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Abstract
This thesis is essentially an introduction to the study of Hecke operators acting on
the equivariant K-theory of the classifying space for proper actions of Bianchi groups.

The document is divided in two parts. The first part gives definitions and gen-
eralities on proper actions, Bredon (co)homology, K-theory, and Hecke operators;
these are given always thinking in the application to Bianchi groups, which are dis-
crete groups of matrices. After this, we define a Hecke operator in K-theory using a
decomposition by conjugacy classes of elements of finite order.

In the second part, we describe the algebraic structure of Bianchi groups, that is,
their decomposition as amalgamated products, including the explicit decompositions
for Euclidean Bianchi groups. We focus on the group Γ1 = PSL2(Z[i]), for which
we compute group cohomology, Bredon cohomology, and equivariant K-theory of
the classifying space for proper actions. Then, given a prime in Z[i], we define
an associated congruence subgroup of Γ1 in order to compute a Hecke operator in
K∗Γ1

(EΓ1) factoring through the K-theory of this subgroup. We conclude with explicit
calculations for p = 1 + i.
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1 Introduction
The study of Bianchi groups began, personally, as a natural next step from the study
of the modular group PSL2(Z). The theory of Hecke operators corresponding to mod-
ular forms and cohomology of congruence subgroups of the modular group has been
widely studied, and also, has been generalized to other groups and different contexts.

The Bianchi group associated with a positive square-free integer d is defined as

Γd = PSL2(Od) = SL2(Od) / {± Id}

where Od is the ring of integers of the imaginary quadratic extension Q(
√
−d). There

are several interesting, important arithmetic properties of Bianchi groups, and they
have gained a lot of interest in the last decades. For instance, one of the works that
gave direction to this thesis is an article by Mesland and Şengün, where they study
Hecke operators in the context of KK-theory and K-homology.

In this document, we study the classifying space for proper actions and the
equivariant K-theory associated to Bianchi groups, specifically to the group Γ1. A
way to describe this space is considering the action of PSL2(C) of the hyperbolic
3-space, which can be viewed as quaternions, then the classifying space can be seen
as a subspace of it. This action also leads to some important properties of Bianchi
groups, such as their decomposition as amalgamated products.

Then, following some of the geometrical interpretations of Hecke operators, we
can define a Hecke operator in the groups K∗Γd(EΓd). This is done by factoring the
operator as a composition of restriction and corestriction, which means that we need
to define morphisms going up and down between the K-theory associated to Γd and
to a particular subgroup. All being well, these operators will have, or lead to, some
arithmetic, algebraic, and/or geometric properties associated to the groups, as they
already do in the context of modular forms and group cohomology.
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Part I
K-theory and Hecke operators

We begin with an introduction to spectral sequences, where the Mayer-Vietoris spec-
tral sequence is defined. Then, we define proper actions, Bredon (co)homology, K-
theory and Hecke operators. The main core of this part is the interpretation of Hecke
operators that leads to the corresponding definition in K-theory.

2 Spectral Sequences
Spectral sequences are algebraic objects used mostly in algebraic topology. We will
describe briefly what this objects are and some of their applications. For a complete
introduction and development of this subject see [20].

2.1 Basic notions

A differential bigraded module over a ring R, is a collection of R-modules,
{Ep,q}p,q∈Z, together with an R-linear mapping d : E∗,∗ → E∗,∗, of bidegree (s, 1−s),
or (−s, s − 1), for some s ∈ Z, such that d ◦ d = 0. Sometimes we use the same
indices in d to specify the particular domain. indexes The mapping d is called the
differential. The bidegree (m,n) means that d goes from Ep,q to Ep+m,q+n, for each
pair p, q. With this, we can take the homology of a differential bigraded module with
bidegree (s, 1− s); we define it as

Hp,q(E∗,∗, d) = Ker(d : Ep,q → Ep+s,q+1−s) / Im(d : Ep−s,q−1+s → Ep,q).

This gives another bigraded module {Hp,q(E∗,∗, d)}p,q∈Z. The same can be done with
a differential bigraded module of bidegree (−s, s− 1).

Now we can give the definition.
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Definition 2.1. A spectral sequence is a collection of differential bigraded R-
modules {E∗,∗r }∞r=1, such that the differentials are either all of bidegree (−r, r − 1)
(for homological type) or all of bidegree (r, 1 − r) (for cohomological type) and, for
all p, q, r, there is an isomorphism Ep,q

r+1
∼= Hp,q(E∗,∗r , dr). The module E∗,∗r is called

the Er-term of the spectral sequence.

It is important to mention that E∗,∗r and dr determine the Ep,q
r+1, but not dr+1, so

one term of the spectral sequence is not enough to describe it all.

There is another way to describe an spectral sequence. Let {Ep,q
0 }p,q∈Z be a family

of R-modules. Suppose that for each p, q ∈ Z there is a tower of submodules

Bp,q
0 ⊂ Bp,q

1 ⊂ · · · ⊂ Bp,q
n ⊂ · · · ⊂ Zp,q

n ⊂ · · · ⊂ Zp,q
1 ⊂ Zp,q

0 ⊂ Ep,q
0

together with short exact sequences

0 −→ Zp,q
n+1/B

p,q
n −→ Zp,q

n /Bp,q
n −→ Bp+n+1,q−n

n+1 /Bp+n+1,q−n
n −→ 0.

These define a spectral sequence by setting Ep,q
n+1 = Zp,q

n /Bp,q
n and

dp,qn : Ep,q
n = Zp,q

n−1/B
p,q
n−1 −→ Bp+n,q+1−n

n /Bp+n,q+1−n
n−1 ⊂ Ep+n,q+1−n

n ,

taken from the exact sequences. See [20] for the complete explanation.

A spectral sequence is said to collapse at the N-th term if dr = 0 for r ≥ N .
This would imply that E∗,∗r = E∗,∗r+1, then we define the limit term, E∞, as E∗,∗N .

Let F ∗ be a filtration on an R-module M , that is, a family of submodules
{F pM}p∈Z, which could be decreasing, so F p+1M ⊂ F pM , or increasing, so F pM ⊂
F p+1M , such that ⋂

p∈Z

F pM = 0 and
⋃
p∈Z

F pM = M.

Now, define its associated graded module, E∗0(M), as

Ep
0(M,F ) =

{
F pM/F p+1M, for F ∗ decreasing;

F pM/F p−1M, for F ∗ increasing.

Also, if we have a graded R-module M∗, in order to examine its filtration on each
degree, we define F pMk = F pM∗ ∩Mk and the associated graded module as

Ep,q
0 (M∗, F ) =

{
F pMp+q/F p+1Mp+q, for F ∗ decreasing;

F pMp+q/F p−1Mp+q, for F ∗ increasing.
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Using these notions, we say that a spectral sequence {E∗,∗r , dr}r converges to a
graded R-module M∗ if there is a filtration F ∗ on M∗ such that, for each p, q,

Ep,q
∞
∼= Ep,q

0 (M∗, F ).

If M has a differential structure, then we can construct a spectral sequence from
it. We call an R-module M a filtered differential graded module if

• M is a direct sum of submodules, M =
⊕∞

n=0M
n;

• there is an R-linear mapping, d : M →M , of degree 1 (so d : Mn →Mn+1) or
degree −1 (so d : Mn →Mn−1) satisfying d ◦ d = 0; and

• M has a filtration F ∗ and the differential d respects the filtration, which means
that d : F pM → F pM .

Then, we have the next theorem.

Theorem 2.2. Each filtered differential graded module (M,d, F ∗) determines a spec-
tral sequence, {E∗,∗r , dr}∞r=1, with dr of bidegree (r, 1− r) and

Ep,q
1
∼= Hp+q(F pM/F p+1M).

If we suppose further that the filtration is bounded, that is, for each dimension n,
there are values s = s(n) and t = t(n), so that

0 = F sMn ⊂ F s−1Mn ⊂ · · · ⊂ F t+1Mn ⊂ F tMn = Mn,

then the spectral sequence converges to H(M,d), that is,

Ep,q
∞
∼= F pHp+q(M,d)/F p+1Hp+q(M,d).

For a proof, see [20].

In general, there are much more different (weaker, stronger) algebraic structures
on which spectral sequences can be used, such as taking R to be a graded ring, or
M to be a graded vector space, a graded algebra, or simply a graded group (a direct
sum of groups).

Spectral sequences are objects that usually are given with the purpose of discov-
ering or describing some graded object M , although arriving to M may be impossible
without enough information. One of the main obstacles could be the so-called ex-
tension problem. We will discuss this in the next paragraphs.
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Suppose that there is a spectral sequence which converges to a graded object
M and that we already know what is the limit term E∞, but without any relation
between the Ep,q

∞ . The convergence guarantees that there is a (decreasing) filtration
F ∗ on M for which, for all p, q,

Ep,q
∞
∼= F pMp+q/F p+1Mp+q.

This is the same as saying that there are short exact sequences

0 −→ F p+1Mp+q −→ F pMp+q −→ Ep,q
∞ −→ 0 (1)

for any p, q.
We cannot say much more without assuming something else.

