k) such that

ba = M − ρ(a)Mρ(a)−1.
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Therefore if we conjugate ψ2 by 1−fM we get a strict equivalent representation ψ̃2 reducing
to ψ1 in R1 such that the restriction to A is exactly σR2 . Hence the restriction of ψ̃2 to P gives
the desired element in Eρ(R2).

To prove that it is an isomorphism on tangent spaces is the same as to show that

Eρ(k[ε]) −→ Dρ(k[ε])

is a bijection since the vector space structure in both cases is defined by the same maps.
Surjectivity comes from the smoothness taking R2 = k[ε] and R1 = k. To prove injectivity
note that we are considering homomorphisms φ : P −→ Γn(k[ε]) = 1 + εAd(ρ). Then the only
conjugate of φ by an element in Γn(k[ε]) is itself proving the claim.
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Chapter 7

Imposing conditions to deformations

We will follow the same notation as in the last chapters. To understand the universal deforma-
tion ring is not in general an easy challenge. The previous chapter gave us a way to construct
that ring in the tame case, but we easily find some difficulties in this treatment, for instance,
the group P is not in general easy to describe.

On the other hand, we are not always concerned with all deformations of a given residual
representation. For example, conditions as modularity, semistability or fixed determinant are
important in the proof of Fermat’s Last Theorem and they play a role in the representation
type. All this together motivates the notion of deformation condition first considered by Mazur
in [Maz89].

7.1 Deformation conditions

Given a condition Q for deformations of ρ we would want to construct a functor attaching each
coefficient ring R the set of deformations of ρ to R for which Q holds. Then the assignment

R −→ {deformations of ρ satisfying Q}.

will be a subfunctor of Dρ. We also want this functor to be representable if Dρ is so, here the
notion of being relatively representable introduced in Chapter 4 is the vital one.

Before defining deformation condition, let’s give some language. Let R and R′ be artinian
coefficient Λ-algebras. If we are given a deformation α : Π −→ GLn(R) and a homomorphism
of coefficient Λ-algebras α : R −→ R′ we get an induced deformation Π −→ GLn(R′) by
composing ρ with α. We denote this deformation by α∗ρ and call it the push-forward of ρ by
α.

Recall that a representation ρ of Π over a coefficient ring R of dimension n is the same as a
free R-module M of rank n with a continuous action of Π. The push-forward of a representation
would be the tensor product M⊗RR′, where the R-module structure is given by α. The residual
representation corresponds to Vρ. Deformations are just isomorphism clases of Γ-modules (free
of rank n w.r.t. R) over Vρ.

Definition 7.1.1. Let ρ be a residual representation of dimension n. A deformation condition
on deformations of ρ is a property Q of n-dimensional (as free R-module) representations of Π
defined over artinian coefficient Λ-algebras which satisfies the following conditions:

i. The residual representation ρ has property Q.

ii. Given a deformation ρ : Π −→ GLn(R) of ρ and a homomorphism of coefficient Λ-algebras
α : R −→ R′, if ρ has the property, then the push-forward α∗ρ also does.
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iii. Let

R1 ×R0 R2

p

yy

q

%%
R1

α
%%

R2

βyy
R0

be a fiber product in C0
Λ, and let

ρ : Π −→ GLn(R1 ×R0 R2)

be a deformation of ρ. Then ρ has the property Q if and only if both q∗ρ and p∗ρ have
property Q.

iv. Let α : R −→ R′ be an injective homomorphism of coefficient Λ-algebras and let ρ :
Π −→ GLn(R) be a deformation of ρ. If α∗ρ has property Q then so does ρ.

Remark. Condition iv is a consequence of conditions ii and iii. This is shown in Lecture 6 of
Galois Representations by Fernando Gouvêa, [CR01].

Definition 7.1.2. Let Q be a deformation condition for ρ. We define a functor

DQ : C0
Λ −→ Sets

by setting, for each artinian coefficient Λ-algebra R,

DQ(R) = {deformations of ρ to R which satisfy property Q}.

We can then extend DQ to all CΛ by continuity: If R is a coefficient Λ-algebra,

DQ(R) = lim←−
k

DQ(R/mk).

Condition i causes DQ to be non-empty, whereas condition ii implies the functorial property.

Theorem 7.1.1. If Q is a deformation condition for ρ, then DQ satisfies conditions H1, H2

and H3 in Schlessinger’s theorem. If C(ρ) = k, then DQ also satisfies property H4 and therefore
is representable by a ring RQ which is a quotient of the universal deformation ring R(ρ).

Proof. It is enough to prove that DQ ⊂ Dρ is relatively representable. Let

R1 ×R0 R2

p

yy

q

%%
R1

α
%%

R2

βyy
R0

be a fiber product in C0
Λ. We have to show that the following square is cartesian
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DQ(R1 ×R0 R2) //

��

DQ(R1)×DQ(R0) DQ(R2)

��
Dρ(R1 ×R0 R2) //Dρ(R1)Dρ(R0)Dρ(R2)

Let ρ be a deformation of ρ to R1×R0×R2 and let (ρ1, ρ2) be an element of DQ(R1)×DQ(R0)

DQ(R2) such that

p∗ρ = ρ1 and q∗ρ = ρ2.

Condition iii. implies that ρ has the property Q and therefore it is in DQ(R1×R0 R2). Since
all vertical maps are inclusions we get that the square is cartesian.

Suppose we have a deformation condition Q. We consider the inclusion of tangent spaces

DQ(k[ε]) ⊂ Dρ(k[ε]) ∼= H1(Π,Ad(ρ)).

Definition 7.1.3. We define H1
Q(Π, Ad(ρ)), to be the subspace of H1(Π,Ad(ρ)) corresponding

to DQ(k[ε]).

7.2 Examples of deformation conditions

In this section we will give some examples of deformation conditions.

Fixed determinant

Definition 7.2.1. Let δ be a continuous homomorphism

δ : Π −→ Λ∗

and for every coefficient Λ-algebra R let δR be the composition

δR : Π −→ Λ∗ −→ R∗.

We say a deformation ρ of ρ to R has determinant δ if det ρ = δR.

Lemma 7.2.1. Suppose ρ has determinant δ. Then “det = δ” is a deformation condition.

Proof. Conditions i. and ii. in Definition 7.1.1 clearly hold. We only have to check condition
iii. Consider a fiber product as in Definition 7.1.1 and let ρ be a deformation of ρ to R1×R0 R2

such that p∗ρ and q∗ρ have determinant δ. Therefore p∗ det ρ = δR1 and q∗ det ρ = δR2 and
since taking units preserves fiber products

det ρ = δR1×R0
R2 .

In the case of fixed determinant it is not difficult to describe the tangent space H1
Q(Π,Ad(ρ)).
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Lemma 7.2.2. Let n be the dimension of ρ. Let Ad0(ρ) be the sub Π-module consisting of
the matrices of Ad(ρ) with trace 0. If p - n then the inclusion Ad0(ρ) −→ Ad(ρ) induces an
isomorphism

H1(Π,Ad0(ρ)) −→ H1
det=δ(Π,Ad(ρ)) ⊂ H1(Π,Ad(ρ)).

If p|n, then the homomorphism in cohomology H1(Π,Ad0(ρ)) −→ H1(Π,Ad(ρ)) still surjects
onto H1

det=δ(Π,Ad(ρ)).

Proof. First recall that the connection between deformations to k[ε] and elements ofH1(Π,Ad(ρ))
is given by

ρ(g) = (1 + εbg)ρ(g).

The following square commutes

1 + εMn(k) //

det
��

Mn(k)

Tr
��

1 + εk // k

Taking determinants we get

det ρ(g) = det((1 + εbg)ρ(g))

δk[ε](g) = det((1 + εbg))δk(g)

δ(g) = det((1 + εbg))δ(g)

1 = det(1 + εbg).

This shows that Tr(bg) = 0 and that the cocycle comes from Ad0(ρ). The same computation
proves that cocycles of Ad0(ρ) induce deformations with determinant δ, hence the induced map
surjects onto H1

det=δ(Π,Ad(ρ)).
Suppose p - n, then Ad(ρ) = Ad0(ρ)⊕ k Id and hence

H1(Π,Ad(ρ)) = H1(Π,Ad0(ρ))⊕H1(Π, k Id)

and the map H1(Π,Ad0(ρ)) −→ H1(Π,Ad0(ρ)) is actually an inclusion.

Let Λ[[Γ]] be the universal deformation ring of the trivial character and let εεε be the universal
deformation. Now suppose that C(ρ) = k, the universal deformation ring Rdet=δ of the functor
Ddet=δ is a quotient of Rρ. Nevertheless, we can recover Rρ provide we know Rdet=δ and p - n,
indeed,

Rρ = Rdet=δ⊗̂ΛΛ[[Γ]]

and, if we denote the universal deformation with determinant δ by ρρρδ, then

ρρρ = ρρρδ ⊗ εεε.

Let ρ be a deformation of ρ to R, then θ = (δR)−1 det ρ factorizes through

Π //

##

1 + mR

��
R∗
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Since 1 + mR is an abelian pro-p-group, multiplication by n is an automorphism and θ1/n

is a continuous homomorphism from Π to 1 + mR. Let ϕ : Λ[[Γ]] −→ R be the morphism such
that

θ1/n = ϕ∗εεε.

Consider the deformation

ρ′ = θ−1/nρ,

therefore det ρ′ = θ−1(det ρ) = δR and it is a deformation of ρ with determinant δ. By univer-
sality, there exists a morphism ψ : Rdet=δ −→ R with

ρ′ = ψ∗ρρρδ.

Then we may construct ψ ⊗ ϕ : Rdet=δ⊗̂ΛΛ[[Γ]] −→ R and in this case

(ψ ⊗ ϕ)∗(ρρρδ ⊗ εεε) = (ψ∗ρρρδ)(ϕ∗εεε) = ρ′θ1/n = ρ.

The coefficient Λ-algebra homomorphism is unique as can be seen from the canonical maps
Rdet=δ −→ Rdet=δ⊗̂ΛΛ[[Γ]] and Λ[[Γ]] −→ Rdet=δ⊗̂ΛΛ[[Γ]]. This proves the claim.

Categorical deformation conditions
Another important class of deformation conditions comes from the categorical point of view,

indeed, we can regard the representations of Π on a coefficient ring R as Λ[[Π]] modules free
over R. Moreover, we can restric to working with artinian coefficient Λ-algebras, so the module
of the representation will be of finite length with respect to Λ. This motivates to consider
the category of all Λ-modules of finite length with a continuous action of Π. Let P be a full
subcategory closed under sub-objects, quotients and finite direct sums.

