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Chapter 1

Abstract

A framework for incorporating renewable energy sources into the traditional economic dis-
patch problem is presented, which shows the possible advantages of adopting a predictive
economic dispatch approach. In particular, simulation of the economic dispatch solution for
a microgrid system with both solar and wind technologies as well as battery storage systems,
illustrates the conditions under which the operation of power systems, with conventional
economic dispatch algorithms do not provide a suitable solution. In addition, the purposed
predictive strategy shows that renewable resources can lead to high economical benefits even
under high uncertainty, as long as penetration levels of intermittent resources increase sig-
nificantly.

2



Contents

1 Abstract 2

2 Objectives 6
2.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Introduction 7

4 Framework 10
4.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Economic dispatch in microgrid 14
5.1 Conventional Economic dispatch . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Economic dispatch using MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Economic dispatch comparing different simulated Data . . . . . . . . . . . . 18
5.4 Proposed predictive dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Power balance error dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Results 29
6.1 Ramp rate influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Conclusions 37

8 Appendix 38
8.1 Appendix A: Variability of renewable resources . . . . . . . . . . . . . . . . . 38

8.1.1 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.1.2 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.2 Appendix B: Renewable energy sources forecast . . . . . . . . . . . . . . . . 43
8.2.1 Forecast metodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

3



List of Figures

4.1 Microgrid general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 MPC loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 MPC block diagram adapted from Camacho y Bordons . . . . . . . . . . . . 17
5.3 Microgrid operation at the end of March with California data . . . . . . . . 19
5.4 Microgrid operation in the middle of March with California data . . . . . . . 20
5.5 Microgrid operation in the middle of April using Utah data . . . . . . . . . . 22
5.6 Proposed predictive dispach block diagram . . . . . . . . . . . . . . . . . . . 24
5.7 Two stages control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.8 Controller 2 without charging control . . . . . . . . . . . . . . . . . . . . . . 27
5.9 Microgrid general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 May 8 simulation result without forecast . . . . . . . . . . . . . . . . . . . . 33
6.2 May 8 simulation result with forecast power generation . . . . . . . . . . . . 34
6.3 May 8 simulation result with forecast, load profile and power balance error . 35
6.4 May 8 simulation result with forecast of the storage systems . . . . . . . . . 36

8.1 Different NREL stations located over the United States . . . . . . . . . . . . 38
8.2 Ramp rate wind speed events of Arizona station . . . . . . . . . . . . . . . . 39
8.3 Ramp rate global horizontal irradiance events of Arizona station . . . . . . . 40
8.4 Wind speed ramp rate results, for California. . . . . . . . . . . . . . . . . . . 41
8.5 PV field generation ramp rate results, for California . . . . . . . . . . . . . . 42
8.6 Solar power data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.7 Wind speed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.8 Porpuse forecast metodology block diagram . . . . . . . . . . . . . . . . . . 44

4



List of Tables

5.1 Simulated data 1 mean and std results of operation cost difference using sim-
ulated RES data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Simulated data 1 mean and std results of MPC prediction horizon effect . . . 22
5.3 Simulated data 1 mean and std results of reserve capacity requirements . . . 23

6.1 Complete system set of simulations . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Result for slow ramp rate simulations . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Result for fast ramp rate simulations . . . . . . . . . . . . . . . . . . . . . . 32

5



Chapter 2

Objectives

2.1 General Objective

Design and implement model predictive control(MPC) strategies in order to perform the
economic dispatch of generators in a microgrid. Those strategies will be inspired in the
conventional optimization techniques as well as in game theory.

2.2 Specific objectives

• Perfome the identification model of a microgrid for the economic dispatch problem.

• Implement model predictive control algorithms that solve the dispatch problems of the
generators in a microgrid when it has trade with an utility company, distributed energy
surces and storage systems.

• Compare the development of the diferent MPC controllers, evaluating economical, sys-
tem stability and efficiency performance.
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Chapter 3

Introduction

Planning and operation of power systems are going through important transformation due
to: i) the advances in electronics and information technologies that make it possible to infer
customer behavior from real time data turning them into potential active agents of the system
; ii) the fast growth in energy demand that must be satisfied without incurring in investment
costs that are infeasible for utility companies. iii) The high environmental awareness, which
leads to the integration of new clean sources for power generation [3, 17]. The motivation of
this paper is to understand the possibilities and challenges that emerge in the context of the
item iii. for designing optimal solutions that bring the possibility to integrate high levels of
renewable energy sources efficiently.

Smart grids emerge as a solution to incorporate diverse technological advances into the
power system in order to build a grid based on remote sensing, control and automation. The
smart grid proposes an optimized and safer operation by changing the top-down centralized
architecture (generation to load) in favor for a decentralized structure where new energy
resources can be placed near the consumption points [7]. Distributed generation allows for a
more robust operation of the system because it can better handle damages due to generation
and infrastructure (e.g. via reconfiguration). Additionally, it may reduce transmission losses
due to the generally shorter path between generation and load [15].

Due to the considerable cost reductions and the rapid deployment of many renewable
energy technologies, the incorporation of energy sources (like wind and solar) into the power
grid has become an important topic of discussion for public and environmental regulators
around the world. Many countries in Europe and North America have declared ambitious
goals in terms of renewable energy integration. For example, in 2011, the state of California
signed a commitment saying that 33% of its electricity must come from renewable sources
by 2020 [5, 12, 13].

The advantages of renewable energy technologies are well known: for example, after the
initial capital investment there is essentially no cost associated with energy production taking
into account that the maintenance cost can be despised.

Moreover, wind and solar technologies are considered clean energy sources and replacing
part of the conventional power generation with it will help to reduce the emission of green
house gases, in particular compared to the traditional energy generation through coal. As
the use of intermittent generation increases, there exist undesired consequences that have not
been well established so far and affect both the operation cost and safety of power systems.
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For instance, meeting the power balance between supply and demand is a complex task, given
the natural variability of renewable resources. The need to reserve energy that supports the
system when the renewable sources are not available grows rapidly, often increasing the
total generation and operation costs of a system that combines renewable and traditional
generation sources.

Inherent characteristics of renewable energy sources such as the high uncertainty sur-
rounding solar irradiance and wind availability, the actual low penetration levels, and the
economical benefits suggest that they ought to be treated as non-dispatchable negative loads.
This assumption means that after installing one renewable unit, it has to produce as much en-
ergy as it can in order to reduce the cost of operating conventional fossil fuel-based generation
and recover the investment cost as soon as possible.

Until now this assumption has been valid, but the increasing presence of renewable energy
sources such as wind and solar into the existing electricity grid has raised new challenges for
the power system operation (e.g. economic dispatch) which require different optimization
tools from those previously used. Since the economic dispatch problem has decades of de-
velopment and it is a well understood optimization problem, the research in the last years
has focused on developing optimization algorithms to improve the solutions of the energy
resource allocation with less computational cost.

Until recently, most of the work focused on heuristic techniques such as genetic algorithms,
particle swarm optimization, and neural networks [1, 9, 10, 14, 16]. But the intermittent
nature of the renewable energy sources, changes the characteristics of the dispatch problem
and requires new models that characterize and manage the variability on the dispatch of solar
and wind technologies and affords the possibility to maximize its use without increasing the
generation cost and guarantee a safe operation.

In particular, since the ability to predict the availability of renewable sources in the
medium and long term is limited, renewable energy generators cannot be treated like the
conventional fully-dispatchable generators, rising the need to model and operate renewable
generation in new ways. Due to the fact that the high uncertainty and variability of the
generation capacity from the wind and photovoltaic generators has a direct impact on the
short-term frequency regulation (safety) and long-term conventional generation scheduling
(generation cost), a non-optimal economic dispatch solution will derive in both, technical
and economical operation problems.