For the case when M is a graded finite vector space, it can be recovered taking
the direct sum, for any n,

Mn ∼=
⊕
p∈Z

F pMn/F p+1Mn ∼=
⊕
p+q=n

Ep,q
∞ ,

since these vector spaces are determined up to isomorphism just with their dimension.

Now, going back to the general case, suppose that for some n0, we have Ep,q
∞ = 0

whenever p + q = n0, that is, the (anti-)diagonal is zero. Then, from the exact
sequences (1) we can conclude that F p+1Mn0 = F pMn0 for all p, and then clearly
Mn0 = 0.

Now, suppose that Ep,q
∞ is not zero only for one pair p0, q0. We have

0 = · · · = F p0+2Mn0 = F p0+1Mn0 ⊂ F p0Mn0 = F p0−1Mn0 = · · · = Mn0

but also we have an exact sequence

0 −→ F p0+1Mn0 −→ F p0Mn0 −→ Ep0,q0
∞ −→ 0,

so we obtain the isomorphism
Mn0 ∼= Ep0,q0

∞ .

Following with the idea, suppose that Ep,q
∞ is not zero only for two pairs p0, q0

and p1, q1, with p0 > p1. Then,

0 = · · · = F p0+1Mn0 ⊂ F p0Mn0 = · · · = F p1+1Mn0 ⊂ F p1Mn0 = · · · = Mn0 ,
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so the exact sequences

0→ F p1+1Mn0 → F p1Mn0 → Ep1,q1
∞ → 0, 0→ F p0+1Mn0 → F p0Mn0 → Ep0,q0

∞ → 0

imply we have the exact sequence

0 −→ Ep0,q0
∞ −→Mn0 −→ Ep1,q1

∞ −→ 0

and the isomorphism Ep1,q1
∞
∼= Mn0/Ep0,q0

∞ . With this result, Mn0 is not determined
yet, thus it depends on each particular case.

We see that, after this, with more than two non zero terms in a diagonal n, the
object Mn is hard to describe.

In the next section we will discuss a spectral sequence that will be useful to
compute the cohomology of the Bianchi group Γ1.

2.2 The Mayer–Vietoris spectral sequence

The following spectral sequence obtains its name (although it is not standard) be-
cause it may be considered as the generalization of the Mayer–Vietoris long exact
sequence relating the cohomology groups of two spaces and their union by a sub-
space. For a little more detailed construction and for alternative constructions see
[26] and [29]. The spectral sequence is constructed in [29] for homology groups; here
we will use the same method to obtain cohomology groups.

We will require a topological space that is a simplicial complex. These are the
∆-complexes whose simplices are uniquely determined by their vertices; this is the
same as saying that each n-simplex has n + 1 different vertices, and that no other
n-simplex has this same set of vertices. Anyway, we will not use this concepts in the
construction of the spectral sequence (but the assumption should be necessary for
everything in the background to work well).

Let X be a simplicial complex and suppose there is a covering U = {Ui}i∈I for
X, where I is an ordered set. We define the nerve of U as the family N(U) of finite
subsets σ ⊂ I for which the subspace Xσ :=

⋂
i∈σ Ui is not empty. (N(U) is obtained

to be an abstract simplicial complex.)
For each k ≥ 0, take Nk(U) as the set of the σ ∈ N(U) of order k and define the

(co)chain complex

Ck =
⊕

σ∈Nk(U)

C∗(Xσ)
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where C∗(−) denotes the cellular cochain complex (see [13] for a definition). Now,
for each 0 ≤ i ≤ k there is a boundary map ∂i : Nk(U)→ Nk−1(U), given by

∂iσ = ∂i{j0 < · · · < jk} = {j0 < · · · < ĵi < · · · < jk},

which gives the inclusions Xσ ↪→ X∂iσ that induce morphisms ∂i : C∗(X∂iσ) →
C∗(Xσ). Then, taking ∂ =

∑k
i=0(−1)i∂i and extending linearly over the direct sum

we obtain a chain map ∂ : Ck−1 → Ck, k ≥ 1.

With this, define

Ep,q
1 = Hq(C

p) =
⊕

σ∈Np(U)

Hq(Xσ),

together with the differentials d : Ep,q
1 → Ep+1,q

1 induced from ∂. Here, Hq(C
p)

denotes the homology on the q-th dimension of the cochain complex Cp.
Note that if we restrict to the image of d for some σ ∈ Np(U), the map

p⊕
i=0

Hq(X∂iσ)→ Hq(Xσ)

has to be the direct sum of the induced morphisms in cohomology from the inclusions
Xσ ↪→ X∂iσ.

Then we can obtain the Ep,q
2 , and it can be shown that E∗,∗r converges to H∗(X).

This is called the Mayer-Vietoris spectral sequence for X associated to the cov-
ering U .

An example for this spectral sequence will be presented in Section 10.1; it is the
computation of the group cohomology H∗(Γ1;Z), where Γ1 is a Bianchi group.

3 Proper actions
We first review the definitions given in [4]; these will serve only as useful illustrations,
since later in the thesis we will use the definitions given by Lück ([16], [17]), which
are more oriented to the context of discrete groups.

Let G be a topological group. A space X with a continuous action G×X → X
is called a G-space. A G-map between two G-spaces X and Y is a continuous map
f : X → Y such that g · f(x) = f(g · x), for all g ∈ G, x ∈ X, which means that it
is G-equivariant.
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Definitions from Baum–Connes–Higson

Let G be a second countable, locally compact, Hausdorff topological group and X a
G-space. Assume X and G\X are metrizable.

Definition 3.1. For a G-space X, we say that the action is proper if for all p ∈ X
there exist an open neighbourhood U of p, a compact subgroup H of G, and a map ρ
such that

• for all g ∈ G and u ∈ U , g · u ∈ U ; and

• ρ : U → G/H is a G-map.

For example, let H be a compact subgroup of G and let S be an H-space. Then
G×H S = (G× S)/ ∼, where (gh, s) ∼ (g, h · s), has a natural G-action. This space
is sometimes known as the induction of S and it is a proper G-space.

Two G-maps f0, f1 : X → Y are called G-homotopic if they are homotopic
through G-maps. This means that there exists a continuous map f : X× [0, 1]→ Y ,
where each map f(·, t) : X → Y is a G-map for every t ∈ [0, 1], with f(·, 0) = f0 and
f(·, 1) = f1.

Definition 3.2. A universal example for proper actions of G, denoted EG,
is a proper G-space that satisfies the following universality property:

• If X is any proper G-space, there exists a G-map f : X → EG which is unique
up to G-homotopy.

From the definition, it is clear that EG is unique up to G-homotopy.
There are a couple of explicit constructions for this space, depending on the

structure of the group, but a universal example for proper actions always exists.
The following is a very useful characterization for this space.

Proposition 3.3. A proper G-space Y is universal if and only if the following hold:

• If H is any compact subgroup of G, then there exists y ∈ Y with h y = y for
all h ∈ H.

• Considering Y ×Y as a G-space with the diagonal action g(y0, y1) = (gy0, gy1),
the two projections ρ0, ρ1 : Y × Y → Y are G-homotopic.

See [4] for proofs, examples, and more details.
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Definitions from Lück

Let G be a locally compact, Hausdorff topological group. We define a G-CW-
complex X as a G-space together with a G-invariant filtration

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂
⋃
n≥1

Xn = X,

where X has the colimit topology with respect to the filtration (which means that
a subset U ⊂ X is closed if and only if U ∩Xn is closed in Xn for all n), and Xn is
obtained from a pushout

⊔
i∈In

G/Hi × Sn−1 Xn−1

⊔
i∈In

G/Hi × Dn Xn

⊔
i∈In q

n
i

⊔
i∈In Q

n
i

attaching equivariant n-cells. The space Xn is called the n-skeleton.

Recall that a map f : X → Y is called proper if the preimage of every compact
set in Y is compact in X; or, equivalently, if f is closed and f−1(y) is compact for
any y ∈ Y .

From [16] and [17] we conclude the following.

Theorem 3.4. The following three conditions are equivalent definitions for a proper
G-CW-complex X:

(i) For each pair of points x, y ∈ X there are open neighbourhoods Vx and Vy such
that the closure of {g ∈ G : (gVx) ∩ Vy 6= ∅} in G is compact.

(ii) The map θ : G×X → X ×X, (g, x) 7→ (x, gx), is proper.

(iii) All the isotropy groups Gx, x ∈ X, are compact in G.

Definition (iii) will be the most convenient for us to use.

Now, the classifying space for proper actions EG is defined the same as
we previously did for a universal example for proper actions. Here, in the case of
CW -complexes, there is a better homotopy characterization for EG, as stated below.
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Theorem 3.5. A G-CW-complex X is a model for EG if and only if all its isotropy
groups are compact in G and, for each H ⊂ G compact, the H-fixed point set XH is
weakly contractible.

4 Bredon cohomology
We define Bredon homology and cohomology as in [25].

Let G be a group with a family of subgroups F, closed under conjugation and
finite intersections. Define the orbit category OFG as the category whose objects
are the sets G/H, for H ∈ F, and morphisms are G-maps fg : G/H → G/K, de-
termined by an element gK ∈ G/K such that g−1Hg ⊂ K, so that it sends the coset
H to the coset gK.