We say that a deformation of ρ to a artinian coefficient Λ-algebra is of type P if the related
module is in P, note that it does not depend on the lift.

Theorem 7.2.1 (Ramakrishna). Suppose ρ is of type P. The condition of “being of type P” is
a deformation condition.

Proof. We need to prove conditions ii. and iii., that is, “being of type P” is preserved by
push-forwards and behaves well under fiber products. For the first condition, Let α : R −→ R′

be a Λ-algebra homomorphism of artinian coefficient Λ-algebras and let M = Rn and M ′ = R′n

be endowed with the structure of Π-module and suppose M is in P.
Let {a1, . . . , am} ⊂ mR′ be a set of generators of R′ over R. Then we get a surjective

homomorphism

R[X1, . . . , Xm] −→ R′

sending Xi 7→ ai. Since R′ is artinian a power of the maximal ideal vanishes, hence the map
just above described factorizes through

α2 : B = R[X1, . . . , Xm]/〈Xj
1 , . . . , X

j
m〉 −→ R′

for some j. Denote α1 : R −→ B and so α = α2 ◦ α1. The ring B is free over R, then the
pullback α1,∗(M) is just M r for r the rank of B over R. Since P is closed by finite direct sums
α1,∗M = M r is in P. Note that α2,∗M

r = M ′ is a quotient of M r, then it is also in P.
For proving iii. let R3 = R1 ×R0 R2 be a fiber product of artinian coefficient Λ-algebras
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R3

q

  

p

~~
R1

  

R2

~~
R0

and let ρi be a deformation of ρ to Ri with corresponding module Mi with p∗ρ3 = ρ1 and
q∗ρ3 = ρ2. Part ii. implies that if ρ3 is in P then ρ1, ρ2 are in P as well. Conversely, suppose
ρ1, ρ2 are in P, note that R3 is a subring of R1 ×R2, therefore M3 is a submodule of M1 ⊕M2.
Since M1 and M2 are in P and this category is invariant under taking sub-objects and finite
direct sums then M3 is in P.

The description of H1
P(Π,Ad(ρ)) is clear in ExtΠ(Vρ, ρ), it consists on all the extensions

0 // Vρ // E // Vρ // 0

with E an object of P.
One of the most relevant examples of a categorical condition is given by considering those

representations for which the correspoding Q` group scheme is isomorphic to the GQ`-module
obtained from the generic fiber of a finite flat group scheme over Spec(Z`). See Chapter V
of [CSS97] for an introduction on finite flat group schemes and Chapter XIII of the same
reference for a discussion of the flat deformation functor.

Ordinary deformations
We now restrict to the case n = 2.

Definition 7.2.2. Fix Π and k as above, let R be a ring in C, and choose a closed subgroup
I ⊂ Π. Let

ρ : Π −→ GL2(R)

be a representation, and let M = R2 with the Π-module structure determined by ρ. We say ρ
is I-ordinary if the sub-R-module M I ⊂ M is free of rank 1 over R, a direct summand of M
and the restriction of ρ to I is not trivial in M/M I .

To check that being I-ordinary is invariant under strict equivalence, consider M and M ′

free R-modules of rank two with a continuous action of Π which are equivalent over Vρ, the
Π-module corresponding to the residual representation, i.e. there is a Π-module isomorphism
which makes the following triangle commutative

M
f //

  

M ′

~~
Vρ

Then f(M I) = M ′I and M ′I is R-free of rank 1. If M = M I ⊕N then M ′ = M ′I ⊕ f(N) .
Besides, M/M I and M ′/M I are isomorphic as I-modules, so the action of I in M ′/M I is not
trivial. This proves that M ′ is I-ordinary.

Theorem 7.2.2. Suppose ρ is I-ordinary. Then the condition of being I-ordinary is a defor-
mation condition for ρ.
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Proof. Let R and R′ be artinian Λ-coefficient algebras and let α : R −→ R′ be a Λ-coefficient
homomorphism. Without loss of generality we can assume mR 6= 0 and mR′ 6= 0, otherwise we
are in the residual representation case. Let ρ : Π −→ GL2(R) be an I-ordinary deformation of
ρ and denote by M the module of one fixed representation in the class of ρ. We may assume,
after conjugation, that for each g ∈ I the matrix ρ(g) has the form

ρ(g) =

(
1 b(g)
0 d(g)

)
.

Since M I is of rank 1, for some g ∈ I, d(g) is not equal to 1 modulo mR, otherwise, the
reduction to k would be unipotent on I. Therefore α∗ρ has the following form for the elements
of I

ρ(g) =

(
1 α(b(g))
0 α(d(g))

)
.

Hence, for some g ∈ I the reduction of α∗ρ(g) to k is not unipotent proving that α∗ρ is
I-ordinary.

The third condition is about the behavior in fiber products. Let R3 = R1 ×R0 R2 be the
fiber product in C0

Λ of

R3

q

  

p

~~
R1

ϕ1   

R2

ϕ2~~
R0

Suppose ρ3 is a deformation of ρ to R3 such that the induced deformations ρ1 and ρ2 in R1

and R2, respectively, are I-ordinary. Let’s fix representations φi in the strict equivalence class
of ρi with φ1 = p∗φ3 and φ2 = q∗φ3. Let ei = (ai, bi) (i = 1, 2) be generators of (Ri×Ri)

I , then
at least one of a1 or b1 is a unit, suppose a1. Mapping ei to R0 × R0 we see that ϕ1(e1) and
ϕ2(e2) differ by a unit in R0. Therefore a2 is also a unit and without loss of generality we can
take ai = 1. Then

(Ri ×Ri)
I = 〈(1, bi)〉.

Hence

ϕ1(1, b1) = (1, ϕ1(b1)) = cϕ2(1, b2) = c(1, ϕ2(b2))

for some unit c ∈ R0, then c = 1 and ϕ1(e1) = ϕ2(e2) = e0 and e3 = (e1, e2) ∈ R3 = R1×R0 R2.
We will see that actually the fixed subgroup of ϕ3 is generated by e3, it is immediate to check
that the submodule generated by e3 is free of rank 1 over R3.

Let x ∈ I, then p(ϕ3(x)e3) = ϕ1(x)e1 = e1, similarly q(ϕ3(x)e3) = ϕ2(x)e2 = e2, this proves
that ϕ3(x)e3 = e3 and 〈e3〉 ⊂ (R3 ×R3)I . Conversely, take e ∈ (R3 ×R3)I , then

p(e) = c1e1 and q(e) = c2e2.

Mapping to R0 we get that

ϕ1(c1e1) = ϕ1(c1)e0 = ϕ2(c2)e0 = ϕ2(c2e2)

and ϕ1(c1) = ϕ2(c2) showing that c3 = (c1, c2) ∈ R3 and therefore e = c3e3. This completes the
proof.
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We can then define the functor DI of I-ordinary deformations. It is easy to see that if we
extend this condition to finitely many closed subgroups I1, . . . , Ik of Π, the remaining condition
is actually a deformation condition. We can also consider I-co-ordinary deformations:

Definition 7.2.3. A representation ρ : Π −→ GL2(R) is called I-co-ordinary if its represen-
tation space M has a submodule M1 of rank 1 over R, stable under I, not a trivial I-module,
and a direct summand of M , such that the quotient space M/M1 is I-invariant.

We have the same result in this case.

Theorem 7.2.3. Suppose ρ is I-co-ordinary. Then being I-co-ordinary is a deformation con-
dition.

Proof. Recall that a deformation ρ is I-ordinary if its restriction to I is conjugate to matrices
of the following sort

ρ|I ∼
(

1 ∗
0 ∗

)
with their reduction to k not trivial. On the other hand, ρ is I-co-ordinary if

ρ|I ∼
(
∗ ∗
0 1

)
and if it does not restrict trivially in k for elements in I. Therefore the contragredient defor-
mation ρ# is I-ordinary. This shows that “being I-co-ordinary” is a deformation condition.

In the particular case when I is a normal subgroup, for instance Π = GQp and I the inertia
subgroup, we have a good characterization of the tangent space of DI .

Before stating the proposition, note that the definition of I-ordinariness is equivalent to

ρ|I ∼
(

1 ∗
0 χ2

)
with χ2 a character which is not the trival one. Let ρ : Π −→ GL2(k) be a residual representa-
tion and suppose without loss of generality that it has the form

ρ =

(
χ1 ∗
0 χ2

)
,

note that χ1 factors through Π/I.
We want to describe the tangent space of the I-ordinary condition, H1

I (Π,Ad(ρ)). Let
ρ : Π −→ GL2(k[ε]) be a deformation of ρ, then ρ has a representative of the form

ρ =

(
χ1 ∗
0 χ2

)
.

We write the associated cocycle of ρ as Bg, then

ρ(g) = (1 + εBg)ρ(g).

Write Bg =

(
ag bg
cg dg

)
, then
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(
χ1 ∗
0 χ2

)
= (1 + εBg)ρ(g)

=

(
χ1 ∗
0 χ2

)
+ ε

(
ag bg
cg dg

)(
χ1 ∗
0 χ2

)
=

(
χ1(1 + εag) ∗

εcgχ1 ∗cg + χ2(1 + εdg)

)
.

Therefore cg = 0 for all g ∈ Π and χ1 = χ(1 + εag) and χ2 = χ2(1 + εdg). Let Ad+(ρ) be the
subspace of endomorphisms of V = Vρ for which V I is an eigenspace. In our matrix notation
these are just the upper triangular matrices. It is clear that Ad+(ρ) is a subrepresentation of
Ad(ρ). Since (

χ1 ∗
0 χ2

)(
a b
c d

)(
χ−1

1 ∗
0 χ−1

2

)
=

(
∗ ∗

χ−1
1 χ2c ∗

)
,

the action on Ad(ρ)/Ad+(ρ) is χ−1
1 χ2 which is not trivial. Then H0(Π,Ad(ρ)/Ad+(ρ)) = 0

and H1(Π,Ad+(ρ)) −→ H1(Π,Ad(ρ)) is injective. The computation of the cocycle Bg shows
that H1

I (Π,Ad(ρ)) ⊂ H1(Π,Ad+(ρ)). Let AdI(ρ) be the endomorphisms of V whose kernel
contains V I , then in our basis these are the matrices with first column equal to zero. Note that
AdI(ρ) is a subrepresentation of Ad+(ρ) because I is normal and that we have a decomposition

Ad+(ρ) = AdI(ρ)⊕ k Id .