In recent years, different works have posed this challenge [11, 18]. In [18], the authors
propose to treat intermittent energy sources as a controllable generator using a power control
system operated by electronic inverters which decides the power level in order to control
the dispatch of renewable generators based on the dynamics given by the prediction of the
resources availability (wind or solar). The resulting solution is to dispatch the least amount
of power that allows compensating variations between the expected (forecasted) and the
real energy consumption by the load nodes. With this control strategy, the use of costly
conventional generators (like gas plants), which have the capacity to quickly change the
power level in between two instances of time is minimized, and maximizes the dispatch of
the most economical generators (coal plants), which require longer time intervals to modify
the power level that they deliver.

The main objective of this paper is to show the behavioral and technical difficulties
that emerge in a low scale power system (microgrid) that incorporates a high percentage of
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renewable energy sources into its generation portfolio. By comparing a conventional static
dispatch model with an proposed cascade model predictive control strategy (MPC), it is
possible to illustrate the reason and benefit of adopting a dynamical predictive approach to
solve the economic dispatch problem. Then, two optimization techniques based on clasical
optimization and, game theory inspired algorithm are evaluated in order to compare the
dynamic resource allocation solution and the computational time.

Simulation results demonstrate that the conventional dispatch and the MPC algorithm
have a similar performance when the penetration of intermittent resources into the microgrid
is low. As penetration level grows, the high ramp events on the renewable sources make the
conventional dispatch solution increasingly less viable. In contrast, the economic dispatch
solved by MPC can handle the integration of high intermittent resources, taking advantage
of the look ahead optimization and the direct control of the renewable source outputs.



Chapter 4

Framework

4.1 System description

The microgrid model is by definition the placing of small scale energy generators grouped
close to the consumption points in an energy distribution system. This grouping can work
connected to the main energy grid as well as isolated from it. In both scenarios, the main
purpose of a microgrid is to guarantee a safe, reliable, and efficient operation while ensuring
certain technical and economic criteria [2, 8].

Figure 4.1 shows the scheme of a microgrid that integrates different electric elements
which interact together such as: a connection to the main grid; the energy generation and
consumption nodes. For example, if the connection to the main grid can be closed for
certain moments, then it is a grid connected microgrid (See Figure 4.1a). On the other
hand, if the main grid connection is not allowed, that system is called an island microgrid
(See Figure 4.1b). Additionally, the energy generation nodes are composed by: conventional
generators (such as thermoelectric generators, diesel generators, or nuclear generators) and
renewable energy generators (such as solar photovoltaic panels and wind turbines, for which
the generation capacity is variable and depends on climatic conditions). Load nodes are also
divided into two types: non-controllable nodes or sensitive loads, which have an inelastic
demand of energy, and controllable nodes, which have a variable elasticity, meaning that
they are disposed to vary their energy consumption in reaction to the changes in price or
incentives that are given by the utility company to the users. Finally, the battery storage
system is a particular element of the microgrid which can be both a generation element as
well as a consumption node, depending if the storage system is charging or discharging.

The remain of this work is focused on grid connected microgrids (See Figure 4.1a) and
how they could be an efficient integration of renewable energy sources in the generation side
on this scenario. Also, the consumption side is restricted to non controllable loads so the
flexibility of the load side is not take into account.

The operation of the microgrid from the point of view of control systems is divided into
three levels: the first is in charge of performing local control tasks on the generators, tracking
the reference power in real time; the second level contains the power and frequency control,

10
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(a) Grid connected

(b) Island (off grid)

Figure 4.1 Microgrid general block diagram

which is responsible for regulating the frequency of the system by managing power set point
of energy reserve sources and preventing that deviations from the nominal frequency (caused
by the power variations) exceed the permitted limits leading to a risk situation for the
functioning of the system; in the third level there is the dispatch control of the generators,
which seeks to maximize the utility of each energy generating agent (or minimize system
production costs), subject to restrictions of energy balance between the generated power
and the power demand, and to the technical constraints of the energy resource operation
(generators).

4.2 Problem Description

Economic dispatch treats the problem of dynamic resource (energy) allocation, where a set
of generation units must satisfy the energy demand in a given moment at the most econom-
ical solution. As the demand grows, the incorporation of more costly sources of energy is
necessary. In the context of microgrids, renewable energy sources are planned as a favorable
solution to lower the generation costs as well as the carbon dioxide costs.

The introduction of technologies based in renewable energie sources (RES) involves big
challenges to the safety and economical operation of the existing energy systems, in particular,
due to the difficulty of predicting the long term availability of these resources. The lack of
prediction causes big fluctuations in the power delivered by the generators in short-time
intervals (in the order of minutes). This situation force the microgrid system to keep large
quantities of energy reserves in order to respond quickly to changes in energy levels form
the renewable sources. In general, generators that have this capacity are expensive and as a
consequence, the economic benefit of implementing microgrids based on renewable is reduced.

Additionally, in the economical energy dispatch operation there are penalties for devi-
ating from the programmed power quantity to the final delivered power in a given instant.
Therefore, intermittent resources that have high variability are at risk of suffering constantly
from these penalties. One challenge involved in economic dispatch, is to achieve an effective
integration of the intermittent energy sources such that the use of costly energy reserves
and penalties due to mistakes in the power balance are minimized. So far, the traditional
operation of renewable energy resources does not pay much attention to that problem and
absorbs all the power coming from intermittent resources. This is because the penetration
level in the majority of countries is less than 8%. It is expected that this procedure will
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not be acceptable in the future of power systems and the generation level of intermittent
resources has to be part of the decision variables.

Given that the behavior of these technologies vary constantly in time it would be more
desirable to perform dynamically the optimization routine for the economic dispatch. For
that reason a model predictive control (MPC) based strategy is used as the tool for dynamic
scheduling the generation output of both conventional and renewable sources taking into ac-
count the advantage that this technique uses the information of the predicted future behavior
of the system in order to adjust the dispatch allocation, handling disturbances (renewable
sources variability).

Taking into account that the sources of renewable energy often present a very variable
unpredictable behavior, it is necessary to study the performance of these sources. First the
characterization of the their variability and an analysis how they impact the behavior of the
economic dispatch in a microgrid system. Previous work has tackled the problem of one
specific microgrid configuration, in terms of a specific of generators, and in most cases the
wind and solar data corresponds to a particular day. These studies, however, do not show a
general view of the real impact of the proposed solutions that can be applied in a wide range
of microgrid applications. The work presented in Appendix A, seeks to understand the RES
behavior by studying multiple wind and solar information from various locations across the
United States, and characterizes the variability of those renewable sources.

Appendix A, introduces the characteristic and behavior of the RES in order to understand
its effect on the economic dispatch of microgrids that include significantly RES penetration
level into its generation portfolio. The study was divided into parts, first different metheo-
rological stations where selected to study the behavior of the solar irradiance and the winf
speed real data. Second, a set of RES simulated data from the Renewable Energy Sources
Laboratory (NREL) RES integration study was used to complete the analysis. The study
shows that if the empirical data of the wind speed and solar irradiance at some specific
location has a lot of variability (which means that the difference in magnitude between con-
secutive steps is high) and low availability (which means that in magnitude the renewable
energy source is low and do not provide a good energy prduction), then those locations do
not constitute representative spots to continue the investigation with that information, given
that the energy that can be take advantage from the RES is very low then even if the pen-
etration level grow considerably the impact of the RES production is limited. On the other
hand, the simulated data shows less variability on the RES while a significant improvement
on the RES availability, especially on the wind speed source.