Denote Ab for the category of abelian groups, or Z-modules. A Bredon module
is defined to be a functor M : OFG → Ab, could be covariant or contravariant. A
morphism Ψ : M → N between Bredon modules is a natural transformation; this
means that for each H ∈ F there is a morphism of abelian groups

Ψ(G/H) : M(G/H)→ N(G/H),

and these commute with the images by M and N of any morphism in OFG.

If M and N are both covariant, or contravariant, the group structure in each
of the Hom(M(G/H), N(G/H)) induces an abelian group structure in the set of
natural transformations mor(M,N).

Also, if M is contravariant and N is covariant, we define an abelian group

M ⊗F N =
⊕
H∈F

M(G/H)⊗Z N(G/H)

/
∼

where for each f : G/H → G/K, m ∈ M(G/K), and n ∈ N(G/H), we identify
M(f)(m)⊗ n with m⊗N(f)(n).

Let X be a G-CW-complex. Its cellular chain complex is denoted by C∗(X). For
each n, we can define a contravariant Bredon module given by

Cn(X) : G/H 7−→ Cn(XH),
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where XH is the subspace fixed by the subgroup H. Let {δα} be the n-cells of X, then
we know that Cn(XH) ∼=

⊕
α Z[δHα ], where δHα means δα, if the cell is fixed by H, or

empty, in which case it does not count in the sum. For a morphism fg : G/H → G/K
we have

fg := Cn(X)(fg) : Cn(XK)→ Cn(XH), δKα 7−→ g · δKα =: δHαg .

There is a boundary map ∂ : Cn(XH) → Cn−1(XH) for each H ∈ F, so this
induces a boundary map

∂ : Cn(X) −→ Cn−1(X).

This is well defined, since the commutativity of the diagram

Cn(XK) Cn−1(XK)

Cn(XH) Cn−1(XH)

∂

fg fg

∂

is obtained from the commutativity of the G-action in the cells of X and the bound-
ary map in the cellular chain complex.

Let M and N be contravariant and covariant Bredon modules, respectively. We
have chain complexes

mor(C∗(X),M) and C∗(X)⊗F N,

and we define the Bredon cohomology and homology groups with coefficients in
M and N , respectively, as

Hn
G(X;M) = Hn(mor(C∗(X),M))

and
HG
n (X;N) = Hn(C∗(X)⊗F N).

Now, let K ∈ F. We define the standard projective contravariant Bredon module
PK given as

PK(G/H) = Z[mor(G/H,G/K)], for H ∈ F,

11



and for a morphism f : G/H1 → G/H2, the morphism PK(f) : PK(G/H2) →
PK(G/H1) is the linear extension of pre-composing with f .

For this module and any other contravariant module M , we have the isomorphism
of abelian groups

evK : mor(PK ,M) −→M(G/K), ϕ 7→ evK(ϕ) = ϕ(G/K)(1).

The inverse homomorphism is the one that sends an x ∈ M(G/K) to the natural
transformation given, in each G/H, as the linear extension of the map

mor(G/H,G/K) −→M(G/H), λ 7→M(λ)(x).

This isomorphism, mor(PK ,M) ∼= M(G/K), may be interpreted as the Yoneda
Lemma in category theory.

In a similar manner, if N is a covariant Bredon module, we will have an iso-
morphism

PK ⊗F N ∼= N(G/K).

See [22] for more information on these isomorphisms.

Now, as before, let {δα} be the n-cells of X, and let {eβ} be a set of G-
representatives of those n-cells; we know that

Cn(XH) ∼=
⊕
α

Z[δHα ] ∼=
⊕
β

Z[(G · eβ)H ].

Besides, there is a geβ fixed by H if and only if that g is such that g−1Hg ⊂ Sβ,
where Sβ is the stabilizer of the cell eβ, and the g’s are taken as representatives in
G/Sβ, so we have a bijective correspondence

(G · eβ)H = mor(G/H,G/Sβ).

Therefore, we obtain

Cn(XH) ∼=
⊕
β

Z[mor(G/H,G/Sβ)] =
⊕
β

PSβ(G/H),

so, as Bredon modules, Cn(X) ∼=
⊕

β PSβ .

With Bredon modules, in the same way as with Z-modules, the morphisms from
a direct sum to another module is the direct product of the sets of morphisms from
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each in the direct sum to the other module. Then, we have an isomorphism of chain
complexes

morG(C∗(X),M) ∼=
∏
β∗

mor(PSβ∗ ,M) ∼=
∏
β∗

M(G/Sβ∗),

where {β∗} indexes the G-representatives of ∗-cells. This becomes a direct sum
assuming there are finite representatives for the cells.

4.1 Coefficients in the representation ring

We will use the contravariant Bredon module R sending G/H to R(H), the represen-
tation ring of the subgroup H. The morphisms are obtained from the composition
of restriction and the isomorphism given by conjugation: for any fg : G/H → G/L
the morphism R(fg) is the composition

R(L)
ResLg−1Hg−−−−−−−→ R(g−1Hg)

∼=−→ R(H).

Then, as seen before, we have the isomorphism

morG(Cn(X),R) ∼=
⊕
α

R(Sα),

given that there are finite orbit representatives of n-cells. Here, the differential is
given by restriction of representations, from the stabilizer of an n-cell to the stabilizer
of the corresponding (n+ 1)-cell that contains it.

Similarly, we can consider R as a covariant Bredon module, setting R(fg) to be
the composition

R(H)
∼=−→ R(g−1Hg)

IndLg−1Hg−−−−−−−→ R(L).

Then we have the chain complex

Cn(X)⊗F R ∼=
⊕
α

R(Sα),

where the differential is given by induction of representations.

The following is an important result from [22] regarding conjugacy classes of a
group and the 0-th Bredon homology group associated. We will use it as a check for
the computations to the Hecke operator.
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Theorem 4.1. Let G be any group and let FC(G) be the set of conjugacy classes of
elements of finite order in G. There is an isomorphism

HG
0 (EG;R)⊗Z C ∼= C[FC(G)].

In particular, if HG
0 (EG;R) is a free abelian group, its rank is equal to the number

of conjugacy classes of elements of finite order in G.

5 K-theory
First we recall the basic, classical definitions needed for K-theory, which are given
for compact, Hausdorff spaces. Then, we give the definitions developed by Lück and
Oliver for finite proper G-CW-complexes, with G discrete, the ones we are interested
in. Everything is done over the complex numbers.

Let X be a topological space (compact, Hausdorff). A vector bundle over X
is a space E together with a map p : E → X such that for any x ∈ X

• p−1(x) = Ex has a vector space structure over C, compatible with the topology
given from E, and

• there is a neighbourhood U ⊂ X of x for which the preimage p−1(U) is iso-
morphic to the space Cn × U , for some integer n, where p−1(y) = Ey, for any
y ∈ U , is identified with Cn × {y} as an isomorphism of vector spaces.

The second condition is known as local triviality.
Here, X is called the base space, E the total space, p the projection map,

and, for each x ∈ X, Ex is called the fibre over x. We may refer to a vector bundle
using both E and p or just with the total space E. If the number n is constant over
all X we say that E is a vector bundle of dimension n.

Given two vector bundles p : E → X and q : F → X. A continuous map
ϕ : E → F is said to be a homomorphism of vector bundles if

• q ◦ ϕ = p, and

• for any x ∈ X, ϕ : Ex → Fx is a linear transformation.
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The map ϕ is an isomorphism if it is a homeomorphism, in which case we write
simply E ∼= F . A vector bundle is called trivial bundle if it is globally trivial, i.e.,
it is isomorphic to the vector bundle Cn ×X, for some n.

If there is a continuous map f : Y → X and a vector bundle p : E → X, there is
a pullback vector bundle f ∗(p) : f ∗(E)→ Y , where

f ∗(E) = {(e, y) ∈ E × Y : p(e) = f(y)}

and f ∗(p) is the projection to Y . Note that if f is an inclusion, the pullback is the
same as the restriction of p to the subspace Y ; this is usually denoted E|Y or E|Y .

Having two vector bundles E and F over a space X, we can define the direct
sum E ⊕ F and the tensor product E ⊗ F , defining each fibre to be the direct sum
and tensor product of the fibres, respectively. This operations are commutative, and
the tensor product distributes over direct sum, modulo isomorphism. For detailed
demonstrations see [2].

There is a well known construction of an abelian group G up from an abelian
semigroup A, named after Grothendieck. The simplest way to describe this group G
is as the set of formal differences a− b making the identification a1 − b1 ∼ a2 − b2 if
there exists c ∈ A such that a1 + b2 + c = a2 + b1 + c.

Now, if we define (Vect(X),⊕) to be the set of isomorphism classes of vector
bundles over X, then it is an abelian semigroup. Note that any map X → Y induces
a map Vect(Y ) → Vect(X). Also, an elementary fact here is that if the map is a
homotopy equivalence, then the map Vect(Y )→ Vect(X) is a bijection.

Applying the construction of the Grothendieck group, we obtain and define the
K-theory group of X, K(X). In this case, Vect(X) is also a semiring, and K(X)
will have a commutative ring structure as well, but we will not use this.

Example. We give an outline of the computation for the K-theory group of the
sphere S2.