Therefore

H1(Π,Ad+(ρ)) = H1(Π,AdI(ρ))⊕H1(Π, k Id) = H1(Π,AdI(ρ))⊕ Hom(Π, k).

A cocycle Bg of Ad+(ρ) corresponds to an I-ordinary deformation if and only if ag = 0 for
all g ∈ I. Recall the exact inflation-restriction sequence

0 // Hom(Π/I, k) // Hom(Π, k) // Hom(I, k)

Note that ag is the Hom(Π, k) part of Bg, then

H1
I (Π,Ad(ρ)) ∼= H1(Π,AdI(ρ))⊕ Hom(Π/I, k) ⊂ H1(Π,Ad+(ρ)) ⊂ H1(Π,Ad(ρ)).

7.3 Deformation conditions for global Galois represen-

tations

We turn back to Galois representations, so let S be a finite set of primes of Q containing∞ and
p. Let QS be the, maximal unramified extension of Q outside S and denote its Galois group
by GQ,S. We consider residual representations

ρ : GQ,S −→ GLn(k),

for instance those arising from the p-torsion points of elliptic curves or the ones associated to
modular forms. These representations are absolutely irreducible and have a deformation to Oλ,
with O the ring of integers of a number field, and λ a non-archimedean prime of O. Moreover,
they have as determinant a power of the cyclotomic character χp by a finite character. They
also satisfy some ordinariness conditions for primes in S.
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In general, let ρ : GQ,S −→ GLn(k) be residual representation. A global Galois deformation
problem Q is a set of deformation conditions Q` on the restriction ρ|D` to the decomposition
group at `, for each ` ∈ S non-archimedean.

Lemma 7.3.1. A global Galois deformation problem is a deformation condition for represen-
tations of GQ,S.

Proof. This is clear because pushouts and fiber products does not depend on the group itself,
they are defined over coefficient Λ-algebra homomorphisms.

The interpretation of the tangent space of the condition Q is described in terms of local
conditions in the next theorem

Theorem 7.3.1. The diagram

H1
Q(GQ,S,Ad(ρ)) //

��

H1(GQ,S,Ad(ρ))

��∏
`∈S H

1
Q`

(GQ` ,Ad(ρ)) //
∏

`∈S H
1(GQ` ,Ad(ρ))

is cartesian.

Proof. Let ρ be a deformation of ρ to k[ε] such that for each non-archimidean ` ∈ S the
restriction ρ|D` has property Q`, by definition ρ has property Q and its cohomology class belongs
to H1

Q(GQ,S,Ad(ρ)).

We finish defining an special deformation condition. In this case we only consider the prime
p. We say that a deformation of ρ is p-ordinary if its restriction to Dp is Ip-ordinary, where Ip
is the inertia subgroup of Dp.
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Part II

Some constructions from modular
forms
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Chapter 8

Basics on modular forms and modular
curves

8.1 Modular forms and modular curves

In this section we will introduce some basic results related to modular forms and modular curves,
if the reader is truly interested in learning modular forms I recommend [DS05], [Miy89], [Shi71];
the first one is great for a first course, the other two are better for advance students with a
deep background in analysis and number theory.

Let H be the complex upper half plane, i.e. the set

H = {τ ∈ C : Im(τ) > 0}.

Let SL2(Z) be the set of 2× 2 matrices with integer entries and determinant 1, this group
acts on H by Möbius transformations. Indeed, let γ ∈ SL2(Z) and write

γ =

(
a b
c d

)
,

then for τ ∈ H we define

γ(τ) =
aτ + b

cτ + d
.

A straightforward computation shows that γ1(γ2(τ)) = (γ1γ2)(τ) for γi ∈ SL2(Z).
Let k be an integer and let f : H −→ C be a function. We say that f is weight-k invariant

under SL2(Z) if for all γ =

(
a b
c d

)
∈ SL2(Z),

f(γ(τ)) = (cτ + d)kf(τ). (8.1.1)

Define the factor of automorphy j(γ, τ) to be

j(γ, τ) = (cτ + d).

Let α ∈ SL2(Z) and k be an integer, define the weight-k operator [α]k to be the operator
on functions f : H −→ C given by

f [α]k(τ) = j(α, τ)−kf(α(τ)),

note that to be weight-k invariant with respect to SL2(Z) is equivalent to f [α]k = f for all
α ∈ SL2(Z).
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Let f be weight-k invariant with respect to SL2(Z). Equation (8.1.1) with γ =

(
1 1
0 1

)
shows that f is periodic with period 1. On the other hand, if γ = − Id then

f(τ) = (−1)kf(τ)

Therefore, for k odd the only weight-k invariant function is 0.

Lemma 8.1.1. The group SL2(Z) is generated by the matrices(
1 1
0 1

)
and

(
0 −1
1 0

)
.

Lemma 8.1.1 shows that in order to check if a function f is weight-k invariant, we just
have to compute f(γ(τ)) with γ equal to the matrices in the lemma. Let f : H −→ C be a
meromorphic function and suppose f is weight-k invariant with respect to SL2(Z). We saw
that f is a periodic function and hence it has a Fourier expansion

f(τ) =
∑
n∈Z

anq
n, q = e2πiτ . (8.1.2)

We say that f is meromorphic at infinity if the coefficients of the previous series are 0 for
all n < −N , for some N ∈ N. We say that f is holomorphic at ∞ if an = 0 for n < 0.

Definition 8.1.1. A modular form of weight-k is a function f : H −→ C with the following
properties

1. f is holomorphic on H.

2. f is weight-k invariant with respect to SL2(Z).

3. f is holomorphic at ∞.

If in addition f vanishes at ∞, i.e. a0 = 0 in the Fourier expansion (8.1.2), we call f a
cuspidal form of weight-k.

Similarly, we define an automorphic form to be a meromorphic function f : H −→ C which
is weight-k invariant with respect to SL2(Z) and meromorphic at ∞.

With more generality, define the principal congruence subgroup of level N

Γ(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
mod N

}
.

A congruence group is subgroup Γ of SL2(Z) containing Γ(N) for some N ∈ N, in this
case we say that Γ is a congruence subgroup of level N . We define two family of congruence
subgroups

Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
mod N

}
Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
mod N

}
.

We say that a function f : H −→ C is weight-k invariant with respect to a congruence
subgroup Γ if
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f(γ(τ)) = (cτ + d)kf(τ), for γ ∈ Γ.

Let f be a meromorphic function on H which is weight-k invariant with respect a congruence

subgroup Γ, recall that Γ(N) ⊂ Γ for some N . Thus, the matrix

(
1 N
0 1

)
belongs to Γ. Then,

f is NZ periodic and has a Fourier expansion at ∞

f(τ) =
∑
n∈Z

ane
2πin/N =

∑
n∈Z

anq
n
N , qN = e2πi/N , (8.1.3)

this shows that being holomorphic at ∞ makes sense for meromorphic functions weight-k
invariant with respect a congruence subgroup. Specifically, being holomorphic at infinity means
that the coefficients an = 0 for n < 0 in the expansion (8.1.3).

Definition 8.1.2. A modular form of weight-k with respect to Γ is a function f : H −→ C such
that

1. f is holomorphic on H.

2. f is weight-k invariant with respect to Γ.

3. f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

In addition, if f [α]k vanishes at infinity for all α ∈ SL2(Z) we say that f is a cuspidal
form of weight-k with respect to Γ.

The vector space of weight-k modular forms turns out to be 0 for k a negative integer and
finite dimensional for k ≥ 0. We denote the space of weight-k modular forms of Γ by Mk(Γ)
and the space of weight-k cuspidal forms by Sk(Γ). The product of two modular forms of
weight k and l gives a modular form of weight k + l. Therefore, they form a graded algebra
M(Γ) =

⊕
k≥0Mk(Γ). The cuspidal forms generate an ideal S(Γ)=

⊕
k≥0 Sk(Γ) of M(Γ).

Recall that a congruence subgroup Γ acts on H by Möbius transformations, one can prove
that the action of Γ is nice enough for the quotient space Y (Γ) = Γ\H to be a Hausdorff
space [DS05, Ch. 2]. Denote by Γτ the isotropy group of τ in Γ, if Γτ ⊂ {± Id} then a
neighborhood of τ is mapped homeomorphically onto a neighborhood of Γτ ∈ Y (Γ), otherwise
we say that Γτ is an elliptic point of Γ and the projection H −→ Y (Γ) looks locally like an
n-fold power centered at τ , n = [Γτ : Γτ ∩ ± Id]. Nevertheless, one can show that the elliptic
points are discrete in H and that the whole quotient has structure of a Riemann surface.

Theorem 8.1.1. Let Γ be a congruence subgroup and consider its action on H. Then the
quotient

Y (Γ) = Γ\H
is a Riemann surface. We denote

Y1(N) = Y (Γ1(N)), Y0(N) = Y (Γ0(N)) and Y (N) = Y (Γ(N)).

Since SL2(Z) acts transitively on Q ∪ {∞} where Ĉ = C ∪ {∞} is the Riemann sphere, we
may consider the action of SL2(Z) on the space H∗ = H∪Q∪∞. Even more, we may define a
system of neighborhoods around ∞ by UC = {τ : Im(τ) > C} with C > 0, and use the action
of SL2(Z) to define system of neighborhoods around the rational numbers. Under this topology
if Γ is a congruence subgroup, the quotient space

X(Γ) = Γ\H∗
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will be a compact Riemann surface. The number of orbits of Γ in Q ∪ {∞} is finite and are
called cusps. We define analogously

X(N) = X(Γ(N)), X1(N) = X(Γ1(N)) and X0(N) = X(Γ0(N)).

Definition 8.1.3. The Riemann surfaces Y (Γ) are called non-compact modular curves. Their
compactification X(Γ) contructed by adding cusps are refered just as modular curves.

Take Γ = Γ1(N),Γ0(N) or Γ(N). The divisor group of the modular curve X(Γ) is the free
abelian group generated by the points of X(Γ) and is denoted by Div(X(Γ)). Then, an element
in Div(X(Γ)) has the form D =

∑
x∈X(Γ) nx(x) with nx ∈ Z zero for all but finitely many x.