The following variables and parameters are used in the formulation of the problem:
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Notation Description Units
n Number of conventional generators.
m Number of renewable generators.
T Prediction horizon for the MPC.
P c
i (k) Generated power by the (MW )

conventional generator i at the instant
k, i = 1, 2, . . . , N .

P c
i Maximum generated power by the (MW )

conventional generator i at the instant
k, i = 1, 2, . . . , N .

∆Uc
i Conventional generation input (MW )

of the i conventional generator, at the instant
∆Ur

j RES input of the j RES (MW )

generator, at the instant
k, j = 1, 2, . . . ,M .

P r
j (k) Generated power by the

renewable generator j at the instant
k, j = 1, 2, . . . ,M . (MW )

P̂ r
j (k) Maximum predicted power from the renewable (MW)

generator j for the instant k.
P̄ r
j (k) Scheduled power for the renewable generator (MW)

j for the instant k.

P̂ r
j (k) Power prediction of

renewable generator j para el instante k. (MW )
Ci(P

c
i (k)) Production cost for conventional ($)

generator i supplying P c
i (k) power

at the instant k,i = 1, 2, . . . , N .
Ri Ramp rate limit for a generator i (MW/∆τ)

in an interval of time ∆τ .
i = 1, 2, . . . , N

L(k) Demand of power (L(k) = Lnc(k)+ (MW )
Lc(k)) en el instante k.

Lc(k) Controllable load node (MW )
Lnc(k) Non-controllable load node (MW )

L̂(k) Forecasted demand of power of the (MW )
load nodes at instant k.

∆τ Time constant corresponding to minuts
the sampling frequency e.g. 5 minuts

PBerror(k) Power balance error produced (MW )
by the forecast error

PBlimit Second controller condition to jump from (MW )
model predictive controller to charging
control.

Pmg(k) Power exchange with the main grid (MW )
at the instant k.

P bss Power rated capacity of the storage (MW/5min)
P ch(k) Charging power of the battery storage (MW )

system at the instant k.
P dch(k) Dis-charging power of the battery storage (MW )

system at the instant k.
P ch(k) Charging power of the battery storage (MW )

system at the instant k.
P dch(k) Dis-charging power of the battery storage (MW )

system at the instant k.
SOC(k) State of charge of the baterrery storage %

system at the instant k
P tr Trade power between the main grid and the (MW )

battery storage system for charging purpuses.
γ Charge and Discharge efficiency %



Chapter 5

Economic dispatch in microgrid

5.1 Conventional Economic dispatch

Power systems that have been running for the last century are based on both, conventional
generation that is easy to schedule and an uncertainty component introduced by the load.
However, due to the seasonal and hourly pattern of the power consumption by different types
of users, the experience of the operators, and the forecasting tools it is possible to obtain a
very accurate prediction of the upcoming energy demand, not only for the short term but
also for the long term [6],[4]. In this context, the power systems operation is modeled as a
deterministic system in which the amount of load to serve at every instant is assumed to be
almost known.

Since the automation of the electric grid starts in the 50s, when the first computer based
control centers appear, the economic dispatch starts to develop a key role in the power system
operation. By that time, the system has a medium size then, the optimization procedure
involved in the economic dispatch involves a tractable number of operations so that it can
be done by traditional optimization algorithms such as linear programing.

Later, the power system experiences a huge expansion and becomes a complex systems
not only because of the size but also due to its networks. When the optimization problem
of the economic dispatch became a large scale problem, the traditional algorithms no longer
worked because of the computational cost. Besides this, in the late 90s heuristic optimization
(e.g. genetic algorithms, and particle swarm optimization) began to gain acceptance in the
research community, so they start to be used in the solution of the economic dispatch problem.

5.1.1 Mathematical formulation

The economic dispatch problem for the conventional power system is posed as an optimization
problem (See e.q. (5.1) to e.q. (5.5). E.q. (5.1) corresponds to the function that must be
minimize. As mentioned before the renewable energy sources are treated as having a zero
operational cost given that the capital cost is not taken into account. Therefore the operation
cost of the microgrid is the operation cost of the conventional generators which is performed
by the cuadratic cost funcion shown on the e.q. (5.6). The cuadratic cost function relates
the conventional generation fixed cost, the proportion of the power produced and the cost
associated to the fuel cost.
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Chapter 5. Economic dispatch in microgrid 15

The economic dispatch must be solved at every instant satisfying the following constraints:
e.q. (5.2) refers to the power balance of the system and e.q (5.3) to e.q. (5.5) are the technical
constraints of the conventional generation units.

min
Uc
i (k)

n∑
i=1

Ci(P
c
i (k)) (5.1)

s.t.

n∑
i=1

P c
i (k) = L̂(k) (5.2)

P c
i (k) = P c

i (k − 1) + ∆U c
i (5.3)

0 ≤ P c ≤ P c
i (5.4)

|P c
i (k)− P c

i (k − 1)| ≤ Ri∆τ (5.5)

Ci(P
c
i (k)) = a0P c

i (k)2 + a1P c
i (k) + a2 (5.6)

Recall that the microgrid system intent to create small power subsystems, where the
grouping of some generators and customers are placed at the same location. The fact that
the size of the microgrids is small allows us to say that it is reasonable to solve the economic
dispatch with traditional optimization algorithms instead of heuristic techniques.

In real time operation, it is not possible to guarantee the power balance restriction equal
to zero because of the forecasting errors. Thus, the power balance error matching task is
performed so that the units that are in charge of tracking the load between the economic
dispatch operating points are able to change their power dispatch set point rapidly. The
range of time of the load variations goes from 1 minute to 1 hour. The generators that have
the potential to switch their output in that way are typically the most expensive, and for
that reason it is always desirable to have the minimum power balance errors.

When the renewable energy sources are introduced into the existing power system, the
dispatch policy adopted by the utilities, in order to minimize costs is to take them as negative
loads which deliver all its total (variable) capacity at any instant of time and then use
the conventional generation to compensate the variability of both load consumption and
renewable resources (generation side).

The optimization procedure including the intermittent generation is shown in e.q (5.7)
to e.q. (5.13), where the optimization problem change the e.q.(5.2) a with the eq.(5.8). In
this case, a prediction for the power availability of the renewable sources is required (See
e.q. 5.19) in order to compute the vaule of the RES amount of energy available for the
next economic dispatch operation point. Because of the main objective of the project is not
related with the forecast study, simple auto-regressive moving average models are used to
performe the load consumption and the output capacities of the solar and wind generators
(See the Appendix B).
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min
Uc
i (k)

n∑
i=1

Ci(P
c
i (k)) (5.7)

s.t.

N∑
i=1

P c
i (k) = L̂(k)−

M∑
j=1

P̂ r
j (k) (5.8)

P c
i (k + 1) = P c

i (k) + ∆U c
i (5.9)

L̂(k + 1) = f(L(k), L(k − 1), . . . , L(k − nb)) (5.10)

P̂ r
j (k + 1) = h(P r

j (k), P r
j (k − 1), . . . , P r

j (k − nb)) (5.11)

0 ≤ P c(k) ≤ P c
i (5.12)

|P c
i (k)− P c

i (k − 1)| ≤ Ri ∗∆τ (5.13)

5.2 Economic dispatch using MPC

Model predictive control (MPC) is a widely used control technique for multi variable con-
strained problems and its effectiveness has been demonstrated particularly in the field of
process control. The structure of the control structure is shown in figure 5.1 in which the
total load consumption must be equal to the resulting power generation of the microgrid
in order to minimize the power balance error, and works as follow: First, the system to be
controlled has to be modeled so that a prediction of the future outputs can be performed.
In most cases, the modeling is done through a linear state space representation of the form
x(k+ 1) = Ax(k) +Bu(k), where x(k) ∈ Rn are the states and u(k) ∈ Rm denote the inputs.
Secondly there is an optimization block that calculates the input to the plant, ensuring a
secure and desirable behavior (minimizing an objective or control task) of the system.