First, we consider the sphere as the union of two hemispheres, whose intersection
is a copy of S1. Restricted to each hemisphere, any vector bundle is trivial, since these
are contractible, so we can determine a vector bundle over S2 by how the (trivial)
bundles, necessarily of same dimension, on each hemisphere are joined along the
circle. It can be proved that any vector bundle, modulo isomorphism, is uniquely
determined by a continuous function f : S1 → GLn(C), modulo homotopy. The
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associated bundle can be defined as

Ef = D2
−×Cn t D2

+×Cn / ∼ ,

where (x, v) ∈ ∂ D2
−×Cn is identified with (x, f(x)(v)) ∈ ∂ D2

+×Cn. Then, for each
n, there is a bijection from the set of homotopy classes of maps f : S1 → GLn(C)
and the set of isomorphism classes of vector bundles over S2 of dimension n.

Furthermore, with the one-dimensional bundles 1 (trivial) and the canonical line
bundle H, given canonically from the identification S2 = CP1, it can be proved that
(H ⊗ H) ⊕ 1 ∼= H ⊕ H, or, written as in K(S2), (H − 1)2 = 0. Later, we get an
isomorphism of rings

Z[H]/(H − 1)2 −→ K(S2).

In particular, as a group, we have K(S2) ∼= Z⊕Z. �

There is a way to obtain a cohomology theory K∗(−) in the category of compact,
Hausdorff spaces; see [2] for the complete definitions that give rise to this.

5.1 Equivariant K-theory

Let G be a topological group and X be a G-space. A G-space E is a G-vector
bundle over X if

• E is a vector bundle over X,

• the projection map E → X is a G-map, and

• for each x ∈ X and g ∈ G, the map Ex → Egx, given by the action of g, is a
linear transformation.

A G-CW-complex is called finite if it has finitely many orbits of cells. A G-
CW-pair is a pair of G-spaces (X,A), where X is a G-CW-complex and A is a
G-invariant subcomplex.

Definition 5.1. For any discrete group G and any finite proper G-CW-complex
X, let KG(X) = K0

G(X) be the Grothendieck group of the semigroup VectG(X) of
isomorphism classes of G-vector bundles over X. Define K−nG (X), for all n > 0, by
setting

K−nG (X) = Ker(KG(X × Sn)
incl∗−−−−→ KG(X) ).
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For any proper G-CW-pair (X,A), and n ≥ 0, set

K−nG (X,A) = Ker(K−nG (X ∪A X)
i∗2−−→ K−nG (X) ).

And, let Kn
G(X) = K−nG (X) and Kn

G(X,A) = K−nG (X,A).

With these definitions, K∗G(−) is a Z/2Z-graded multiplicative equivariant co-
homology theory in the category of finite proper G-CW-complexes. See [19] for
further information.

Now, we give the isomorphism that will allow us to define a Hecke operator in
K-theory.

First, note that there is a natural action of a group G over the K-theory of a
G-space X, given by the pullback of the action on the space. Furthermore, for any
g ∈ G, there is an action of the centralizer C(g) ⊂ G on the fixed (point set) space
Xg, and thus on its K-theory. In this way, by K∗(Xg)C(g) we mean the subgroup of
K∗(Xg) fixed by the action of C(g).

Theorem 5.2. Let G be a discrete group and X a finite proper G-CW-complex, then

K∗G(X)⊗ C ∼=
⊕
[g]

K∗(Xg)C(g) ⊗ C

where [g] runs over conjugacy classes of elements of finite order in G.

This isomorphism is described by Atiyah and Segal in [3] for a finite group and a
compact manifold and is given explicitly on K-theory groups in [7] by, with π : E →
X vector bundle,

[E] 7−→
⊕
[g]

⊕
λ∈S1

[π(E|Xg)λ]⊗ λ,

where π(E|Xg)λ denotes the vector bundle of λ-eigenvectors considering the action
of the element g over π(E|Xg).

But, reviewing through the proof in [3] and considering the wide results obtained
by Lück and Oliver in [19] and [18] for discrete groups and finite proper G-CW-
complexes, where the definitions of K-theory are given in terms of vector bundles as
well, we can state the version in Theorem 5.2.
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5.2 The Atiyah–Hirzebruch spectral sequence

The well known Atiyah–Hirzebruch spectral sequence lets us compute a (co)homology
theory in terms of the ordinary (co)homology using the (co)homology theory applied
to a point as coefficients.

Mislin [22] and Sánchez-Garćıa [25] describe this spectral sequence for Bredon
homology and equivariant K-homology. Here we will use the version in equivariant
K-theory mentioned by Lück and Oliver in [18].

For a discrete group G and any finite dimensional proper G-complex X, the
skeletal filtration of K∗G(X) induces a spectral sequence

Ep,2q
2
∼= Hp

G(X;R(−)) =⇒ K∗G(X).

Then, if dim(X) = 2, which will be our case, we have that Bredon cohomology is
trivial for p > 2, so the spectral sequence collapses in E2. With this, there is a short
exact sequence

0 −→ H2
G(X;R) −→ K0

G(X) −→ H0
G(X;R) −→ 0,

and K1
G(X) = H1

G(X;R).

6 Hecke operators
Here we will give an idea of how Hecke operators are described in general, the basic
definitions and the interpretations in other contexts. For the first part we follow
Shimura’s treatment of Hecke operators [28]. Classic aspects of the theory in the
context of modular forms are covered by Diamond and Shurman [8]. For the action
of Hecke operators on the K-theory of Bianchi groups, we build upon the results of
Mesland and Şengün [21].

Let G be a group. Two subgroups of G are said to be commensurable if
their intersection has finite index in both. Commensurability defines an equivalence
relation in the set of subgroups of G. If Γ1 and Γ2 are subgroups of G which are
commensurable, we use the notation

Γ1 ∼ Γ2.
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We define the commensurator of Γ in G as the subgroup

Γ̃ = { g ∈ G : Γ ∼ gΓg−1}.

Note that if Γ1 and Γ2 are commensurable subgroups of G, then

Γ̃1 = Γ̃2.

In examples of arithmetic relevance, the group G will be a Lie group defined as
the group of real or complex points of an algebraic group defined over Q, and Γ will
be a discrete subgroup. For instance, we have PSL2(Z) ⊂ PGL+

2 (R) acting on the
hyperbolic plane H2, and PSL2(Z[i]) ⊂ PGL2(C) acting on the hyperbolic space H3.

Example 6.1. Let Γ be the modular group PSL2(Z) viewed as a subgroup of PGL+
2 (R),

then the commensurator of Γ in PGL+
2 (R) is

Γ̃ = PGL+
2 (Q).

Example 6.2. Let K ⊂ C be a quadratic imaginary extension of Q with ring of in-
tegers OK. Let Γ be the corresponding Bianchi group PSL2(OK) viewed as a subgroup
of PGL2(C), then the commensurator of Γ in PGL2(C) is

Γ̃ = PGL2(K).

6.1 Double cosets

Let G be a group and let Γ1 and Γ2 be two commensurable subgroups of G. Given
an element g in their commensurator Γ̃1 = Γ̃2 we consider the doble coset in G given
by

Γ1 g Γ2.

The left action of Γ1 on the double coset Γ1gΓ2 has a finite number of orbits. To
compute this number, let Γ2,1 = Γ2 ∩ g−1Γ1g and notice that the map

Γ2 −→ Γ1gΓ2

γ2 7−→ gγ2

induces a surjection from Γ2 to the quotient Γ1\Γ1gΓ2 and also gives a bijection from
Γ2,1\Γ2 to Γ1\Γ1gΓ2, then there is a decomposition

Γ1gΓ2 =
d⊔
i=1

Γ1αi, where d = [Γ2 : Γ2,1].
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Analogously, taking Γ1,2 = Γ1 ∩ gΓ2g
−1 we obtain a decomposition

Γ1gΓ2 =
e⊔
j=1

βjΓ2, where e = [Γ1 : Γ1,2].

These decompositions lead to a natural product of double cosets. If Γ1,Γ2, and Γ3

are commensurable subgroups of G and g, h are elements in their commensurator Γ̃1

with
Γ1gΓ2 =

⊔
i

Γ1αi and Γ2hΓ3 =
⊔
j

βjΓ3,

we have
(Γ1gΓ2) · (Γ2hΓ3) =

⋃
i,j

Γ1αiβjΓ3.

So, after omitting repetitions, this is a disjoint union of double cosets Γ1ξΓ3. To do
this keeping record of those repetitions, we think the cosets inside the free abelian
group generated by the double cosets.

Let us suppose the subgroups Γk are contained in a semigroup ∆ that is contained
in their commensurator in G. We denote by

R(Γk,Γl; ∆)

the free abelian group generated by double cosets of the form ΓkgΓl with g ∈ ∆.
Now we define the product

(Γ1gΓ2) · (Γ2hΓ3) =
∑
δ

cδg,hΓ1δΓ3,

where cδg,h is the number of pairs of indices (i, j) such that Γ1αiβj = Γ1δ. The linear
extension of this product becomes a bilinear map of Z-modules

R(Γ1,Γ2; ∆)×R(Γ2,Γ3; ∆) −→ R(Γ1,Γ3; ∆)

which is associative in the obvious sense. In particular, given a subgroup Γ of G and
a subsemigroup of G with Γ ⊆ ∆ ⊆ Γ̃, the group

R(Γ; ∆) = R(Γ,Γ; ∆)

becomes a ring, which will be called the Hecke ring of Γ with respect to ∆.
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6.2 Action on group cohomology

Let Γ1 and Γ2 be two commensurable subgroups of a group G and let ∆ be a sub-
semigroup of their commensurator Γ̃ with Γi ⊆ ∆ for i = 1, 2. Let M be an abelian
group on which ∆ acts. We can consider M as a left Γi-module, i = 1, 2.