The degree of a divisor is defined as

deg(D) =
∑

x∈X(Γ)

nx,

the group of divisors of degree 0 is denoted by Div0(X(Γ)). Let f : X(Γ) −→ Ĉ be a no-
constant meromorphic function, we can associate to f a divisor counting the number of zeroes
and poles with multiplicity

Div(f) =
∑

x∈f−1(0)

ex(x)−
∑

x∈f−1(∞)

ex(x)

where ex is the ramification index of f at x. These divisors are called principal divisors and form
a subgroup of Div(X(Γ)) which is denoted by Div`(X(Γ)). A result on Riemann surfaces tells
us that deg(Div(f)) = 0, so Div`(X(Γ)) ⊂ Div0(X(Γ)). The group Div0(X(Γ))/Div`(X(Γ)) is
called the Picard group and we write Pic0(X(Γ)) instead.

8.2 Eisenstein Series

The spaces of modular forms of SL2(Z) are described using Eisenstein series. Let k be a integer
greater than 2, the sum

Gk(τ) =
∑′

c,d

1

(cτ + d)k

converges uniformly and absolutely on compact sets of H1. Gk is a modular form of weight k,
moreover, the algebra of modular formsM(SL2(Z)) is generated by G4 and G6 as algebra over
C and is isomorphic to a polynomial ring on two variables.

M(SL2(Z)) = C[G4, G6] ∼= C[X, Y ].

Let g2 = 60G4 and g3 = 140G6. One can show that

∆ = g3
2 − 27g2

3

is a cuspidal form of weight 12 called the discriminant. The ideal of cuspidal forms of SL2(Z)
is generated by ∆

S(SL2(Z)) =M(SL2(Z))∆.

1Primed sums indicate summing over all non-zero indices.
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Define

J = 1728
g3

2

∆
,

this is called the J-invariant. Even if J is not a modular form, it is an automorphic form of
weight-0 and its q-expansion at∞ has a simple pole with residue 1. Moreover, it generates the
function field of the modular curve X(1):

C(X(1)) = C(J).

The space of weight-k modular forms Mk(SL2(Z)) has a decomposition as direct sum

Mk(SL2(Z)) = Sk(SL2(Z))
⊕

CGk.

In general, for the congruence subgroups Γ = Γ(N),Γ1(N) or Γ0(N) there are similar
decompositions

Mk(Γ) = Sk(Γ)
⊕
Ek(Γ)

where Ek(Γ) is the Eisenstein space. For a description of these spaces see [DS05, Ch. 4]. From
now on we will study only Γ = Γ1(N) or Γ0(N), the group Γ1(N) is normal in Γ0(N). Indeed,
Γ1(N) is the kernel of

Γ0(N) −→ (Z/NZ)∗,

(
a b
c d

)
7→ d.

Since Γ1(N) is normal in Γ0(N), for all α ∈ Γ0(N) and every modular form f ∈Mk(Γ1(N)),
the function f [α]k is again in Mk(Γ1(N)). We then have a representation of Γ0(N) over
Mk(Γ1(N)) whose kernel contains Γ1(N), therefore we actually have a representation of
Γ0(N)/Γ1(N) ∼= (Z/NZ)∗ over Mk(Γ1(N)). Write GN for the multiplicative group (Z/NZ)∗.
Recall from representation theory that the characters χ ∈ ĜN form an abelian group and we
can decompose Mk(Γ1(N)) in eigenspaces

Mk(Γ1(N)) =
⊕
χ∈ĜN

Mk(N,χ).

Denote the trivial character by 1N , then Mk(Γ0(N)) =Mk(N, 1N). The subspace of cusp
forms is also invariant by GN as well as the Eisenstein spaces, so we have decompositions

Sk(Γ1(N)) =
⊕
χ∈ĜN

Sk(N,χ), Ek(Γ1(N)) =
⊕
χ∈ĜN

Ek(N,χ).
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Chapter 9

Hecke operators and eigenforms

9.1 Hecke operators

Before defining the Hecke operators, we have to talk about double coset operators. Let Γ1, Γ2

be congruence subgroups and let α ∈ GL+
2 (Q). The set

Γ1αΓ2 = {γ1αγ2 : γi ∈ Γi}

is a double coset in GL+
2 (Q). For an element β ∈ GL+

2 (Q) we define the weight-k operator [β]k
on functions f : H −→ C:

(f [β]k)(τ) = (det β)k−1j(β, τ)−kf(β(τ)), τ ∈ H.

The group Γ1 acs on Γ1αΓ2 by left multiplication, one can prove ( [DS05, Section 5.1]) that
the quotient Γ1\Γ1αΓ2 is finite, let {βj} be a set of representatives. We can define the double
coset operator of weight-k [Γ1αΓ2]k on modular forms as

[Γ1αΓ2]k :Mk(Γ) −→M(Γ2), f 7→ f [Γ1αΓ2]k =
∑
j

f [βj]k.

It does not depend on the set of representatives and sends cuspidal forms to cuspidal forms,
i.e. it restricts

[Γ1αΓ2]k : Sk(Γ1) −→ Sk(Γ2).

Let Xi = X(Γi). Double coset operators also give maps on divisors by the formula

[Γ1αΓ2] : Div(X2) −→ Div(X1), Γ2τ 7→
∑
j

Γ1βj(τ),

this can be described by successive compositions of pushforwards and pullback maps on divisors.
Now we can define the Hecke operators, more specifically we will define the diamond operator

〈n〉 and the Tn operator, n ∈ N. Let Γ = Γ1 = Γ2 = Γ1(N), for gcd(n,N) > 1 we simply define
〈n〉 = 0. For d prime to N consider αd ∈ Γ0(N) such that

α ≡
(
∗ ∗
0 d

)
mod N

we define the diamond operator 〈d〉

〈d〉 :Mk(Γ1(N)) −→Mk(Γ1(N)), 〈d〉f = f [ΓαdΓ]k = f [αd]k.
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In eigenspaces the action of the Diamond is given by the character, i.e. for f ∈ M(N,χ)
we get

〈d〉f = χ(d)f.

Let

α =

(
1 0
0 p

)
,

we define the Tp operator as the double coset operator ΓαΓ, i.e for f ∈M(Γ1(N))

Tpf = f

[
Γ1(N)

(
1 0
0 p

)
Γ1(N)

]
k

It turns out that these operators commute, [DS05, Ch. 5]. Set T1 = 1, define inductively

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , for r ≥ 2. (9.1.1)

For n ∈ N decompose n =
∏

pr||n p
r and define

Tn =
∏
pr||n

Tpr .

This definition of the Tn operators is motivated by the following Euler product∑
n∈N

Tnn
−s =

∏
p

(1− Tpp−s + 〈p〉pk−1−2s)−1,

Bellow we will see that the L-functions attached to eigenforms have the same Euler product
and the coefficients also satisfies the recursion formula (9.1.1). The Hecke algebra of weight-k
over Z is the set TZ of endomorphisms of Sk(Γ1(N)) generated by the Hecke operators

TZ = Z[{Tn, 〈n〉 : n ∈ N}],

we define analogously TC the Hecke algebra over C.

9.2 Eigenforms

As mentioned above, there is an explicit description of the Eisenstein space of weight-k for
Γ1(N) in [DS05, Ch. 4], the only remaining is to get a complete description of the space of
cuspidal forms of weight-k Sk(Γ1(N)). A natural inner product for cuspidal forms Sk(Γ1(N)) is
introduced in [DS05, Ch. 5] or [Miy89, Ch.2 pg. 44]. For all n ∈ N the diamond operator 〈n〉
will turn out to be a normal operator as well as the Tp operators for p - N . The next theorem
holds

Theorem 9.2.1. There exists a basis of Sk(Γ1(N)) consisting on simultaneous eigenvectors for
the Hecke operators {〈n〉, Tp : n ∈ N and p - N}.

Moreover, for M |N the inclusion Γ1(N) ⊂ Γ1(M) implies Sk(Γ1(M)) ⊂ Sk(Γ1(N)), then
some modular forms come from lower level subgroups. These are called old forms and their
ortogonal complemet are the new forms, all Hecke operators preserve the spaces of old and new
forms. The new forms which are eigenvectors for the Hecke operators {〈n〉, Tp : n ∈ N and p -
N} are also eigenvectors for all Hecke operators. This suggest a definition
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Definition 9.2.1. Consider Γ1(N) and the space of modular forms Sk(Γ1(N)). An eigenform
is a modular form which is an eigenvector for all Hecke operators. Let f be an eigenform, the

matrix

(
1 1
0 1

)
belongs to Γ1(N), then f has a Fourier expansion

f(τ) =
∞∑
n=0

an(f)qn,

we say that f is a normalized eigenform if a1(f) = 1.

The importance of normalized eigenforms is that the eigenvalues are the same as Fourier
coefficients. More precisely, let f be a normalized eigenform with Fourier series

f(τ) =
∞∑
n=0

an(f)qn,

the eigenvalue of Tn attached to f is an(f), i.e. Tnf = an(f)f . The precise definitions and
theorems are exhibited in [DS05, Ch. 5] as statements or exercises.

Let f ∈Mk(Γ1(N)) be a modular form with Fourier expansion

f(τ) =
∞∑
n=0

an(f)qn.

The L-function attached to f is

L(s, f) =
∞∑
n=1

an
ns
.

The next theorem holds

Theorem 9.2.2. Let f ∈ Mk(Γ1(N)) be a modular form and L(s, f) be its L-series. The
following are equivalent

(a) f is a normalized eigenform in Mk(N,χ).

(b) The L-series has an Euler product

L(s, f) =
∏
p

(1− app−s + χ(p)pk−1−2s)−1
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Part III

Galois representations and Fermat’s
Last Theorem
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Chapter 10

Representations and modularity

10.1 Elliptic curves and Galois representations

We can attach Galois representations to elliptic curves and to modular forms. Here we present
the construction of these representations for elliptic curves.

Let E be an elliptic curve over C, so we can think of E as a quotient of C by a lattice Λ of
rank 2, or as the solutions of a cubic equation

y2 = 4x3 + a4x+ a6 (10.1.1)

where the polynomial f(x) = 4x3+a4x+a6 has no repeated roots. The previous correspondence
is given by the Weierstrass function

℘Λ(z) =
1

z2
+
∑′

ω∈Λ

(
1

(z − ω)2
− 1

ω2

)
,

associating the lattice Λ with the differential equation

(℘′Λ)2 = 4℘3
Λ − g2(Λ)℘Λ − g3(Λ),

where g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ) and

Gk(Λ) =
∑′

ω∈Λ

1

ωk
,

see [DS05, Ch. 1 ]. We can deduce the following theorem for elliptic curves over C

Theorem 10.1.1. Let E be an elliptic curve over C and let E[N ] the subgroup of N-torsion
points of E. Then E is isomorphic to

E[N ] ∼= Z/NZ× Z/NZ.