Figure 5.1 MPC loop

At any specific time the MPC process the information from the past states and outputs in
order to compute the solution of the optimal control problem. Then this solution fed to the
model which produces a future output. After, the optimization box receives the predicted
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values and solves the problem again, the process continues until the solution is complete
for the whole control horizon (T ). When the MPC solution is ready, only the first step is
applied to the plant, then new measurement outputs are introduced to the controller and the
finite-horizon optimization cycle starts again as shown in Figure 5.2.

Figure 5.2 MPC block diagram adapted from Camacho y Bordons

By adopting the MPC strategy the economic dispatch problem is reformulated as shown
in e.q. (5.14) to e.q. (5.22).

min
U(k)

T∑
k=1

n∑
i=1

Ci(P
c
i (k)) (5.14)

s.t.

n∑
i=1

P ci (k) +

m∑
j=1

P rj (k) = L̂(k) (5.15)

P ci (k + 1) = P ci (k) + ∆U ci (5.16)

P rj (k + 1) = P rj (k) + ∆U rj (5.17)

L̂(k + 1) = f(L(k), L(k − 1), . . . , L(k − nb)) (5.18)

P̂ rj (k + 1) = h(P rj (k), P rj (k − 1), . . . , P rj (k − nb)) (5.19)

0 ≤ P rj (k) ≤ P̂ rj (k) (5.20)

0 ≤ P c ≤ P ci (k) (5.21)

|P ci (k + 1)− P ci (k)| ≤ Ri∆τ (5.22)

As in the previous economic dispatch formulations in this case the cost function corresponds
only to the conventional generation cost and is modeled by the e.q. (5.6. The main differ-
ences with the previous formulation are that the MPC algorithm is a dynamic optimization
problem carried out over a prediction horizon T (see e.q. (5.14)), so the optimization prob-
lem is computed for the entire prediction horizon taking into account the conventional and
renewable enegy sources dinamics and the customers needs of power demanded. In addition,
the renewable energy resources are included into the decision variables so that the power
generation output of these sources can vary from the variable maximum predicted capacity
at any instant k (see e.q. (5.20)) and the power balance equation is define as e.q. (5.15). The
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prediction for the power availability of those sources is required (See e.q. (5.19)) in order to
complete the dynamics of the whole economic dispatch problem.

The prediction values of the load and the renewable energy sources are computed using
historical data, as it is mention on the apendix B. The past data that fed the auto-regresive
moving average models starts with the measure data as shown in e.q. (5.19) and e.q. (5.18).
Then when k goes up to T the predicted values are included into the past data for the
prediction procedure, so that, the e.q. (5.19) and e.q. (5.18) changes to e.q. (5.24) and e.q.
(5.23)

L̂(k + 1) = f(L̂(k), L̂(k − 1), . . . , L̂(k − T − 1),

L(k − T − 2), . . . , L(k − nb)), k = T − 1 (5.23)

P̂ rj (k + 1) = h( ˆP rj (k), P̂ rj (k − 1), . . . , P̂ rj (k − T − 1),

P rj (k − T − 2), . . . , P rj (k − nb)), k = T − 1 (5.24)

In order to quantify the effect of the economic dispatch performed under diferent con-
ditions of renewable energy sources in the next section the data used in the study of the
appendix A is used to performed the economic dispatch. This work shows three different
scenarios that ilustrates the behavior of the economic dispatch in microgrd integrating the
renewable energy sources.

5.3 Economic dispatch comparing different simulated

Data

Data from the five locations of the simulated data, California, Oregon, Texas, Colorado, and
Utah are used to feed the microgrid for the economic dispatch simulations. In this simulated
data scenario three simulations that shows different performance levels of the MPC strategy
are carried out.

Figure 5.3 shows the behavior of the different generators dispatch allocation during three
days of March at California. The cost difference between the conventional static dispatch
and the MPC savings varies from 0.65 % when there is no RES, up to 9.27 % when the
RES penetration level is 100%. Also, the prediction horizon exhibits savings of 0.42 % up
to 2.98 under the same RES penetration level conditions which demonstrate the effect and
effectiveness of the predictive dispatch. It is clear that for RES behavior like this the MPC
improves considerably the economic dispatch solution.

In particular, Figures 5.3c and 5.3d illustrate the RES dispatch differences between both
optimization techniques. Note that the RES shows high variability specially during the
midday. Also the availability oscillates between middle and high amount of power range.
That RES behavior provokes high power balance errors (See Figure 5.3a bottom plot). In
contrast, the MPC strategy guarantees zero power balance error by reducing the RES output
during high ramp peaks (e.g. from 40 to 70 time samples or from 370 to 430 time samples)
sacrificing the exploit of all its availability.

Figure 5.3b shows the same characteristic presented in the empirical measured data sce-
nario when the maximum economic benefit is achieved, and can be summarized in the fol-
lowing results: i) the gas unit operated with the conventional dispatch has to deliver high
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amount of power e.g. 6 MW in order to compensate the high RES variations. ii) The MPC
allows to reduce significantly the gas unit peaks. iii) The Coal unit 2 operation is improved
by the MPC allowing dispatching more power from this generator. Those are the main MPC
actions that allow to reduce the operation cost of the economic dispatch.

(a) Load Profile and Power balance (b) Conventional generators dispatch

(c) Total renewable sources production (d) Wind and Solar generators dispatch

Figure 5.3 Microgrid operation at the end of March with California data

Next, Figure 5.4 shows the result for a simulation that produce a typically mid-range
economic benefit. The results are obtained from three different days of March, again at
California. In this case, the economic benefit of MPC economic dispatch starts with savings
equal to 0.68% when no RES is introduced and goes up to 7.44% of the total operation
cost when the RES install capacity corresponds to 100% of the maximum load. Also, an
important saving is found with the prediction horizon were the economic savings are 0.39%
with 0% of RES up to 4.90% with 100% of RES. Note that these results are as good as
the best performance achieved with the empirical data in spite of it corresponding to the
mid-range performance.

Figures 5.3c and 5.3d show a set of RES that has great amount of power but with lower
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variability. This can explain why the economic benefit is lower than the previous case. In
terms of security, Figures 5.4a bottom and 5.4c allow to say that the the MPC technique
contributes to avoid the power balance error by reallocating the RES production in critical
moments (e.g. lower the use of RES from 90 samples to 130 samples and after 320 samples
to 350 samples).

Another effect of the MPC dispatch strategy is shown in Figures 5.4a bottom and 5.4c,
when from the 780 sample to 800 sample the MPC reduces the RES dispatch and reallocates
coal unit 1 generation allowing to lower the gas unit output. In Figure 5.4a bottom it can
be appreciated that the power balance error is 0 even with the conventional dispatch in the
range of time specified above, so the action produced by the MPC is for economic purposes
only.

(a) Load Profile and Power balance (b) Conventional generators dispatch

(c) Total renewable sources production (d) Wind and Solar generators dispatch

Figure 5.4 Microgrid operation in the middle of March with California data

Finally, an example of a low performance of the MPC against the conventional static
economic dispatch is presented in Figure 5.5. The simulated RES data for this simulation
corresponds to three days of April at Utah state. In this scenario the total operation cost and
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prediction horizon difference when the microgrid does not include RES are 0.62% and 0.32%
respectively, and goes up to 2.24% and 0.65% when the RES installed capacity is 100%. These
results shows a considerable reduction of the MPC improvement on the economic dispatch
solution compared to the previous examples of simulated data. That fact proves that it is
not possible to generalize and quantify easily the advantages of the predictive strategy versus
the conventional dispatch with small amount of RES data as it is always presented in related
papers.