The elements of R(Γ1,Γ2; ∆) define homomorphisms from the cohomology groups
of Γ1 with coefficients in M to the cohomology groups of Γ1 with coefficients in M .
These operators are called Hecke operators associated to (Γ1,Γ2; ∆).

First, write

Γ1gΓ2 =
d⊔
i=1

Γ1αi, αi ∈ ∆,

and let m ∈MΓ1 be an element of M fixed by Γ1. We define the element

m |Γ1gΓ2 =
d∑
i=1

α−1
i ·m

in M ; it is independent from the representatives αi and it is fixed by Γ2, so the coset
Γ1gΓ2 defines a map

Tg : MΓ1 −→MΓ2 .

These maps can be extended linearly to define operators associated to all elements
of R(Γ1,Γ2; ∆). Indeed, if

ξ =
r∑

k=1

ck(Γ1gkΓ2) ∈ R(Γ1,Γ2; ∆)

and m ∈MΓ1 , we have Tξ : MΓ1 →MΓ2 given by

Tξ(m) =
r∑

k=1

ck Tgk(m) =
r∑

k=1

ck(m|Γ1gkΓ2).

In the case of Γ1 = Γ2 = Γ, we have an action of the Hecke ring R(Γ; ∆) on MΓ.
The n-th cohomology group of Γ with coefficients on the left Γ-module M is

defined as the image of M under the n-th right derived functor of

M 7−→MΓ ∼= HomZ[G](Z,M)

so the operators Tξ extend to Hecke operators between cohomology groups:

Tξ : Hn(Γ1;M) −→ Hn(Γ2;M).
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An alternative way to define the action of the Hecke ring on group cohomology
is to use that the cohomology group Hn(Γ;M) can be computed using the standard
complex C∗ = C∗(Γ;M). An (homogeneous) n-cochain φ ∈ Cn, n ≥ 0, is defined as a
function

φ : Γ× · · · × Γ︸ ︷︷ ︸
n+ 1

−→M

satisfying
φ(αγ0, αγ1, . . . , αγn) = αφ(γ0,γ1, . . . ,γn)

for all α,γ0,γ1, . . . ,γn ∈ Γ.
The coboundary map d : Cn → Cn+1 of the complex is given by

dnφ (γ0,γ1, . . . ,γn+1) =
n+1∑
j=0

(−1)j φ(γ0, . . . , γ̂j, . . .γn+1)

where the notation γ̂j indicates that the j-th term has been omitted. A straightfor-
ward computation gives dn+1 ◦ dn = 0 for all n ≥ 0.

The cohomology of the complex C∗ computes the groups Hn(Γ;M), that is,

Hn(Γ;M) = Ker(dn)/Im(dn−1).

As above, with Γ1 and Γ2 two commensurable subgroups of a group G and ∆ a
subsemigroup of Γ̃ with Γi ⊂ ∆, i = 1, 2, if g ∈ ∆ we have

Γ1gΓ2 =
d⊔
j=1

Γ1αj, αj ∈ ∆.

For γ ∈ Γ2, we denote by σγ
g the unique permutation of {1, . . . , d} for which

Γ1αjγ = Γ1ασgγ(j),

then for each j = 1, . . . , d we obtain a map

ρgj : Γ2 −→ Γ1

where for γ ∈ Γ2 the element ρgj (γ) ∈ Γ1 is determined by αjγ = ρgj (γ)ασgγ(j).
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Now, let M be an abelian group on which ∆ acts by endomorphisms and let g
be an element of ∆. We define the image of an n-cochain φ ∈ Cn(Γ1;M) under the
action of a double coset Γ1gΓ2 as an element of Cn(Γ2;M) given by

(φ |Γ1gΓ2)(γ0, . . . ,γn) =
d∑
j=1

α−1
j φ(ρgj (γ0), . . . , ρgj (γn)).

Also, this slash operator · |Γ1gΓ2 commutes with the differentials, so it induces a
well defined morphism in cohomology

Tg : Hn(Γ1;M) −→ Hn(Γ2;M)

As before, we can extend linearly and obtain a morphism

Tξ : Hn(Γ1;M) −→ Hn(Γ2;M)

for any ξ ∈ R(Γ1,Γ2; ∆).
In particular, in the case Γ = Γ1 = Γ2 we have an action of the Hecke ring

R(Γ; ∆) on Hn(Γ;M), hence it is a R(Γ; ∆)-module.
Further information on this action can be found in [15] and, together with its

functorial properties and its relation to the classical theory of Hecke operators, in
[14].

6.3 Hecke correspondences

Assume now that the group G acts on a topological space X and consider the action
of the subgroups Γi on X. We will be interested in the case where G is a Lie
group, the groups Γ1 and Γ2 are commensurable discrete subgroups of G and X is a
homogeneous G-space. Also, we assume that the action of the discrete groups Γi on
X satisfies sufficient conditions for the quotients X/Γi to be well behaved.

Given an element g ∈ Γ̃1 = Γ̃2 consider the groups

Γ1,2 = Γ1 ∩ gΓ2g
−1 and Γ2,1 = Γ2 ∩ g−1Γ1g.

We have group morphisms

Γ1,2 Γ2,1

Γ1 Γ2
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where the horizontal arrow is a group isomorphism (given by conjugation) and the
vertical ones are inclusions with finite index. These morphisms induce maps between
the corresponding quotients of X:

X/Γ1,2 X/Γ2,1

X/Γ1 X/Γ2

where the horizontal arrow is a homeomorphism and the vertical ones are finite index
covers. This diagram determines a correspondence

Cg ⊂ X/Γ1 ×X/Γ2

homeomorphic toX/Γ1,2. This correspondence is called the Hecke correspondence
from X/Γ2 to X/Γ1 associated to g.

Next, we outline an example of this correspondence given in divisors; this ap-
proach leads to the classical theory for congruence subgroups of the modular group,
which is described in the next section.

The group G = GL+
2 (R) acts on the upper half plane H via Möbius transforma-

tions: for z ∈ H, (
a b
c d

)
· z =

az + b

cz + d
.

Given a subgroup Γ ⊂ GL+
2 (R) commensurable with Γ(1) := SL2(Z), we consider

the quotient
YΓ = H /Γ

and its compactification

XΓ = (H ∪Q ∪ {i∞}) /Γ.

These quotients admit natural complex structures, and the Riemman surfaces YΓ

and XΓ can be considered as algebraic curves over C, these are the modular curves
associated to Γ.

If Γ1 and Γ2 are two subgroups of GL+
2 (R) commensurable with Γ(1) := SL2(Z)

and g ∈ Γ̃(1) = GL+
2 (Q) is an element in their commensurator, we have as before a
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correspondence between modular curves given by

XΓ1,2 XΓ2,1

XΓ1 XΓ2

ϕ

π1 π2

Now, for a point p ∈ XΓ2 let π−1
2 ({p}) = {t1, . . . td}, but note that each ti has a

multiplicity ei, according to its ramification degree, so we define

Tg(p) =
n∑
i=1

ei π1(ϕ−1(ti)),

which is an element of the free abelian group generated by the points of XΓ1 , the
divisor group Div(XΓ1). Extending linearly we obtain a map

Tg : Div(XΓ2) −→ Div(XΓ1)

that defines the Hecke operator Tg at the level of divisors.

6.4 The classical theory

The Hecke operators described in the previous section arose originally in the context
of automorphic forms and automorphic functions for congruence subgroups of the
modular group Γ(1).

A subgroup Γ ⊂ GL+
2 (R) is a congruence subgroup of level N ∈ N if it contains

the group

Γ(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
mod N

}
with finite index. If Γ is a congruence subgroup, then it is necessarily a discrete
subgroup of GL+

2 (R) commensurable with Γ(1) = SL2(Z).
Since the half plane H is simply connected any line bundle on H is trivial, and

holomorphic line bundles on the modular curve

XΓ = (H ∪Q ∪ {i∞}) /Γ

are obtained as quotients of the trivial bundle H×C. Such holomorphic line bundles
on the modular curve are classified by automorphy factors

j : Γ×H −→ C∗,
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which are holomorphic functions, for fixed γ ∈ Γ, and satisfy the cocycle condition
j(γδ, z) = j(γ, δz)j(δ, z).

Given a congruence subgroup Γ and an integer k, a Γ-automorphic form of
weight k is a meromorphic section of the line bundle on XΓ corresponding to the
automorphy factor

j(z,γ) =
det(γ)

k
2

(cz + d)k
for γ =

(
a b
c d

)
∈ Γ.

Equivalently, a Γ-automorphic form of weight k can be defined as a meromorphic
function f : H→ C satisfying

f(z) =
det(γ)

k
2

(cz + d)k
f(γz) for all γ ∈ Γ,

and is meromorphic at the cusps, i.e. the finite set of points (Q∪{i∞})/Γ ⊂ XΓ. A
Γ-automorphic function is simply a Γ-automorphic form of weight cero.