Suppose E is defined over Q, let Q ⊂ K be a field extension. We denote the K-points
of E by E(K), so E(Q) are the rational points of E and E(Q) the algebraic points. The
group operation of E can be defined using rational functions over Q, it then turns out that
torsion points have algebraic coordinates and that the absolute Galois group GQ acts linearly
on N -torsion points for N ∈ N. Let ` be a prime number and consider the following system of
groups

0 E[`]
m`oo E[`2]

m`oo · · ·m`oo E[`n]
m`oo oo
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with m` the multiplication by `. The Galois action commutes with the system, therefore GQ
acts on the Tate module

Ta`(E) = lim←−−
n∈N

E[`n] ∼= Z2
` .

In other words, we have a Galois representation ρE,` : GQ −→ GL(Ta`(E)) ∼= GL2(Z`).
Those representations have some particular properties, the next theorem exhibit a few of them

Theorem 10.1.2. Let ` be a prime and let E be an elliptic curve over Q with conductor NE.
The Galois representation ρE,` is unramified for all p - `NE. The image of every Frobenius
element Frobp over p - `NE satisfies the equation 1

x2 − ap(E)x+ p = 0.

As a direct consequence, the determinant of ρE,` is the cyclotomic character χ`. The Hasse-
Weil L-function of the elliptic curve E is

L(s, E) =
∞∑
n=1

an(E)

ns
=
∏
p

(1− ap(E)p−s + 1E(p)p1−2s)−1.

Here 1E is the trivial character of Z/NEZ.
In general, for any algebraically closed fieldK, we may define elliptic curves in two equivalent

ways, three if char K 6= 2, 3. Two of these definitions are in terms of explicit algebraic equations
with certain conditions, and the other one only involves algebro-geometric properties:

Definition 10.1.1. Let K be an algebraically closed field. An elliptic curve (E,O) is a non-
singular curve E of genus 1 with a marked point O.

Equivalently, an elliptic curve is the curve given by the zero locus in P2(K) of a non-singular
Weierstrass equation 2

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3, (10.1.2)

with the point ∞ := [0 : 1 : 0] marked. If char K 6= 2, 3 then (10.1.2) can be reduced to the
form

y2z = x3 + c4xz
2 + c6z

3. (10.1.3)

Let F ⊂ K be a subfield of K, if the coefficients of 10.1.2 can be taken in F , we say that E
is an elliptic curve defined over F .

There are two standar paths in order to define the addition law on elliptic curves. One is
using intersections of lines with the curve E, we are able to define this by rational polynomials.
However, even if this approach is more elemental, checking the group laws is quite messy. The
other one involves the group of divisors of the curve and the main idea is to show a bijection
between the Picard group Pic0(E) and E itself, then, one transports the group law from Pic0(E)
to E. Both ways are equivalent, and if K = C this group law corresponds to the one induced
by the quotient C/Λ in the algebraic curve.

We also have a nice behavior in the torsion points of E

1The apα(E) are defined in terms of the number of points in extensions of Fp of the reduction of E modulo
p, it turns out that the apα(E) yield a multiplicative relation we can factor in the L-function. See [DS05, Ch.
8.3].

2This actually means that every elliptic curve is isomorphic to a plane curve described by some Weierstrass
equation, sending O to the point at infinity.
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Theorem 10.1.3. Let K be an algebraic closed field, and let (E,O) be an elliptic curve over
K. For N ∈ N, denote the N-torsion points of E by E[N ]. Then

E[N ] =
⊕
pα||N

E[pα] (10.1.4)

• If charK - p we have

E[pα] ∼= Z/pαZ× Z/pαZ.

• If charK = p then

E[pα] ∼=
{

Z/pαZ,
0.

If charK = p 6= 0 and E[p] = 0 we say that E is supersingular, otherwise E is called
ordinary.

Once again, if E is defined over F ⊂ K, the algebraic equations of the addition law are
rational functions over F . Hence, the torsion points have algebraic coordinates showing that
it is enough to work in F . The representations attached to elliptic curves over general fields
F are defined similarly as in the rational-complex case, via the Tate modules of E and the
absolute Galois group of F . In particular, one can apply some reduction theorems from Q to
Fp and deduce, for instance, unramification and flatness of Galois representations attached to
an elliptic curve E, studying the Galois representations attached to the reductions of E modulo
p.

10.2 Galois representations from modular forms

To attach Galois representations to modular forms requires more work than to elliptic curves.
Here we will present the idea in the case of cuspidal forms of weight k = 2. The case k > 2
was made by Delinge and the case k = 1 by Delinge-Serre, Eisenstein series will become
also eigenforms and their attached representations are reducible. See [DS05, Ch. 9.6] for the
representations attached to Eisenstein series.

For each congruence subgroup Γ1(N) and Γ0(N) we have the modular curves X1(N) and
X0(N). In general, let M be a compact Riemann surface of genus g, there is an abelian variety
of dimension g associated to M called the Jacobian variety of M , denoted by Jac(M). This
abelian varierty is defined in terms of the dual of holomorphic differentials Ω1

hol(M) and the
first homology group H1(M,Z). Indeed, the group H1(M,Z) is Z-free of rank 2g generated
by 2g loops on M . Path integrals over M give elements in Ω1

hol(M)∧, then we may think of
H1(M,Z) lying inside Ω1

hol(M)∧. It turns out also that Ω1
hol(M) has dimension g over C by the

Riemann-Roch Theorem.
All this implies that Ω1

hol(M)∧/H1(M,Z) is a complex torus of dimension g which is by
definition Jac(M). Fix a point x0 ∈M and let x ∈M , the map Div0(M) −→ Jac(M) given by∑

x∈M

nx(x) 7→
∑
x∈M

nx

∫ x

x0

is well defined.
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Theorem 10.2.1. The above map descends to Pic0(M), inducing an isomorphism

Pic0(M) −→ Jac(M),

[∑
x

nxx

]
7→
∑
x

nx

∫ x

x0

.

Furthermore, the injection M −→ Div0(M), x 7→ x − x0 induces also an injection x 7→
[x− x0] in Pic0(M). Composing with the isomorphism of Abel’s theorem we have an injection

X −→ Jac(M)

which turns out to be holomorphic. In the particular case of g = 1, M is an elliptic curve and
the injection is actually an isomorphism of abelian varieties.

In the case of modular curves, the vector spaces Ω1
hol(Xi(N)) and S2(Γi(N)) are naturally

isomorphic. Hence, we can think of H1(Xi(N),Z) as a lattice of rank 2g inside S2(Γi(N))∧

and Ji(N) = Jac(Xi(N)) = S2(Γi(N))∧/(H1(Xi(N),Z)). Hecke operators act on S2(Γi(N))∧

and their action remains H1(Xi(N),Z) stable, this shows that the Hecke algebra of weight-2
cuspidal forms is integral finitely generated over Z. In particular, if f ∈ S2(N,χ) is a normalized
eigenform the following is a ring homomorphism

f∗ : TZ −→ C, T 7→ Tf. (10.2.1)

The image is a integral Z-module of finite rank, the field generated by the image of f∗ is
the number field of f and is denoted by Kf .

Denote by If the kernel of f∗ in (10.2.1), then J1(N)/IfJ1(N) is an abelian variety of
dimension d = [Kf : Q], we write Af for this object. In particular, the Hecke operator Tn acts
as an(f) in Af .

All this machinery is necessary to show the existence of Galois representations attached to
cuspidal eigenforms for k = 2. The idea is similar to elliptic curves: we use the N -torsion
points of J1(N) and Af . We explain quickly this construction, see [DS05, Ch. 7 - 9] for a more
detailed treatment of this. The next theorem explains the behaviour of the Hecke operators on
the modular curves X1(N) and X0(N) and their reductions X̃i(N) modulo p

Theorem 10.2.2 (Eichler-Shimura relations). Let p - N . The following diagrams commutes 3:

Pic0(X1(N))
Tp //

��

Pic0(X1(N))

��

Pic0(X̃1(N))
σp,∗+ ˜〈p〉∗σ∗p // Pic0(X̃1(N))

In particular,

Pic0(X0(N))
Tp //

��

Pic0(X0(N))

��

Pic0(X̃0(N))
σp,∗+σ∗p // Pic0(X̃0(N))

Igusa’s theorem, [DS05, Ch. 8], states that X1(N) has good reduction for p - N . This
implies, modulo more algebraic geometry, that the group of pn-torsion points Pic0(X1(N))[pn]
and Pic0(X̃1(N))[pn] are isomorphic. The Tate ` module of X1(N) is

3As we mentioned in section 9.1, the Hecke operators act on divisors. The vertical maps are reduction of the
algebraic modular curves over Q, σp is the Frobenius map and the labels αp,∗ and α∗

p mean the pushforward

and pullback of σp respectively. A tilde symbol over an operator in Xi(N) is its reduction to X̃i(N).
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Ta`(Pic0(X1(N))) = lim←−−
n∈N

Pic0(X1(N))[`n] ∼= Z2g
` . (10.2.2)

The Galois group GQ acts on Pic0(X1(N)) in a natural way and this action is compatible
with (10.2.2). Hence, we get a representation

ρ`,X1(N) : GQ −→ Aut(Ta`(Pic0(X1(N)))) ∼= GL2g(Z`).

The Eichler-Shimura relations implies the following theorem

Theorem 10.2.3. Let ` be a prime and N be a positive integer. The Galois representation
ρ`,X1(N) is unramified at every prime p - `N . For any such p let Frobp be a Frobenius element
of p, then ρ`,X1(N) satisfies the polynomial equation

x2 − Tpx+ 〈p〉p = 0.

The `n-torsion points will surject the `n torsion points of Af and the kernel of

Pic0(X1(N))[`n] −→ Af [`
n]

is stable under GQ. Therefore, ρ`,X1(N) projects to a representation

ρAf ,` : GQ −→ Aut(Ta`(Af )).