Figures 5.5c and 5.5d shows that variability and availability of the RES are low. With
this pattern of the RES behavior, it can be seen in Figure 5.5b that the conventional and
predictive dispatch solution produces almost the same solution, which demonstrates that the
MPC has less operation capacity. The lack of RES variability makes the that the gas unit
production is low, then the economic benefit of reducing its output due to the MPC action
is small. In addition, since the few RES ramp events go up and down in short time, the gas
unit can follow those variations easily and in a cost effective way.

Figure 5.5a bottom shows that the power balance is close to zero even with the conven-
tional dispatch due to the low variability produced by RES. In this case, the conventional
generation can ramp up and down keeping track of the load and RES changes, limiting even
more the advantages of the MPC strategy against the conventional dispatch.

Table 5.1 shows the economic benefit of implementin the MPC instead of the conventional
static optimization for the microgrid operation with a different percentage of RES penetra-
tion. Note that the location in California has a high mean value for all the RES penetration
level suggesting that this site is the most suitable for the MPC adoption.

From Table 5.1, if the RES penetration level of the microgrid is up to 40% it is possible
to achieve significant economic savings. The results obtained here demonstrate that the
different locations presented here are appropriate places to take the advantage not only of
the RES integration into the microgrid but also of the MPC optimization implementation.

Table 5.1 Simulated data 1 mean and std results of operation cost difference using simulated
RES data

Conv Vs MPC cost difference (%)

Califoria Texas Colorado Utah Oregon
RES (%) Mean Std Mean Std Mean Std Mean Std Mean Std

0 0,64 0,27 0,60 0,29 0,79 0,25 0,64 0,26 0,63 0,28
40 1,59 0,50 0,97 0,27 1,07 0,59 1,21 0,78 1,28 0,58
80 4,78 0,97 2,78 0,62 3,07 0,60 3,26 0,95 3,41 1,23
100 7,12 1,40 4,19 1,10 4,89 0,89 4,95 1,23 5,00 1,71

Table 5.2 shows the benefit that the prediction horizon can produce for the different
economic dispatch solutions. For example, assuming a RES penetration level of 100% the
benefit derived from setting a prediction horizon greater or equal to 72 steps (6 hours) is at
least 1.73%. Also, the std deviation results are significant, which allows to reach at some
days even higher economic savings from the prediction horizon selection.

Finally, Table 5.3 illustrate the reserve capacity requirements for the microgrid when it
is operated with the conventional dispatch optimization. The reserve capacity results, here
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(a) Load Profile and Power balance (b) Conventional generators dispatch

(c) Total renewable sources production (d) Wind and Solar generators dispatch

Figure 5.5 Microgrid operation in the middle of April using Utah data

Table 5.2 Simulated data 1 mean and std results of MPC prediction horizon effect

Prediction horizon cost difference (%)

Califoria Texas Colorado Utah Oregon
RES (%) Mean Std Mean Std Mean Std Mean Std Mean Std

0 0,39 0,21 0,40 0,24 0,44 0,20 0,40 0,21 0,39 0,22
20 0,31 0,22 0,26 0,20 0,16 0,14 0,35 0,33 0,19 0,15
40 0,61 0,30 0,32 0,21 0,25 0,24 0,55 0,60 0,36 0,33
60 1,21 0,43 0,48 0,29 0,45 0,34 1,00 0,82 0,76 0,57
80 1,96 0,54 0,99 0,55 0,72 0,40 1,53 0,78 1,28 0,70
100 3,42 1,18 1,73 0,72 1,75 0,82 2,42 0,65 1,95 0,82

for penetration level up to 60% shows that the reserve capacity must be greater than 10%
of the maximum load which is an significant amount of power to have idle only for security
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Table 5.3 Simulated data 1 mean and std results of reserve capacity requirements

Reserve Capacity (%)

Califoria Texas Colorado Utah Oregon
RES (%) Mean Std Mean Std Mean Std Mean Std Mean Std

0 1,87 1,09 1,43 0,85 1,40 0,92 1,77 1,45 1,44 0,84
40 9,85 3,92 6,09 4,28 8,46 3,26 5,84 3,50 11,20 5,46
80 25,34 7,54 16,26 6,55 19,86 5,97 14,33 6,66 23,36 9,86
100 35,85 10,00 21,78 7,69 26,25 7,65 21,40 7,78 29,98 11,93

and safety purposes. This fact produces over cost for the operation of the microgrid.
The conclusions of the first economic dispatch study comparing the conventional dispatch

with the predictive control can be sumarized as follows:

• As expected, the main results of the cost difference between the conventional static
dispatch and the MPC shows that for low RES penetration levels e.g. under 60%,
the predictive dispatch do not bring significant improvements to the economic dispatch
solution. When the RES contribution to the generation portfolio of the microgrid is
low wind and solar generation can add very little flexibility to the generation side,
then most of the economic dispatch is done by the conventional generators which have
hard ramp rate constraints that limit MPC action. Due to real renewable sources in-
stallations has penetration levels up to 20% it is reasonable to understand why those
systems continue operating with traditional conventional economic dispatch optimiza-
tion. Similarly when the MPC is applied to the microgrid operation the prediction
horizon became an important parameter that affect the economical solution when the
amount of RES power grows.

• When the microgrid operation with RES integrated is performed with MPC, it guar-
antees the safe operation of the system by ensuring the power balance constraint, this
also reduces the reserve capacity needs of the microgrid which can led to an efficient
and economic operation. Results shows that for high RES penetration level the predic-
tive dispatch can achieve important economic benefits with mean cost different savings
around 5% of the predictive dispatch against the conventional dispatch. Moreover, the
outcomes obtained with simulated data indicate that in some particular scenarios the
MPC can produce savings up to 15%. Taking into account the costly operation of the
power systems, the economic savings obtained with the MPC strategy are significant.

5.4 Proposed predictive dispatch

The principal objective of the economic dispatch is to guarantee a safe and economical op-
eration of the micogrid. Given that the renewable energy sources impose uncertainty and
variability on their generation, it is very difficult to achieve an accurate forecast. Given that
the forcast errors leds to undesired operating contions in which the power balance error is
not zero and there exists scenarios in wich as long as the renewable energy sources grow the
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error becomes higher, also due that the renewable energy forecast error leads to undesired
mismatches in the power balance errors. It is important to remark tha the power balance
errors produced in the economic dispatch need to be solved by the secondary control or
frecuency control but if the amount of error is higher so that the secondary control cannot
handle it, then the microgrid system is at high risk of failures. To overcome that difficulty a
cascade control strategy proposed was designed and test by simulation.

As shown in the Fig. 5.6 the economic dispatch optimization is divided into two sub-
problems: i) First, the microgrid generation side must balance the energy demanded from
the load side performing a typical economic dispatch, in this case a model predictive control
is implemented to minimize the power balance error. ii) Second, due to the forecast error a
remaining quantity of power is still needed to be allocated, for that task an dynamic resource
alocation between the main grid an a batery storage system (BSS) is performed. The second
controller is explain in the next section.

Figure 5.6 Proposed predictive dispach block diagram

5.5 Power balance error dispatch

Given that the microgrid system in this case must operate as a single contolled unit, and no
participation in the power market is done, the main grid is not considered as a dispatchable
generation unit but as a extremly large storage system. This formulation let us think the
main grid and the batery storage system as the correction units to guarantee the equality
constrain between the power generated and the power consumed by the load.