We denote by Mk(Γ) the space of Γ-automorphic forms of weight k that are
holomorphic on H. The space Mk(Γ) is a finite dimensional vector space over C,
and the graded algebra M(Γ) =

⊕
kMk(Γ) plays a central role in number theory.

In the case of Γ ⊂ Γ(1), the elements of M(Γ) are called modular forms of level
Γ.

Given an element α =

(
a b
c d

)
∈ Γ̃ = GL+

2 (Q) and f a Γ-automorphic form of

weight k, we use the notation

(f |k α)(z) =
det(α)

k
2

(cz + d)k
f(αz).

Now, let Γ1 and Γ2 be two congruence subgroups in GL+
2 (R) and let ∆ be a sub-

semigroup of GL+
2 (Q) with Γi ⊂ ∆, i = 1, 2. For any g ∈ ∆ we have a decomposition

of the corresponding double coset

Γ1gΓ2 =
d⊔
i=1

Γ1αi, αi ∈ ∆,

then, given an element f ∈Mk(Γ1), the function

f |k Γ1gΓ2 = det(g)
k
2
−1

d∑
i=1

f |k αi
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is a Γ2-automorphic form of weight k holomorphic on H, so we obtain in this way a
Hecke operator

Tg : Mk(Γ1) −→Mk(Γ2).

Viewing automorphic forms as sections of line bundles over modular curves, and
having the correspondence showed earlier

XΓ1,2 XΓ2,1

XΓ1 XΓ2

we will have that the Hecke operator Tg is given by the composition of the pullback
and pushforward on sections via these maps.

The relation between the classical theory and the results in group cohomology
can be found in [14]. For an account of the corresponding theory of forms and Hecke
operators for Bianchi groups see [27] and references therein.

6.5 In K-theory

Following the previous discussions and results, we want to give a definition for Hecke
operators in K-theory in the form of pullback-pushforward, or in this case restriction-
corestriction, as described in [21]. In this definition, the subgroup will just need to
have finite index, but in our computations it will be an intersection Γ ∩ gΓg−1 as
seen before.

Let H ⊂ G, with (G : H) <∞, and let X be a proper G-CW-complex. We will
define the two maps

res : K∗G(X) −→ K∗H(X) and cores : K∗H(X) −→ K∗G(X)

through the isomorphism

K∗G(X)⊗ C ∼=
⊕
[g]

K∗(Xg)C(g) ⊗ C,

seen in Section 5.1, so we need to know how the conjugacy classes of finite elements
in H relate with those in G.
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Take a conjugacy class [g] in G such that the set [g]∩H is not empty, then there
are some h1, . . . , hn ∈ H for which

[g] ∩H = [h1] t · · · t [hn].

For each one, let hi = γ−1
i gγi with γi ∈ G. We know that CG(hi) = γ−1

i CG(g) γi,
since if a ∈ CG(g) then ag = ga and

(γ−1
i aγi)hi = γ−1

i agγi = γ−1
i gaγi = hi(γ

−1
i aγi).

Also, CH(hi) = CG(hi) ∩H = (γ−1
i CG(g) γi) ∩H.

Furthermore, there is a homeomorphism Xhi → Xg given by the action of γi.
Thus, for each i, there is a natural homomorphism

K∗(Xg)CG(g) −→ K∗(Xhi)CH(hi),

that is well defined in invariants by the previous facts. Tensoring with C and adding
up, we obtain a map

K∗(Xg)CG(g) ⊗ C −→
n⊕
i=1

K∗(Xhi)CH(hi) ⊗ C.

And since a conjugacy class in H corresponds to only one conjugacy class in G, we
obtain the map

res :
⊕

[g] in G

K∗(Xg)CG(g) ⊗ C −→
⊕

[h] in H

K∗(Xh)CH(h) ⊗ C.

The restriction map can be thought just as restriction of the action on the vector
bundles, but we use this definition to make the computations. Likewise, we give
a definition for the corestriction map in the decomposition by conjugacy classes of
finite elements that is useful for our computations.

To construct the corestriction map, we follow the definition of the induction on
class functions, summing over conjugates. With the conjugacy classes as before, let
Ri be a system of representatives of (γiCH(hi)γ

−1
i )\CG(g), which is finite because

(CG(g) : γiCH(hi)γ
−1
i ) = (γ−1

i CG(g)γi : CH(hi))

= (CG(hi) : CH(hi)) = (CG(hi) : CG(hi) ∩H)
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and (CG(hi) : CG(hi) ∩ H) is finite because the index (G : H) is finite. Define the
homomorphism

n⊕
i=1

K(Xhi)CH(hi) −→ K(Xg)CG(g),

( Ei )[hi] 7−→
n⊕
i=1

F i =
n⊕
i=1

⊕
r∈Ri

(γ−1
i r)∗Ei.

A (not so formal) way to see that this is well defined is taking the fibre, F i
x, in a

point x ∈ Xg after acting by a ∈ CG(g). First, note that with r ∈ Ri, ra is in CG(g),
so ra = (γi bγ

−1
i )r′ for some b ∈ CH(hi) and r′ ∈ Ri. Furthermore, the mapping

r 7→ r′ is a permutation in Ri, then we have

a∗F i
x = F i

ax =
⊕
r∈Ri

(γ−1
i r)∗Ei

ax =
⊕
r∈Ri

Ei
γ−1
i rax

=
⊕
r′∈Ri

Ei
bγ−1
i r′x

=
⊕
r′∈Ri

Ei
γ−1
i r′x

=
⊕
r′∈Ri

(γ−1
i r′)∗Ei

x = F i
x ;

the action of b is removed since Ei is invariant by the action of CH(hi).
As before, we obtain a map

cores :
⊕

[h] in H

K∗(Xh)CH(h) ⊗ C −→
⊕

[g] in G

K∗(Xg)CG(g) ⊗ C.

Now, our setting will be the following: Let G = PGL2(C), let Γ be some subgroup
of G and let g be an element of the commensurator of Γ, then we define H = Γ∩g−1Γg
and X = EΓ, so the Hecke operator

Tg : K∗Γ(X) −→ K∗Γ(X)

will be given as the composition

K∗Γ(X)
res−−−→ K∗H(X)

Adg−−−→ K∗gHg−1(X)
cores−−−−→ K∗Γ(X),

where we include the natural map Adg given by conjugation. In fact, we defined the
operator in K∗G(X)⊗ C, but in our computations we will be able to drop the C.
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Part II
Bianchi groups

Let d be a positive square-free integer, and let Od be the ring of integers of the
imaginary quadratic extension Q(

√
−d), then the Bianchi group associated to d is

defined as
Γd = PSL2(Od) = SL2(Od)/{±I}.

In general, except from d = 3, these groups can be expressed as amalgamated
products, but not all the factor groups are described easily.

This part contains, first, the definition of amalgamated products of groups and
HNN extensions, which will be useful to describe some Bianchi groups, then we ex-
plain the general algebraic structure of the Bianchi groups, including the amalgam
decomposition of the Euclidean Bianchi groups. Later, as the core of the thesis in
terms of computations, we develop a study of the group Γ1, its group cohomology,
K-theory and a Hecke operator Tg associated to a prime in O1 = Z[i].

Some of the initial work on Bianchi groups and the group cohomology of Γ1 are
part of my Bachelor’s thesis [23].

7 Amalgamated product of groups
Consider a collection of groups {Gi}i∈I together with a set Fi,j of homomorphisms
Gi → Gj, for each pair i, j ∈ I.

Proposition 7.1. There exists a group G and a collection of homomorphisms {fi}i∈I ,
with fi : Gi → G and fj ◦ f = fi, ∀f ∈ Fi,j, such that the following property is satis-
fied:
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• If there is a group H and a collection of homomorphisms {hi}i∈I , hi : Gi → H,
such that hj ◦ f = hi, ∀f ∈ Fi,j, then there exists a unique homomorphism
h : G→ H that satisfy h ◦ fi = hi, ∀i ∈ I.

Furthermore, G and {fi}i∈I are unique up to unique isomorphism.

Gj

f

Gi

G

fi

fj

H

hi

hj

h

Proof. For the existence, take a set of generators Si of each Gi, then take the disjoint
union ti∈ISi as the set of generators for G. The relations will be the disjoint union
of the relations for each Gi together with xy−1 = e, whenever f(x) = y for some
f ∈ Fi,j, with x ∈ Gi and y ∈ Gj. The fi are just the inclusions.

The uniqueness is proved using the universal property: Suppose G, {fi}i∈I and
G′, {f ′i}i∈I are such groups, then two homomorphisms f ′ : G → G′ and f : G′ → G
are obtained; the compositions f ◦ f ′ and f ′ ◦ f must be the identity maps on G and
G′ respectively, so f and f ′ are isomorphisms.

G is called the direct limit of the Gi relative to the Fi,j.

Now consider the case where there is a group A and a collection of groups {Gi}i∈I
with a collection of injective homomorphisms {αi : A → Gi}i∈I , so A is identified
with a subgroup of each Gi. The group obtained as the direct limit of {A}∪ {Gi}i∈I
together with the given homomorphisms {αi}i∈I is denoted as ∗AGi and is called the
product of the Gi with A amalgamated.