Write V`(Af ) = Ta`(Af )⊗Q. Denote the image of f∗ in (10.2.1) by Of , then Kf = Of ⊗Q.
The GQ-module V`(Af ) turns out to be a free Of⊗Q`

∼= Kf⊗QQ`-module of rank 2. Moreover,
the ring Kf ⊗Q Q` is isomorphic to

Kf ⊗Q Q`
∼=
∏
λ|`

Kf,λ.

This implies that the representation ρ`,Af can be thought as a continuous group homomor-
phism

ρ`,Af : GQ −→ GL2(Kf ⊗Q Q`) ∼=
∏
λ|`

GL2(Kf,λ).

The above discution and Igusa’s theorem imply the following theorem:

Theorem 10.2.4. Let f ∈ S2(N,χ) be a normalized eigenform with number field Kf . Let
` a prime. For each maximal ideal λ of OKf lying over ` there is a 2-dimensional Galois
representation

ρf,λ : GQ −→ GL2(Kf,λ).

This representation is unramified at every prime p 6= `N . For any such p let Frobp be a
Frobenius element over p. Then ρf,λ(Frobp) satisfies the polynomial equation

x2 − ap(f)x+ χ(p)p = 0.

In particular, if f ∈ S2(Γ0(N)) then the relation is x2 − ap(f)x+ p = 0.

Theorem 10.2.4 generalizes to weights different from 2
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Theorem 10.2.5. Let f ∈ Sk(N,χ) be a normalized eigenform with number field Kf . Let `
be a prime. For each maximal ideal λ of OKf lying over ` there exists a 2-dimensional Galois
representation

ρf,λ : GQ −→ GL2(Kf,λ).

This representation is unramified at all primes p - `N . For any such p let Frobp be a
Frobenius element over p, then the characteristic equation of ρf,λ(Frobp) is

x2 − ap(f)x+ χ(p)pk−1 = 0.

Even if the module of a continuous representations ρ : GQ −→ GL2(Kf,λ) is not a free
rank-2 module over OKf ,λ, we can reduce ρ to a representation ρ̃ : GQ −→ GL2(OKf ,λ), after
some restriction to an OKf ,λ-submodule and a choice of OKf ,λ-basis. Briefly, take A to be the
image of O2

Kf ,λ
by ρ. Then, A is a compact Of,λ module contaning OKf ,λ, hence it is contained

in 1
M
OKf ,λ for some M . This shows that A is an OKf ,λ-module of rank 2. A choice of a basis

of A gives us the desire representation equivalent to ρ:

ρ̃ : GQ −→ GL2(OKf ,λ).

10.3 Versions of the Modularity Theorem

There are may versions of modularity, some concerning L-functions of elliptic curves and modu-
lar forms, another related to Galois representations, and others which are more geometric. Here
we state some versions of modularity, for the definition of a complex elliptic curve recall section
10.1 and for the definition of the J invariant of an elliptic curve see [DS05, Ch. 2], for a better
and more complete approach to the theory of elliptic curves [Sil09] is highly recommended.

The first version of modularity stated here is a geometric one. The connection towards
L-functions and galois representations is due to the Hecke operators acting on the Jacobian
variety J1(N) and the abelian varieties Af . In [DS05, Ch. 8] the reader can find the idea behind
and some other references.

Theorem 10.3.1 (Modularity Theorem, version XC). Let E be a complex elliptic curve with
j(E) ∈ Q. Then for some N there exist a surjective morphism of complex Riemann surfaces

X0(N) −→ E.

The minimal N in the rational version of the previuos version of modularity (that is, X1(N)
and E as algebraic varieties over Q instead as Riemann surfaces) is called the analytic conductor
of the elliptic curve E. It turns out to be equal to the algebraic conductor, so we refer to both
simply as the conductor of E. The other versions of modularity are the following ones:

Theorem 10.3.2 (Modularity Theorem, version ap). Let E be an elliptic curve over Q with
conductor NE. Then for some newform f ∈ S2(Γ0(NE)),

ap(f) = ap(E) for all primes p.

The Euler product of L-series of eigenforms and elliptic curves leads to the following equiv-
alent version of modularity

Theorem 10.3.3 (Modularity Theorem, version L). Let E be an elliptic curve over Q with
conductor NE. Then for some newform f ∈ S2(Γ0(NE)),

L(s, f) = L(s, E)
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To state the final version of modularity involving Galois representation we need to say when
a Galois representation to Q` is modular:

Definition 10.3.1. An irreducible Galois representation

ρ : GQ −→ GL2(Q`)

such that det ρ = χ` is modular is there exists a newform f ∈ S2(Γ0(Mf )) such that Kf,λ = Q`

for some maximal ideal of OKf lying over ` and such that ρf,λ ∼ ρ.

Theorem 10.3.4 (Modularity Theorem, version R). Let E be an elliptic curve over Q. Then
ρE,` is modular for some `.

This last version can be improved to a stronger theorem.

Theorem 10.3.5 (Modularity Theorem, strong version R). Let E be an elliptic curve over Q
with conductor NE. Then for some newform f ∈ S2(Γ0(NE)) with number field Kf = Q,

ρf,λ = ρE,` forr all `.

Version R implies version ap of modularity in the following way: let f ∈ S2(Γ0(Mf )) be a
normalized eigenform with number field Kf and λ a maximal ideal of OKf such that Kf,λ = Q`.
Suppose ρf,λ ∼ ρE,`, then the trace of ρE,`(Frobp) is equal to the trace of ρf,λ(Frobp) for all
p - `MfNE. The work of Carayol in [Car86] implies the equality for all prime p.

On the other hand, version ap implies strong version R. Let ` be a prime number, version ap
implies that the caracteristic polynomials of ρf,λ and ρE,` are the same in Frobenius elements
for all but finitely many p. The Chebotarev density theorem says that both characteristic
polynomials are equal in a dense subset of GQ and therefore they are equal for all element in
GQ. Since the representation from f is odd and irreducible, both representations ρE,` and ρf,λ
must be equivalent, this is the content of Exercise 9.6.1 in [DS05].
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Chapter 11

Role of deformation theory in Wiles’
proof

Wiles’ proof of the Taniyama-Shimura conjecture is the outcome of the combined effort of many
mathematicians through our history, specially in the last century when the main advances in
algebraic number theory, class field theory, elliptic curves, modular forms and representation
theory were made. Nevertheless, we must not forget the importance of the whole-picture view
of Wiles which allowed him to give a proof of the modularity conjecture therefore proving
Fermat’s last theorem. In this chapter we want to highlight the importance of deformation
theory in Wiles’ result; the main work is [Wil95].

Roughly speaking, two of the vital facts for the Wiles’ proof are the following: one is that
representations for which certain conditions related with semistability of elliptic curves hold
are modular in a slightly more general sense than the one defined in section 10.2. The second
concerns the special case of semistable elliptic curves, this is, for E a semistable elliptic curve
over Q, ρE,3 or ρE,5 is absolutely irreducible. If ρE,3 turns out to be irreducible, then it will
be modular because of a Theorem of Langlands and Tunnell. Otherwise, if ρE,5 is irreducible,
Wiles was able to change the elliptic curve E by another semistable elliptic curve E ′ such that

• ρE,5 ∼= ρE′,5,

• ρE′,3 is irreducible.

The modularity of E will follow from the modularity of some 3-torsion points representation.
Certainly the work in the proof cannot be reduced to one or two simple pages, it involves lots
of deep mathematics results which could not be summarized in this chapter. Therefore I invite
the reader to review the literature, for instance [CSS97], for a good overwiew of proof and more
references. We shall follow very closely the overview of the proof in [CSS97].

We begin discussing modularity at the level of coefficient rings. As in part I, let p be a
prime number and let k be a finite field of characteristic p. Let N > 0 be an integer and let
S2(N) denote the space of weight 2 cusp forms for Γ1(N). Let

T(N) := Z[T`, 〈d〉] ⊂ End(S2(N))

be the Z-subalgebra of End(S2(N)) generated by the Hecke operators T` and the diamond
operators 〈d〉 where ` runs over all primes not dividing pN , and d runs over (Z/NZ)∗.

Definition 11.0.1. A Galois representation

ρ : GQ −→ GL2(A)
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over a coefficient ring A is modular if there exists an integer N > 0 and a homomorphism
π : T(N) −→ A such that ρ is unramified outside Np, and for every prime ` - Np we have

Tr(ρ(Frob`)) = π(T`) and det(ρ(Frob`)) = π(〈`〉)`.

Note that this is a deformation condition in the sense of Definition 7.1.1, provided the
residual representation is modular. Let ρ : GQ −→ GL2(k) be a residual representation.

We are going to impose some contidions on our representation ρ, these arise naturally from
elliptic curves and modular forms. A necessary one is Fixed Determinant.

Condition A. ρ has determinant χp, where χp is the Teichmüller lifting.

Definition 11.0.2. A Galois representation

ρ : GQ −→ GL2(A)

is semistable at a prime ` if one of the following conditions holds

• ` = p and ρ is either flat or ordinary at p1.

• ` 6= p and ρ|I` ∼
(

1 ∗
0 1

)
We say that a Galois representation is semistable if it is semistable at every prime. Again,

this turns out to be a deformation condition.

Condition B. ρ is semistable.

Now we define the appropiate deformation condition D. Let S := {` 6= p : ρ is ramified at `}
(a finite set). Let ΣD be a finite set of primes disjoint from S. We say that a deformation ρ of
ρ is of type D if the following conditions hold

• ρ has determinant χp,

• ρ is unramified outside S ∪ {p} ∪ ΣD,

• ρ is semistable outside ΣD,

• if p /∈ ΣD and if ρ is flat at p, then ρ is also flat at p.

The second item leads us to factor the deformations through GQ,S′ , where S ′ = S∪{p}∪ΣD,
a group where our theory works.

In order for the deformation functor to be modular we need to impose the absolutely irre-
ducible condition on the residual representation ρ.

Condition C. ρ is absolutely irreducible.

Hence, Mazur’s theory associates the universal deformation rind RD of deformations of ρ of
type D, and an universal deformation ρD of type D. Define the additional condition:

Condition D. ρ is modular and ρ|GQ(
√
−3)

is absolutely irreducible.

Hence, we also have the ring TD of universal modular deformations of ρ of type D, and
an universal modular deformation ρ

D,mod of type D. The universal property of RD gives us a
canonical map

1This definition of “ordinary” in this case does not coincide with the one introduced in this document,
however it is quite similar and is found in Chapter 1 of [CSS97].
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ϕD : RD −→ TD.