Fig. 5.7 shows the control developed to accomplish the task of allocate the forecast errors
after the model predictive control. The power balance error dispatch control is a two stage
control that depends on the conditional shown in Fig. 5.7 which is state or level of the power
balance error, then if the power balance error is high which means that the system could
have stability problems the controller will switch to the MPC2 in order to absorve the power
balance error with the storage systems, on the other hand if the power balance error is low
so that, the system can handle easly witout incurring in safety problem the power balance
error will switch to the charging controller.

In other words, when the power balance error is greater or equal to some limit PBlimit

that corresponds to a safety condition, the conditional switchs to yes and the second model
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predictive control is performed in order to allocate economically the power balance between
the main grid and the batery storage system. Contrary if the power balance error is smaller
than the limit PBlimit, then the conditional output is set to no and a charging control which
intend to charge the batery with power from the main grid is done.

Figure 5.7 Two stages control

5.5.1 Mathematical formulation

The second model predictive control is a dynamic programing that has to allocate the power
balance error into the main grid and the batery storage system, it is modeled as an economic
dispatch problem similarly to the one presented before. The optimization procedure is pre-
sented in the following equations: e.q. (5.25) to e.q. (5.32). In this case the cost function e.q.
(5.25) represent a weigthed cost function to balance the use of the main grid or the battery.
The power balance equation correspond to the equality constraint e.q. (5.26) which guaran-
tee the principal task of this control. The rest of the equations corresponds to the dynamical
system and the technical constraints of both the main grid and the batery storage system.
For the main grid the dinamical systems is carried out by the difference equation e.q.(5.27),
on the other hand the battery system dynamic is modeled by the state of charge (SOC) of
the battery that gives the measurment of the capacity in percentage that the battery has at
any given point as e.q.(5.28) shows.

min
∆Pmg ,P ch,P dch

T∑
k=1

α(Pmg(k)2) + β(P ch(k)2 + P dch(k)2) (5.25)

s.t.

Pmg(k) + P ch(k)− P dch(k) = PBerror(k) (5.26)

Pmg(k + 1) = Pmg(k) + ∆Pmg (5.27)

SOC(k + 1) = SOC(k) + γ(P ch/P bss − P dch/P bss) (5.28)

P ch ≤ P bss (5.29)

P dch ≤ P bss (5.30)
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P ch ≥ 0 (5.31)

P dch ≥ 0 (5.32)

The result of the implementation of the second model predictive control is shown in the
Fig.5.8, this case asumes that no charging control is active. It can be appreciated how the
power balance error is equal to zero in the Fig.5.8a (the magenta line), in this scenario the
battery remains discharged after the 50 time samples and then only the main grid compensate
the difference off the power balance error (See Fig.5.8a). This result motivate the need of an
battery charge control.

Finally the charging control is define and follow the next rules stated in e.q. (5.33). First,
if the power balance error produced by the renewable energy sources forecast error is greater
or equal to the safety limit define as PBlimit and the the SOC of the baterry is less or equal
to the 80% the charging control decide to purchase the fixed amount of power P tr in order
to charge the battery. If the past rule is not satisfied then the system does not charge the
battery.

P ch =


P tr, if |PBerror| ≥ PBlimit

SOC(k) ≤ 0.8
0, otherwise

(5.33)

In this case it is clear how the the main grid delivers the power that the battery storage
system takes to charge the battery, for example after the 50 time samples (see Fig.5.9a). As
well as in the previous case the power balance error is going to zero but in this scenario the
battery system works the whole simulation for example in the time sample 180 aprox the
battery discharge in order to reduce the power balance error. Additionally, Fig.5.9b shows
the dynamic of the SOC and how it tends to reach the 0.8 % as the chargin control impose
that goal.
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(a) Main grid and battery storage system with power balance error

(b) Main grid and battery storage system dynamics

Figure 5.8 Controller 2 without charging control
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(a) Main grid and battery storage system with power balance error

(b) Main grid and battery storage system

Figure 5.9 Microgrid general block diagram
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Results

In the following section the simulation results of the whole economic dispatch purposed is
presented. As mentioned before the grid connected microgrid modeled in chapter three is
used to perform the different simulations. Each simulation correspond to one day operation
of 24 hours sampled at 5 minuts. The economic dispatch is solved using the Matlab software
in addition the Yalmip toolbox using the gurobi solver are in charge off the optimization
calculations. It is important to remark that the objective of the control purposed is to first
guarantee a safe operation of the system avoiding the power balance error due to the renew-
able energy sources forcast errors, second an economical solution of the microgrid operation
must be achieved while the integration of the renewable sources grows.

In table 6.1 is shown the principal characteristic of the different scenarios simulated. The
most important characteristics that are going to be compared and analyzed are the result of
the economic dispatch with and without forecast as well as the ramp rate limit constraint in
which a slow ramp rate is compared to a fast ramp rate. Whitin this procedure the conditions
in which the predictive controller is a sutable solution for the economic dispatch against to
the conventional optimizion are found.

6.1 Ramp rate influence

Table 6.2 shows the result of the different scenarios were the ramp rate limits has two slow
and cheapest unit and one expensive fast responsive unit. When the scenario corresponds
to a no forecast it means that the information of the future renewable energy source data
is known perfectly, on the other hand when the simulation scenario has forecast equal to
yes, it means that the future data of the renewable energy sources is product of a prediction
process.

It is important to notice that from the set of 5 days of simulation when the economical
benefit of the predictive strategy is 99% that means that the conventional solution is infeasible
because the optimization technique cannot found a generation combination that could handle
the variability of the renewable energy sources so the cost of operation is extremly high which
represent the safety and operational cost of this situation. This fact allows to said that the

29
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Simulation Day Forecast Gas generator Ram rate
(May 2014) capacity (MW)

1 5 no 2.5, 2.5, 2.5 slow
yes 2.5, 2.5, 2.5 slow

2 5 no 2.5, 2.5, 2.5 fast
yes 2.5, 2.5, 2.5 fast

3 8 no 2.5, 2.5, 2.5 slow
yes 2.5, 2.5, 2.5 slow

4 8 no 2.5, 2.5, 2.5 fast
yes 2.5, 2.5, 2.5 fast

5 22 no 2.5, 2.5, 2.5 slow
yes 2.5, 2.5, 2.5 slow

6 22 no 2.5, 2.5, 2.5 fast
yes 2.5, 2.5, 2.5 fast

7 28 no 2.5, 2.5, 2.5 slow
yes 2.5, 2.5, 2.5 slow

8 28 no 2.5, 2.5, 2.5 fast
yes 2.5, 2.5, 2.5 fast

9 29 no 2.5, 2.5, 2.5 slow
yes 2.5, 2.5, 2.5 slow

10 29 no 2.5, 2.5, 2.5 fast
yes 2.5, 2.5, 2.5 fast

Table 6.1 Complete system set of simulations

predictive strategie guarantees a safer operation given that in all the simulation scenarios
produce a viable solution for the entire simulation.

The results for the microgrid system with slow generation units show how when the
solution of the economic dispatch is solved with the conventional optimization technique it
is more costly than the predictive dispatch. Then if the microgrid configuration has slow
generation units combined with fast responsive unit always the predictive dispatch produce a
better performance against the conventional dispatch both economical and in terms of safety
operation.

Also from the same set of simulations, it is found that the predictive dispatch has better
results when there is no forecast, this is because the renewable energy source signal has
more variability and the model predictive control can decide a better solution to dispatch
those generators. When the scenario includes forecast, the smotheed signal produced by the
forecast method reduce significantly the variability of the original signal thus the predictive
dispach do not have many alternatives diferent from dispatch the smotheed forecasted signal
for the renewable energy signals.