Also, in the case of three groups A, G1, G2, the amalgam is denoted as G1 ∗AG2

and we obtain the respective amalgamation diagram as shown below.

A
α1 G1

α2

G2 G1 ∗A G2
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It can be proved that we can write any g ∈ G uniquely as a word of, first, an
element in A and then n interleaved elements of a set of representatives of G1 and
G2 modulo A, for n ≥ 0.

Furthermore, we have the presentation

G1 ∗A G2 = 〈 G1, G2 | Relations of G1, Relations of G2, α1(a) = α2(a), ∀a ∈ A〉.

8 HNN extensions
An HNN extension is a construction similar to that of an amalgamated product.

Let G be a group with a presentation. Suppose there is a collection {Ai}i∈I of
subgroups of G together with a collection of injections {ϕi : Ai → G}i∈I . Then the
HNN extension of G associated to the {Ai, ϕi} is defined as the group with the
presentation

G∗ = 〈 G, {ti}i∈I | Relations of G, tiat
−1
i = ϕi(a), for i ∈ I, a ∈ Ai 〉.

G is called the base, {ti}i∈I is called the free part, and the {Ai, ϕi(Ai)}i∈I are called
the associated subgroups. The size of the set I is the free part rank.

Consequently, a group is called an HNN group if it is the HNN extension of
some group with some associated subgroups.

We will only use HNN extensions associated to one subgroup and its inclusion,
in this case, with A ⊂ G, we have

G∗ = 〈 G, t | Relations of G, tat−1 = a, for a ∈ A 〉.

As in amalgamated products, there is a way to write uniquely each element of a
HNN extension. This is known as the Britton’s lemma.

Using the notation used in the initial definition, let Si be a set of representatives
of G modulo Ai and let Ri be a set of representatives of G modulo ϕi(Ai). Then
every g ∈ G∗ is written uniquely as

g0 t
e1
i1
g1 t

e2
i2
· · · tekik gk, with ej = ±1,

where go ∈ G, while gj ∈ Stj if ej = −1 and gj ∈ Rtj if ej = 1; also, there is no
subsequence te · 1 · t−e.
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An example of this is the group with the presentation

〈s, t, u | s2 = (st)3 = [t, u] = 1〉.

This group is both the amalgamated product PSL2(Z) ∗Z (Z⊕Z) and the HNN
extension of PSL2(Z) = 〈s, t | s2 = (st)3 = 1〉 associated to the subgroup generated
by t (together with the inclusion).

9 Bianchi groups
As said before, the Bianchi group associated with a positive square-free integer d is
defined as

Γd = PSL2(Od)

where Od is the ring of integers of the imaginary quadratic extension Q(
√
−d).

We can describe these rings explicitly: With δ =
√
−d and η = 1

2
(1 + δ), we have

Od = Z[δ] for d ≡ 1, 2 mod 4, and

Od = Z[η] for d ≡ 3 mod 4.

This is shown easily. See [1, Chapter 13].

9.1 Subgroup of elementary matrices

Let R be a ring. Let x ∈ R be any element and µ ∈ R a unit. We define the matrices

E(x) =

(
x 1
−1 0

)
and D(µ) =

(
µ 0
0 µ−1

)
.

The matrices E(x) are called elementary matrices, and the group generated
by them, E2(R), is called the 2×2 elementary matrix group.

A theorem of P. M. Cohn [5] provides a presentation of the group E2(R) for
certain subrings of C; it is as follows.

Theorem 9.1. Let R be a subring of C with the usual absolute value, such that the
range of values is well-ordered and if α ∈ R with |α|2 < 4 then |α|2 is an integer.
Then, a presentation for E2(R) is given by the generators E(x), x ∈ R, and the
relations
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• E(x)E(0)E(y) = −E(x+ y), x, y ∈ R;

• E(x)D(µ) = D(µ−1)E(µxµ), x, µ ∈ R, µ unit;

• (E(α)E(ᾱ))p = −I, for all α ∈ R with |α| = √p, p ∈ {2, 3};

• E(µ)E(µ−1)E(µ) = −D(µ), µ ∈ R unit.

From the first relation we can deduce that E(0)2 = −I, having x = 0 and taking
out the E(y). Hence E(0)−1 = −E(0).

Now, take ξ such that Od = Z[ξ]. The rings Z[ξ] satisfy the hypotheses.

Let x = a+ bξ, with a and b positive integers. We see from the first relation that
E(x) = E(a)E(0)−1E(bξ), and then

E(x) = E(a− 1)E(0)−1E(1) · E(0)−1 · E((b− 1)ξ)E(0)−1E(ξ)

= E(1)E(0)−1E(1) . . . E(1)E(0)−1E(1)︸ ︷︷ ︸
a times

E(0)−1E(ξ)E(0)−1E(ξ) . . . E(ξ)E(0)−1E(ξ)︸ ︷︷ ︸
b times

.

Also, if a or b are negative we could use −1 or −ξ respectively. So, we can reduce
the set of generators to {E(0), E(1), E(−1), E(ξ), E(−ξ)}. We will see later that
also E(−1) and E(−ξ) are not necessary.

9.2 The Euclidean Bianchi groups and their amal-

gam decompositions

The rings Od are an Euclidean domain only when

d = 1, 2, 3, 7, 11.

For a proof see [12, Theorem 246]. For that reason, these Γd are called the Euc-
lidean Bianchi groups.

Cohn [6, Theorems 6.1 and 9.3 and further discussions] states that for the Eucli-
dean cases we have the equation

E2(Od) = SL2(Od).

In this way we will obtain finite presentations for the Euclidean Bianchi groups
and then deduce their amalgam decomposition. The presentations for Γ1 and Γ7 are
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explained in [9]; here we will develop completely the presentation for the group Γ2.

The units in O2 are just 1 and −1. Let δ =
√
−2 = i

√
2. So, for E2(O2) =

SL2(O2), we have that a complete set of relations in terms of the generators E(x),
x ∈ O2, and J is

(1) E(x)E(0)E(y) = JE(x+ y), x, y ∈ O2;

(2) J2 = I, J central;

(3) (E(δ)E(−δ))2 = (E(1 + δ)E(1− δ))3 = J ;

(4) E(1)3 = J, E(−1)3 = I.

As seen before, we can reduce the set of generators to E(0), E(1), E(−1), E(δ),
E(−δ), and J . In this way, we would have by definition that, for a positive integer
n, E(n) is written in terms of the generators as E(1)E(0)−1E(1) . . . E(1)E(0)−1E(1)
(n times); the same for E(−n), E(nδ), and E(−nδ), and therefore for any E(a+ bδ)
written as E(a)E(0)−1E(bδ).

Now, we claim that the generators E(0), E(1), E(−1), E(δ), E(−δ), and J to-
gether with the relations

(a) E(0)2 = E(1)3 = J ;

(b) J2 = I, J central;

(c) (E(δ)E(−δ))2 = (E(1 + δ)E(1− δ))3 = J ;

(d) E(1)E(0)E(δ) = E(δ)E(0)E(1),
E(0)E(1)E(0)E(−1) = E(0)E(δ)E(0)E(−δ) = I;

(e) E(1 + δ) = E(1)E(0)−1E(δ), E(1− δ) = E(1)E(0)−1E(−δ);

are equivalent to the previous presentation. Clearly the first presentation implies
this one, so we see the other direction.

Since we already know what does any E(x) mean in terms of the new gene-
rators, the relations (1) are obtained simply from the pseudo-commuting relation in
(d), which can be written as E(1)E(0)−1E(δ) = E(δ)E(0)−1E(1) (because E(0) =
JE(0)−1).

Indeed, if x = a + bδ and y = c + dδ, with a, b, c, d positive, then we could take
E(x)E(0)−1E(y) and move all the E(1)’s to the left and all the E(δ)’s to the right to
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obtain E(x+y) = E((a+ c)+(b+d)δ). For the cases where a, b, c, or d are negative,
we should use the relations

E(1)E(0)−1E(−δ) = E(−δ)E(0)−1E(1),

E(−1)E(0)−1E(δ) = E(δ)E(0)−1E(−1),

E(−1)E(0)−1E(−δ) = E(−δ)E(0)−1E(−1),

E(1)E(0)−1E(−1) = E(−1)E(0)−1E(1) = E(0),

E(δ)E(0)−1E(−δ) = E(−δ)E(0)−1E(δ) = E(0),

which can be deduced from (d).
The only relation left to verify is E(−1)3 = I, but this is obtained easily from

(a) and the equation E(−1) = E(0)−1E(1)−1E(0)−1, which comes from (d).

Now, we should make another reduction to the presentation for E2(O2). First,
we see that (e) is unnecessary since we can remove it and replace that in (c); besides,
(d) gives an expression for E(−1) and E(−δ) in terms of E(0), E(1), and E(δ), so
we can remove both generators and replace the expressions where it is necessary.

Define

A = E(0)−1, T = E(0)E(1)−1, and U = E(0)E(δ)−1.