Wiles proved the following theorem

Theorem 11.0.1. Suppose ρ satisfies conditions A to D. Then the canonical map ϕD : RD −→
TD is an isomorphism of complete intersection rings.

Corollary 11.0.1.1. Suppose ρ satisfies conditions A to D. Then every deformation of ρ of
type D is modular.

The strategy of Wiles for proving the above theorem was comparing both rings with other
complete discrete valuarion ring and using a numerical criterion, which is highly no trivial.
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Appendix A

Complete tensor product

We will introduce the construction of the completed tensor product of R-modules for a topo-
logical ring R. Let N and M be R-modules and let {Nµ}, {Mν} be basis of open submodules
at 0 of N and M respectively. Define a topology for N⊗RM by declaring as open the following
submodules

(N ⊗M)µ,ν = Im(Nµ ⊗RM +N ⊗RMν −→ N ⊗RM), for all µ, ν.

We have the following commutative diagram with exact rows and columns

Nµ ⊗Mν N ⊗Mν N/Nµ ⊗Mν 0

Nµ ⊗M N ⊗M N/Nµ ⊗M 0

Nµ ⊗M/Mν N ⊗M/Mν N/Nµ ⊗M/Mν 0

0 0 0

A diagram chasing argument shows that

ker(N ⊗M −→ N/Nµ ⊗M/Mν) = (N ⊗M)µ,ν

We define the completed tensor product of N and M , denoted by N⊗̂RM as the completion
of N ⊗M with respect to the submodules (N ⊗M)µ,ν , or equivalently as the inverse limit

N⊗̂RM = lim←−−
µ,ν

N ⊗M/(N ⊗M)µ,ν = lim←−−
µ,ν

N/Nµ ⊗M/Mν .

Now, let A,B be coefficient Λ-algebras. We contend that A⊗̂ΛB is a coefficient Λ-algebra.
Let mA and mB be the maximal ideals of A and B respectively, making an abuse of language,
a system of open submodules in A ⊗Λ B is {mk

A ⊗ B + A ⊗ ml
B} for k, l ∈ N. Take M =

mA ⊗ B + A ⊗ mB. We contend that A⊗̂ΛB is the M-adic completion of A ⊗Λ B, since M is
finitely generated A⊗ΛB-module and A⊗ΛB/M = k is a field, then A⊗̂ΛB will be noetherian;
this is a consequence of Corollary 10.25 of [AM69].

Since the pairs {(k, k) : k ∈ N} are cofinal in N× N then

A⊗̂ΛB = lim←−
k,l

A/mk
A ⊗B/ml

B = lim←−
k

A/mk
A ⊗B/mk

B
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m2n
A ⊗B + A⊗m2n

B ⊆M2n ⊆ mn
A ⊗B + A⊗mn

B.

This proves that the topology given by the neighborhoods mn
A⊗B+A⊗mn

B is the same as
the M-adic topology and A⊗̂ΛB is just the M-adic completion. We have

A⊗Λ B/M ∼= k ⊗k k = k,

so M is maximal. We have also that 1 + M are units in A⊗̂ΛB, therefore M̂, the M-adic
completion of M, is the unique maximal ideal of A⊗̂ΛB proving that it is a coefficient Λ-
algebra.
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Appendix B

Grothendieck’s theorem

The reader can see [Gro60] for a more general treatment of the concepts introduced in this
Appendix. We being with the statement of the theorem, for the definitions of C0

Λ, tangent
space of F and Mayer-Vietoris property go to Chapters 2 and 3.

Theorem B.1 (Grothendieck). Let

F : C0
Λ −→ Sets

be a covariant functor such that F(k) is a singleton. Then F is pro-representable if and only if

i. F satisfies the Mayer-Vietoris property.

ii. F(k[ε]) is a finite dimensional vector space.

Let us introduce some notation and results before giving a proof of this theorem. Through
this Appendix F shall denote a covariant functor such that F(k) is a point.

Definition B.1. Let C0
Λ be the category of artinian coefficient Λ-algebras. Let A be an object

of C0
Λ and let ξ ∈ F(A). We say that the pair (A, ξ) is minimal if for every pair (A′, ξ′) with

ξ′ ∈ F(A′) and every monomorphism v : A′ −→ A such that F(v)(ξ′) = ξ we get that v is an
isomorphism. We say that a pair (A′, ξ′) dominates (A, ξ) if there is a morphism v : A′ −→ A
such that F(v)(ξ′) = ξ.

Remark. Since the objects in C0
Λ are artinian, there exist minimal pairs in this category.

Moreover, every pair is dominated by a minimal pair.

Lemma B.1. The followings are equivalent

i. F is left exact, i.e. it preserves finite limits.

ii. F preserves equalizers and finite products.

iii. F has the Mayer-Vietoris property.

Proof. Every finite limit can be constructed by equalizers and finite products, so (ii) implies
(i). Clearly (i) implies (iii) because fiber products are finite limits. Finally for (iii) impies (ii),
k is a final object then finite products can be seen as fiber products over k. Equalizers can be
constructed as follows:

Given two morphisms u, v : A −→ B let A ×B A be their fiber product. Then, consider
the maps p : A ×B A −→ A ×k A and ∆ : A −→ A ×k A (diagonal), and let E be their fiber
product. One can checks that E is the equaliser of u and v.
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Lemma B.2. Suppose (A′, ξ′) dominates (A, ξ) with a morphism v : A′ −→ A.

i. If (A, ξ) is minimal then v is surjective.

ii. If (A′, ξ′) is minimal and F is left exact then v is unique.

Proof. For (i) we factorize v as

A′
π //

v
$$

A′/ ker v

v
��
A

.

Therefore (A′/ ker v,F(π)(ξ′)) dominates (A, ξ) with v a monomorphism, so v is an isomor-
phism and v a surjection.

For (ii), let u, v : A′ −→ A be two morphisms such that F(u)(ξ′) = F(v)(ξ′) = ξ. Let
Eq : E −→ A′ be an equalizer for u, v. Since F is left exact, there exists ζ ∈ F(E) such that
F(Eq)(ζ) = ξ. Then (E, ζ) dominates (A′, ξ′) and by (i) Eq is surjective and so u = v.

Proof of Theorem B.1. If F is pro-representable then F preserves finite limits, in particular
fiber products, and the tangent space F(k[ε]) is equal to the tangent space of some coefficient
Λ-algebra, so it is a finite dimensional vector space over k.

Conversely, it is immediate to note that the set of minimal pairs (A, ξ) forms a directed set
using fiber products and minimal dominance. Unicity in Lemma B.2 shows that it induces a
well defined inverse surjective system in the rings A. Let

R := lim←−−−
(A,ξ)

A.

Surjectivity of the system proves that R is a complete local ring with residue field k. We
wish to prove that R represents F and that it is actually a noetherian ring. For each minimal
pair (A, ξ) we have a natural transformation

ϑA : Hom(A, · ) −→ F

such that for each ring homomorphism ϕ : A −→ B we define

ϑAB(ϕ) := F(ϕ)(ξ).

If v : A′ −→ A induces a dominance of (A′, ξ′) over (A, ξ) then we get a canonical morphism
of functors Hom(A, · ) −→ Hom(A′, · ) which is compatible with the natural transformations
described above. Hence we get a directed system of functors Hom(A, · ) and a canonical natural
transformation

ϑ : lim−−−→
(A,ξ)

Hom(A, · ) −→ F.

We claim that ϑ is an equivalence of functors. Let B be an object of C0
Λ, we must show that

ϑB : lim−−−→
(A,ξ)

Hom(A,B) −→ F(B)

is a bijection. Let ζ ∈ F(B), then (B, ζ) is dominated by a minimal pair (A, ξ) and therefore ϑB
is surjective. Let (Ai, ξi) be minimal pairs and ϕi : Ai −→ B (i = 1, 2) such that F(ϕ1)(ξ1) =
F(ϕ2)(ξ2). Let (A3, ξ3) be a minimal pair dominating (A1, ξ1) and (A2, ξ2). Hence by Lemma
B.2 we have the commutative diagram
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A3
//

��

A1

ϕ1

��
A2 ϕ2

// B

Then ϕ1 and ϕ2 induce the same element in the direct limit and ϑB is injective.
Finally, it remains to show that

lim−−−→
(A,ξ)

Hom(A, · ) = Hom(R, · )

because if this equality holds, by finite dimensionality of the tangent space, the maximal ideal
of R is finitely generated and R is noethetian. The natural homomorphisms R −→ A where
(A, ξ) is minimal give compatible functions

Hom(A, · ) −→ Hom(R, · )

and thus we get a canonical function

lim−−−→
(A,ξ)

Hom(A, · ) −→ Hom(R, · ) (.1)

which is clearly inyective. For proving that it is also surjective, let B be an artinian Λ-algebra
and let ψ : R −→ B be a local ring homomorphism. The image R of R in B is then an artinian
coefficient Λ-algebra and is a projective limit of quotients of artinian Λ-algebras

R = lim←−−−
(A,ξ)

A/Iξ

However, since R is of finite length this new inverse system is stationary. Quotients of
minimal pairs are minimal pairs, then there exists (A, ξ) minimal and an isomorphism ϕ :
A −→ R such that the following diagram commutes

R
πA //

��

A

ϕ
��

R

Therefore we have the following diagram and thus we have a surjection in (.1).

R
πA //

ψ ��

A

ϕ
��
B
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Appendix C

Leopoldt’s Conjecture

In this Appendix we write the original statement of Leopold’s conjecture and a proof of the
equivalence with the conjecture regarding the Krull’s dimension of the quotient R/mΛR, where
R is the universal deformation ring of the functor DΛ, in the case of characters; n = 1.

Fix a prime number p. Let K be a number field and S be a finite set of primes containing
the primes above p and ∞, write S∞ for the archimedean primes of K. Let E denote the unit
group O∗K of K. For p a non-archimedean prime1 denote by U

(1)
p = 1 + p the group of principal

units in Kp. Leopold’s conjecture states that the rank rp(E) as Zp module of

E ∩
∏
p|p

U
(1)
p

is r1 +r2−1, with E seen diagonally embedded. In the above formula r1 and r2 are the number
of real and complex places of K respectively.

In order to show the equivalence betweem Leopoldt’s conjecture and the dimension conjec-
ture in Proposition 5.3.1 we need some notation. Let Kab

S be the maximal abelian extension
of K unramified outside S2, and let Mp be the maximal abelian p-extension of K unramified
outside S. Let H be the maximal unramified extension of K contained in Mp.