Fig. 6.1 ilustrates the behavior of the economic dispatch when the renewable energy
sources has a installed capacity corresponding to 100% of penetration level, and there is no
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Sim Forecast MPC cost Conv cost MPC cost
(USD) (USD) benefit (%)

1 no 2.99E5 3.034E5 1.3
yes 2.992E5 3.019E5 0.9

3 no 3.041E5 4.2E6 99
yes 3.061E5 4.2E6 99

5 no 2.985E5 3.068E5 3
yes 3.003E5 3.070E5 2.2

7 no 2.970E5 6.7E6 99
yes 2.997E5 5.7E6 99

9 no 3.987E5 3.055E5 2.3
yes 3.004E5 3.034E5 1

Table 6.2 Result for slow ramp rate simulations

forecast. From Fig.6.1a it is clear that the predictive strategy anticipate and correct the
scheduling of the cheapest units (See unit 1 and unit 2 at 150 time samples) in order to lower
the use of the expensive unit. In addition in Fig.6.1b it is shown how the predictive dispatch
reduces the power from the renewable energy sources, so that the power balance becomes
zero (e.g. simulation from time sample 25 to 35) and the re-scheduling of the conventional
generators can be perfomed (e.g. simulation from time sample 150 to 180).

In this case given that there is no forecast error because it is asumed to be perfectly know,
the second controller do not has to compensate any imbalance of energy, then the main grid
and the battery remanins in active (See. Fig.??).

Table 6.3 shows the result of the different scenarios were the ramp rate limits has all fast
responsive units. It is important to notice that from the set of 5 days of simulation all of
them present the same behavior in which the performance of the conventional dispatch as
well as the predictive dispatch is the same.

The simulation result shows that there is no difference between the conventional and
the predictive dispatch because the fast response capacity of the gas units allows them to
follow even the high variations of the renewable energy sources at least cost. For example
in Fig.6.2a it is shown that the conventional generation dispatch solution is mostly the same
as the optimal solution found with the predictivbe strategy in the previous scenario (See
Fig.6.1a) and in this case is achieved with both control strategies.

In this simulation scenario, given the forecast error the second controll strategie is active
and the result is shown in Fig.6.4a and Fig.6.4b. It can be appreciated that for this simula-
tion the renewable energy sources express a very little variability, then the forecast error is
minumum but the goal target of eliminate the forecast error is accomplished.
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Sim Forecast MPC cost Conv cost MPC cost
(USD) (USD) benefit (%)

2 no 2.97E5 2.97E5 ≈ 0
yes 2.977E5 2.977E5 ≈ 0

4 no 2.993E5 2.993E5 ≈ 0
yes 2.992E5 2.992E5 ≈ 0

6 no 2.947E5 2.947E5 ≈ 0
yes 2.949E5 2.949E5 ≈ 0

8 no 2.935E5 2.935E5 ≈ 0
yes 2.935E5 2.935E5 ≈ 0

10 no 2.962E5 2.962E5 ≈ 0
yes 2.963E5 2.963E5 ≈ 0

Table 6.3 Result for fast ramp rate simulations
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(a) Gas generators result

(b) Renewable energy source result

Figure 6.1 May 8 simulation result without forecast
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(a) Gas generators result

(b) Renewable energy source result

Figure 6.2 May 8 simulation result with forecast power generation
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Figure 6.3 May 8 simulation result with forecast, load profile and power balance error
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(a) Main grid, battery storage system and power balance error

(b) battery storage system SOC result

Figure 6.4 May 8 simulation result with forecast of the storage systems
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Conclusions

This work present two ways to develop the economic dispatch problem of a microgrid in the
presence of renewable energy sources based on the conventional static optimization procedure
and a dynamic predictive strategy. Contrary to the idea of define the intermittent resources
as non-dispatchable units, the purposed method shows that it is desirable to control them and
treat as dispatchable units when the generation portafolio includes cheap and slow units. By
doing this, the MPC can handle the high variations on the renewable sources output without
using large amount of power from expensive generators. It is shown also, that for todays
power systems scenario there are no significant differences between both algorithms but as
the renewable sources penetration level increases the conventional dispatch have worst result
compered to the benchmark where no intermittent sources are consider. On the other hand
the MPC approach yields to lower the generation cost of the microgrid for all the penetration
levels and demonstrate that has a great potential for such systems.

For the forecast scenario the renewable energy sources signal produced by the forecast
methodology result in a smotheed signal similar to the renewable energy sources dispatched
by with the predictive strategy when there is no forecast. This means that indirectly the
forcasted signal is doing a pre-allocation of the renewable sources so that the predictive
dispatch do not have the chance to improve the dispatch of those units.

Furthermore three principal extensions to the analysis need to be consider in future work.
First, the study and development of hybrid storage systems which allows to improve the
dispatch of the renewable energy sources. The idea behind the predictive dispatch is to use
fast responsive storage systems e.g. ultra capacitors of for the second controller pourpused
and traditional storage systems as controlled dispatchable units that would be included in
the model predictive dispatch control. Second, it would be interesting to include control
capabilities in the consumption side which means demand response programs. In this way
the first study that can be performed is to include electric vehicles as dynamicaly responsive
load, this could be another alternative to deal with the power balance error. Finally, in future
grid connected microgrids it is expected to performed an active exchange with the main grid
not only for the forecast error balance but also for dispatch purposes. In this direction new
economic market must be designed to regulate those interactions between main grid and
different grid connected microgrids.

37



Chapter 8

Appendix

8.1 Appendix A: Variability of renewable resources

In order to quantify the variability effects of the RES, wind speed and global horizontal
irradiance were classified in terms of the magnitude and frequency of high ramp events. The
comparison is made between a 5 minute and 1 hour sampling time.

8.1.1 Real Data

First, a set of empirical data from different national renewable energy laboratory (NREL)
stations located over the United States were selected (see Figure 8.1). The information col-
lected corresponds to wind speed measured at 100 m above the ground and global horizontal
irradiance. Because the wind speeds are not always measured at 100 m in all the stations,
e.q. (8.1) serves to scale all the wind speed values for the equivalent heights. U and Ur
are the desired and reference wind speed (m/s), z and zr (m) are the desired and reference
height and α corresponds to a constant that is typically defined equal to 1/7. A wind turbine
Vestas V90-3.0MW was used as reference for the wind generator and for the photovoltaic
field a simple calculation based on the PV field area gets the desired rated power.

U = Ur(z/zr)
α (8.1)

Figure 8.1 Different NREL stations located over the United States
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• Arizona station: Comparing the data corresponding to the wind speed at a 5 minute
vs 1 hour sampling interval, it can be said that the hourly measurements filter the data,
smoothing out most of the wind speed peaks that happen in the intra-hour time as it is
shown in Figure 8.2. This situation implies that the power output of the wind generator
will differ considerably between both sampling time selected since the power generation
is a quadratic function of the wind speed. Thus the dispatched power scheduled based
on 1 hour sampling data will produce a significant error during the intra-hour period.

The difference in ramp events between the 5 minute and 1 hour sampling intervals
are evident. Figure 8.2 shows that the ramp events of the 5 min sampled data are
much higher than the ramp events of the 1 hour sampled data, specially for the first
eight months. For example, in the whole year, the maximum ramp events greater or
equal to 30% from the 1 hour data appear only 3 times in one day, in contrast to the
5 minute data those ramping events in June happen 20 times in one day. If most of
the ramp events greater than 30%, which can be considered dangerous for the power
system operation happen during the intra-hour period, the system operated at a 1 hour
sampling interval has to overcome impact of those event only with the reserve capacity.
That carries a high economical and operational risk.