Let H̃ be the maximal abelian unramified extension of K. Global class field theory tells us
that

GH̃/K
∼= ClK

where ClK is the class group of K. Hence, H = H̃ ∩Mp is the maximal abelian unramified
p-extension of K, the Galois group GH/K corresponds to the p-Sylow subgroup of ClK , which
we denote by ClK(p). Thus, we have an exact sequence

1 // GMp/H
// GMp/K

// ClK(p) // 1 .

Moreover, H̃ ⊂ Kab
S and let S1 be the primes of H lying above the primes of S, keep the

notation S1,∞ for the archimedean primes of S1. We get a morphism of exact sequences

1 // GMp/H
// GMp/K

// ClK(p) // 1

1 // Gab
H,S1

OO

// Gab
K,S

OO

// ClK

OO

// 1

1We may refer to non-archemedean primes as finite primes as well.
2In this context, given an extension L/K and infinite primes σ|α of L and K respectively, we say that α

ramifies if Lσ 6= Kα, otherwise we say that the extension is unramified at σ.
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The vertical maps are the projection of the groups in the low row to their pro-p-completion.
In the language of class formations, see [Neu86] or [Neu99], let IK and CK = IK/K

∗ be
the idèle group and the idèle class group of K respectively. The group IK is set-theoretically
the subset of the product of the completions of K at all primes, including the infinite primes,∏

pKp consisting in tuples (ap)p for which

ap ∈ Up for all but finitely many p.

The set Up is Kp for p an infinite prime and the subgroup of units of Kp for p finite. A
modulus m is a formal product

m =
∏
p

pnp

with np ∈ N for p finite, np ∈ {0, 1} for p infinite and all but finitely many of the exponents
are 0. Denote

ImK =
∏
p

U
(np)
p ,

where

U
(np)
p =


1 + pnp for p finite, U

(0)
p = Up the units of OKp ,

R∗ if p is real and np = 0,
R+ if p is real and np = 1,
C∗ if p is complex.

Define Cm
K = ImKK

∗/K∗ ⊂ CK . In particular, we get an isomorphism ClK ∼= CK/C
1
K . Set

∞ =
∏

p|∞ p and m =
∏

p∈S\S∞ p, then we get by global class field theory

GKab
S /H

∼= Gab
H,S1
∼= lim←−−

s∈N

C1
K/C

ms∞
K . (.1)

Furthermore,

C1
K/C

ms∞
K = (I1

KK
∗/K∗)/(Im

s∞
K K∗/K∗)

= (I1
KK

∗)/(Im
s∞

K K∗)

= I1
K/(I

ms∞
K E).

Therefore, the product

∏
p∈S\S∞

Up

∏
p∈S∞

Up/U
(1)
p (.2)

surjects ontoGab
H,S1

. The image of
∏

p∈S\S∞ Up has kernel E∩
∏

p∈S\S∞ Up. Indeed, let (ap)p∈S\S∞ ∈∏
p∈S\S∞ Up be an element mapping to 1 in I1K/(I

ms

K ∞) for all s ∈ N. Equation (.1) implies that

there are (bsp)p ∈ Im
s∞

K and rs ∈ E such that

(ap) = (bsp)rs, for all s ∈ N.

Thus, the p part of rs for p ∈ S\S∞ converges in Up and (ap) ∈ E∩
∏

p∈S\S∞ Up. Conversely,
since E is mapped to 1 and the map is continuous, the clousure of E is mapped to 1. Hence
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∏
p∈S\S∞

Up/(E ∩
∏

p∈S\S∞

Up)

is mapped injectively to Gab
H,S1

and its cokernel is finite since it is a quotient of the product

over the infinite-primes part of (.2). Note that E ⊂
∏

p∈S\S∞ Up but keep the intersection in
the formula.

We have the following exact sequence

1 //
∏

p∈S\S∞ Up/(E ∩
∏

p∈S\S∞ Up) // Gab
H,S1

// I // 1

with I a finite elemental abelian 2-group, i.e. a finite vector space over F2. Tensoring with Zp
give us

1 // (
∏

p∈S\S∞ Up/(E ∩
∏

p∈S\S∞ Up))⊗ Zp // Gab
H,S1
⊗ Zp // I ⊗ Zp // 1 . (.3)

Since GMp/H is the pro-p-completion of Gab
H,S1

then

Gab
H,S1
⊗ Zp = GMp/H .

It only remains to compute the first term in the exact sequence (.3). We have

(
∏

p∈S\S∞

Up/(E ∩
∏

p∈S\S∞

Up))⊗ Zp = (
∏

p∈S\S∞

Up ⊗ Zp)/(E ∩
∏

p∈S\S∞

Up ⊗ Zp).

Given a field L denote its p∞-roots of unity by µp∞(L). Let p ∈ S\S∞, if p - p then

Up ⊗ Zp = µp∞(Kp).

On the other hand, if p|p then

Up ⊗ Zp = U
(1)
p .

This shows that ∏
p∈S\S∞

Up ⊗ Zp =
∏

p∈S\S∞
p-p

µp∞(Kp)×
∏
p|p

U
(1)
p .

Consider the following exact diagram

1 1 1

1 // K //

OO

S //

OO

U //

OO

1

1 //
∏

p∈S\S∞
p-p

µp∞(Kp) //

OO

∏
p∈S\S∞

Up ⊗ Zp //

OO

∏
p|p

U
(1)
p

//

OO

1

1 // J //

OO

E ∩
∏

p∈S\S∞

Up ⊗ Zp //

OO

E ∩
∏
p|p

U
(1)
p

//

OO

1

1

OO

1

OO

1

OO
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where J and K are the kernels of the corresponding maps in the rows, and S and U are the
quotients of the corresponding groups in the columns. The product of the roots of unity is
finite, hence the rank of S as Zp-module is equal to the rank of U as Zp-module.

Sequence .3 and the previuos remark show that

rankZp(GMp/H) = rankZp(S) = rank(U).

Since for p|p we have rankZp(U
(1)
p ) = fpep, then

rankZp

∏
p|p

U
(1)
p

 =
∑
p|p

rankZ(U
(1)
p ) =

∑
p|p

fpep = [K : Q].

This shows that

rp(E) + rankZp(GMp/H) = [K : Q] = r1 + 2r2.

The group E has rank r1 + 2r2 + 1 as Z-module, therefore rp(E) ≤ r1 + 2r2 − 1. Now,

rankZ(Hom(GK,S,Zp)) = rank(Hom(GMp/H),Zp) = rank(GMp/H).

With the notation as in chapter 5, the Krull dimension of R/mΛR is rankZp(Hom(GK,S,Zp)).
Therefore

Krull dim(R/mR) = r1 + 2r2 − rp(E) ≥ 1 + r2

which is the same bound found in Proposition 5.3.1 for n = 1. This finally proves that the
Leopoldt’s conjecture is equivalent to the Dimension Conjecture of deformation rings of char-
acters, i.e. that

rp(E) = r1 + 2r2 − 1 if and only if Krull dim(R/mΛR) = 1 + r2.
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List of Symbols

A[[Π]] Complete A-algebra of Π. 7
Af Abelian variety attached to f . 64
Ad(ρ) Adjoint representation. 29
C(ρ) Center of ρ in Mn(k). 20
GK Absolute Galois group of a field K. 4
GK,S1 Galois group of KS1/K. 6
GL/K Galois group of the extension L/K. 4
GQ,S Galois group of QS/Q. 6
H1

Q(Π, Ad(ρ)) Tangent space of the deforma-
tion condition Q. 43

Ip Inertia subgroup of GQp . 4
J J-invariant. 56
Ks Separable closure of a field K. 4
Kf Number field of the normalized eigenform

f . 64
KS1 Maximal unramified extension of K out-

side S1. 6
Lλ Localization of L at λ. 4
Tn Hecke operator for n ∈ N. 58
Tp Hecke operator for p prime. 58
Vρ Space of the representation ρ. 30
W (k) Ring of Witt vectors. 8
Wp Wild inertia subgroup of Ip. 4
X(Γ) Modular curve with respect to Γ. 55
Y (Γ) Non-compact modular with respect to Γ.

55
[Γ1αΓ2]k Double coset operator of weight-k. 57
[α]k Weight-k operator. 52
[β]k Weight-k operator for elements in

GL+
2 (Q). 57

∆ Discriminant cuspidal form. 55
Γ(N) Principal congruence subgroup of level

N . 53
Γn(A) Kernel of the reduction map of GLn(A).

9
Λ Fixed Coefficient Ring. 8
Fq Field with q elements. 4
QS Maximal unramified extension outside S.

5
Qtm
p Maximal tamely ramified extension of Qp.

4
Qur
p Maximal unramified description of Qp. 4

TC Complex Hecke algebra. 58
TZ Hecke algebra over Z. 58
H Complex upper half plane. 52
λF Prime ideal of the valuation ring OF . 4
〈n〉 Diamond opertor. 57
D Deformation functor. 9
DI I-ordinary functor. 48
DΛ Deformation functor. 9
Div(X(Γ)) Divisor group of X(Γ). 55
Div0(X(Γ)) Degree 0 divisor subgroup. 55
Div`(X(Γ)) Principal divisors of X(Γ). 55
Jac(M) Jacobian variety of M . 63
Pic0(X(Γ)) Picard group of X(Γ). 55
Ek(Γ) Eisenstein space. 56
M(Γ) Algebra of modular forms. 54
Mk(Γ) Weight-k modular forms with respect

to Γ. 54
OF Valuation ring of the local field F . 4
OL Ring of integers of the global field L. 4
OL,λ Valuation ring of Lλ. 4
S(Γ) Ideal of cuspidal forms. 54
Sk(Γ) Weight-k cuspidal forms with respect to

Γ. 54
ρ Residual representation. 9
ρρρ Universal deformation. 12
C Category of coefficient rings. 8
C0

Λ Category of artinian coefficient Λ-algebras.
9

CΛ Category of coefficient Λ-algebras. 8
O(ρ0) Obstruction class of ρ0. 31
Rρ Universal deformation ring. 12
j(γ, τ) Factor of automorphy. 52
k[ε] Ring of dual numbers. 14
kF Residual field of the valuation ring OF . 4
tA Tangent space of the ring A. 14
t∗A Cotangent space of the ring A. 14
tF Tangent space of the functor F. 17
vF Normalized valuation of the local field F . 4
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