(a) 5 min sampled data (b) 1 hour sampled data

Figure 8.2 Ramp rate wind speed events of Arizona station

Figure 8.3 shows the global horizontal irradiance ramp events with significant differences
between the 5 minute and 1 hour sampling time. Within the 1 hour data the same
pattern can be appreciated for all the months having an average of 20% of ramp rate,
additionally the ramp events never cross 50% of the installed capacity. In contrast, the
5 minute data shows different patterns of the ramping events by months and present a
high variation with ramp events from 40% up to 70% of the installed capacity mainly
during the summer. The numerical results show that the maximum ramp events greater
than 30% in one day with the 1 hour data occur at most 9 times in August, while in
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the 5 minute data there are found 33 times in July. The high variability of the global
horizontal irradiance when it is sampled at 5 minutes suggest that it is important to
consider the dispatch of the PV generation at this sampling rate in order to handle
those high ramp events that are committed with the 1 hour sampled data.

(a) 5 min sampled data (b) 1 hour sampled data

Figure 8.3 Ramp rate global horizontal irradiance events of Arizona station

To sum up, the difference between both sampling time data, is the fact that the power
delivered by the RES generators at 5 minute basis are greater than the 1 hour, so that
the dispatch of these generators always will have an offset which will impose difficulties to
determine the reserve capacity and the dispatch of other generators. An economic dispatch
performed every hour will suffer of security problems given the difficulty to guarantee the
power balance during the intra-hour period.

8.1.2 Simulated Data

Given the difficulty to obtain real data from the renewable sources at different locations so as
to perform the analysis of the variability of wind speed and solar irradiance, the set of sim-
ulated data developed by the NREL organization was used. The NREL creates a simulated
data on wind speed and solar irradiance as part of the study of renewable source integration
for the United States. The wind speed data were made based on weather information and
numerical weather predictions and in terms of PV production the irradiance was generated
using a sub-hour irradiance algorithm that estimates the irradiance based on satellite images
and calculate, the PV production from a field of 40 MW/km2.

For this variability study, five different locations on the west coast, including the state
of California, Colorado, Utah, Texas, and Oregon were used to analyze the characteristic of
variability of the renewable sources e.g. wind and solar. The wind generator used to calculate
the power output from wind source was a Vestas V90-3.0MW wind turbine. The PV field
had a rated power varying from 52 MW at California, up to 118 MW in Utah.



Chapter 8. Appendix 41

• California:

According to the frequency and magnitude of the wind speed ramping events the results
presented in Figure 8.4 shows that there exist some outliers of very high ramp events
in the 5 minute case which are not present in the 1 hour simulations, but contrary
to the previous real data results, with the simulated data the ramp rate events are
considerably greater in the 1 hour scenario.

The results presented in Figure 8.4, illustrate that the behavior of the wind speed ramp-
ing events in the simulated data scenario are not significant. Given the low variability
of the wind speed here, it can be said that the economic dispatch are able to handle
easily the variations during the intra-hour period. Then the dispatch performed with
the 5 minute sampling interval is not necessary.

(a) 5 min sampled data (b) 1 hour sampled data

Figure 8.4 Wind speed ramp rate results, for California.

In terms of PV production variability (which is a consequence of the irradiance vari-
ability) the data obtained from the California location shows that the ramp rate events
with the 5 minute case is very low in terms of magnitude most of the year. Only the
months of March and April have some significant ramp events greater than 30% during
the whole month. In contrast, in the months of August and September the variability
of the PV production stayed below 20% most of the time (See Figure 8.5).

Comparing the maximum ramp events that happen in one day of 5 minutes and 1 hour
data it can be said that the 5 minute results overcome the one hour scenario. Taking
into account that for some specific months like April, the high ramp events grater than
30% are four times the ones happen in the 1 hour data and its unpredictable nature,
the 5 minute sampling interval can be considered for the economic dispatch in order to
prevent security concerns.
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(a) 5 min sampled data (b) 1 hour sampled data

Figure 8.5 PV field generation ramp rate results, for California

The fact that the wind speed simulated data ramping events are greater for the 1 hour
scenario, allows to say that if the wind speeds are higher it is difficult to change abruptly its
value in short periods of time (e.g. minutes), so the variance in the intra-hour is negligible
for security and dispatch purposes. Additionally, the poor result of the maximum ramp
events occurrences in one day especially for the 5 minute case, confirm that the simulated
data does not contribute with significant variability at that sampling rate, contrary to the
results found in the experimental data where the variability of the intra-hour period is high.
That characteristic allows to stated that the economic dispatch of microgrids that have only
wind resources and conventional generation should consider adopting the 5 minute sampling
interval only for locations with similar behavior as the one of the NREL stations.

In terms of the global horizontal irradiance variability the result shows more similarities
than differences when comparing the empirical data with the simulated modeled information.
In both scenarios the irradiance behavior presents some important variability when the data
is being sampled at 5 minutes. Even if the radiation patterns seem to be much more constant
than the wind speed, there are days in which the number of ramping events greater that the
30% of the installed capacity rose 30 times in one day for the most variable months. Those
ramping events during the intra-hour period can lead to power balance problems as well as
economic inefficiencies, so that, it would be desirable to include the 5 minute sampling time
in the economic dispatch of microgrids with PV generation at high penetration levels.

The conclusions of the wind speed and the irradiance (or PV field power production)
analyzed can be summarized as follows:

• The empirical data taken from the NREL measurement stations provide a variable
behavior of the resources, but a low quantity of them, especially the wind speed. This
allows to conclude that even if the pattern of the data is interesting for the economic
dispatch study, those stations are poor locations to install renewable energy sources.

• Simulated data presents the contrary situation to the data from NREL stations, the
different locations show much more amount of renewable sources during the whole year,
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but the variability of the wind speed is considerably lower, so they are good examples
to install renewable sources but the ramping events do not happen frequently.

8.2 Appendix B: Renewable energy sources forecast

When the economic dispatch deals with renewable energy sources one of the most important
task is the forecast of the data. As it was mentioned before the solar irradiance and the wind
speed are climate variables which have an unpredictable behavior, characterize with high
variability. Fig.8.6 and Fig.8.7 shows a typical behavior of both solar power and wind speed
data, the solar power data has a more stable pattern along the different days. Contrary the
wind speed data shows different days where from one day to the other the difference in the
availability can be more than the 80% which means that the consecutive days do not have
always the same availability.

Figure 8.6 Solar power data

Figure 8.7 Wind speed data

8.2.1 Forecast metodology

Given that the forecast of the solar and wind data produce a very poor results whit forecast fit
of the validate data less than 30%, a different metodology was purposed. Taking into account
that the wheater data has diferent periodic patterns such as weekly, dayly and for example
in the case of the solar irradiance hourly correlation with previous days, the original wind
speed and data power pass through a signal process in order to performe the corresponding
forecast.
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To ilustrate the process in Fig.8.8 is the block diagram of the forecast procedure developed
in this project. First the original signal e.g wind speed pass through a filter stage were two
differnt filter signal result from the process. The idea behind filter the original data is to
smoothing the signal in order to capture the low frecuency dynamic of the signal which has
more periodic patterns and is easier to model. The sampling frecuency is determined equal to
the sampling frecuency of the economic dispatch which is 5 minuts, the filters were designed
using low pass FIR filters with hamming window in the filter design tool box of matlab.

Figure 8.8 Porpuse forecast metodology block diagram

Then, each of the two filter signals need to be forecasted, then using the identification tool
box the matlab different polynomial process were tested. After develop several simulations
the model selected for the different filtered signal is an autoregresive model (ARX) using 72
coefficients. Each signal produces an fit model that ranges between 60% to 80%. Finally in
order to produce the forecast of the original signal a signal reconstruction is made. In the
signal reconstruction proces the output signal is composed by merge the first 24 steps of one
filter data with the rest of the other signal data. By doing this procedure the forecast of the
signal corresponds to a smotheed signal of the original data but achieve a better performance
from the prediction of the original data.
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