With the generators A, T, U, and J , the last relations would be

(a) (A−1)2 = (T−1A−1)3 = J ;

(b) J2 = I, J central;

(c) (U−1AUA)2 = (T−1U−1A−1T−1AAUA)3 = J ;

(d) T−1A−1A−1U−1A−1 = U−1A−1A−1T−1A−1.

This is equivalent to the presentation

〈A, T, U, J | J2 = I, J central, A2 = (AT )3 = (U−1AUA)2 = J, [T, U ] = I〉.

The second relation in (c) is omitted because it can be obtained from the others.
Indeed, we have, using A−1 = JA, T−1A−1T−1 = ATA, and other relations,
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(T−1U−1A−1T−1AAUA)3

= (T−1U−1A−1T−1UA−1)3 = (T−1U−1A−1U(T−1A−1T−1)T )3

= (T−1(U−1A−1UA)TAT )3 = (JT−1A−1U−1AUTAT )3

= J3T−1A−1U−1AUT (ATT−1A−1)U−1AUT (ATT−1A−1)U−1AUTAT

= JT−1A−1U−1A(UTU−1)A(UTU−1)AUTAT

= JT−1A−1U−1(ATATAT )UAT

= J2T−1A−1U−1UAT = I.

Finally, adding the relation J = I, we obtain what must be the simplest presen-
tation for this Bianchi group:

Γ2 = PSL2(O2) = 〈a, t, u | a2 = (at)3 = (u−1aua)2 = [t, u] = 1〉.

Now, to deduce the amalgam decomposition, we have to do some changes to the
last presentation.

Take s = at, v = u−1su, and m = u−1au. We may obtain

〈 a,m, s, u, v | a2 = m2 = s3 = v3 = (am)2 = (sv−1)2 = 1,

am = sv−1, m = u−1au, v = u−1su 〉.

With this, define

G1 = 〈a,m, u | a2 = m2 = (am)2 = 1, m = u−1au〉,

and
G2 = 〈s, v, u | s3 = v3 = (sv−1)2 = 1, v = u−1su〉,

so Γ2 is the free product of G1 and G2 with the identifications u = u and am = sv−1.
Note that G1 is the HNN extension of the Klein group C2×C2 with the associated

subgroups 〈a = (1, 0)〉 and 〈m = (0, 1)〉 (and the monomorphism a 7→ m). And, G2

is an HNN extension of the alternating group A4 with the associated subgroups
〈s = (123)〉 and 〈v = (134)〉 (s and v could be any pair of generators for A4 such
that sv−1 is a product of two transpositions; G2 will be the same).

We can see there is a common subgroup of G1 and G2, this is the group Z ∗C2.
In G1, it is the subgroup 〈u〉 ∗ 〈am〉, and in G2 it is 〈u〉 ∗ 〈sv−1〉. (The equalities
〈u, am〉 = 〈u〉 ∗ 〈am〉 and 〈u, sv−1〉 = 〈u〉 ∗ 〈sv−1〉 can be verified with the presenta-
tions.)

From all the above we can conclude the amalgam structure of Γ2.
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Proposition 9.2. We have

Γ2
∼= G1 ∗(Z ∗C2) G2,

where G1 is the HNN extension of C2 ×C2 associating two generators and G2 is the
HNN extension of A4 associating two 3-cycles.

For the rest of the Euclidean Bianchi groups, except Γ3, we have the following
amalgam decompositions:

Γ1 =
(
A4 ∗C3 S3

)
∗PSL2(Z)

(
S3 ∗C2 D2

)
;

Γ7 =
(
Z ∗C2

)
∗(Z ∗C2∗C2) G,

where G is the HNN extension of S3 ∗C2 S3 associating a 3-cycle with itself; and

Γ11 =
(
Z ∗C3

)
∗(Z ∗C3∗C3) G,

where G is the HNN extension of A4 ∗C3 A4 associating a 3-cycle with itself. These
can be proved exactly the same way. See [9] for further information.

Since the only group that does not contain an HNN extension as factor group is
Γ1, we will be able to compute its cohomology groups directly using a Mayer–Vietoris
spectral sequence associated to its classifying space.

9.3 The non-Euclidean Bianchi groups

Theorem 9.3. For any d 6= 1, 2, 3, 7, 11, we have the presentation

PE2(Od) = 〈 a, t, u | a2 = (at)3 = [t, u] = 1 〉.

Proof. The rings Od have no units apart from ±1, and there are no elements α such
that |α| < 2. So from the theorem of Cohn, E2(Od) has the generators J and E(x),
for x ∈ Od, with the relations

• E(x)E(0)E(y) = JE(x+ y), x, y ∈ R;

• J2 = I, J central;

• E(1)3 = J, E(−1)3 = I.
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As we did with Γ2, we may reduce to

E2(Od) = 〈 J,E(0), E(1), E(ξ) | E(0)2 = E(1)3 = J, J central, J2 = I,

E(1)E(0)E(ξ) = E(ξ)E(0)E(1) 〉.

Then, letting A = E(0)−1, T = E(0)E(1)−1, U = E(0)E(ξ)−1 we have

E2(Od) = 〈 J,A, T, U | A2 = (AT )3 = J, J central, J2 = [T, U ] = I 〉.

Identifying a, t, u with A, T, U after making J = I the result is obtained.

Note that we have already seen this group; this was the example mentioned as a
group that is both an amalgamated product and an HNN extension. So we have the
isomorphism

PE2(Od) ∼= PSL2(Z) ∗Z (Z⊕Z)

and the fact that PE2(Od) is also the HNN extension of PSL2(Z) by an infinite cyclic
subgroup.

Furthermore, B. Fine [9] exhibited an amalgam decomposition for all the non-
Euclidean Bianchi groups as

Γd ∼= PE2(Od) ∗H Gd

where H is an amalgam of two copies of PSL2(Z) and Gd is a particular group de-
pending on d. This is proved with Poincaré polygons and polyhedrons, using that the
Γd act on the non-Euclidean hyperbolic 3-space, where the action defines some par-
ticular regions (polygons/polyhedrons) that lead to a construction of presentations
for the Γd.

Later, we will also use this action to illustrate the classifying space for proper
actions for the group Γ1.

10 The group Γ1
From the previous section we have the isomorphism

Γ1
∼=
(
A4 ∗C3 S3

)
∗PSL2(Z)

(
S ′3 ∗C2 D2

)
,
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with PSL2(Z) = C ′3 ∗ C ′2 and the intersections A4 ∩ S ′3 = C ′3, A4 ∩ D2 = {1},
S3 ∩ S ′3 = {1}, and S3 ∩ D2 = C ′2. These intersections can be seen easily from the
presentation

Γ1 = 〈 a,b, c,d | a3 = b2 = c3 = d2 = (ac)2 = (ad)2 = (bd)2 = (bc)2 = 1 〉

that is equivalent to the amalgam decomposition. Here A4 = 〈a, c〉, S3 = 〈a,d〉,
D2 = 〈b,d〉, and S ′3 = 〈b, c〉, so C3 = 〈a〉, C2 = 〈b〉, C ′3 = 〈c〉, and C ′2 = 〈d〉.

We can give explicit matrices that represent the generators, namely

a =

(
0 i
i 1

)
, b =

(
0 i
i 0

)
, c =

(
1 1
−1 0

)
, and d =

(
0 −1
1 0

)
.

10.1 Group cohomology

The method used in this section can be applied to the other Bianchi groups with
amalgam decompositions, but the case of Γ1 is the one in which we need only group
cohomology of finite groups.

These computations are part of my previous work in [23].

Let X be a model for BΓ1, the classifying space for Γ1, and let X11 = BA4,
X12 = BS3, X21 = BS ′3, X22 = BD2, Y1 = BC3, Y2 = BC2, and Z = BPSL2(Z), so
we have

X ∼=
(
X11 ∪Y1 X12

)
∪Z
(
X21 ∪Y2 X22

)
.

With this, we obtain a covering {X11, X12, X21, X22} for a classifyng space of Γ1.
We can use this to construct a Mayer–Vietoris spectral sequence (see Section 2.2)
whose E1-term is given by

E0,q
1 = Hq(X11)⊕Hq(X12)⊕Hq(X21)⊕Hq(X22)
∼= Hq(A4)⊕Hq(S3)⊕Hq(S ′3)⊕Hq(D2),

E1,q
1 = Hq(X11 ∩X12)⊕Hq(X11 ∩X21)⊕Hq(X12 ∩X22)⊕Hq(X21 ∩X22)
∼= Hq(C3)⊕Hq(C ′3)⊕Hq(C ′2)⊕Hq(C2),

for q ≥ 0, and Ep,q
1 trivial for p ≥ 2, where the differentials of bidegree (1, 0) are all

induced by inclusions. This spectral sequence converges to H∗(BΓ1) = H∗(Γ1).
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For the cyclic group Cn of order n, the symmetric group S3, and the Klein group
D2, it is known that

Hk(Cn;Z) =


Z, k = 0,

0, k odd,

Z/nZ, k > 0 even;

Hk(S3;Z) =


Z, k = 0,

0, k odd,

Z/2Z, k ≡ 2 mod 4,

Z/6Z, k ≡ 0 mod 4, k > 0;

and Hk(D2;Z) =


Z, k = 0,

(Z/2Z)(k−1)/2, k odd,

(Z/2Z)(k+2)/2, k even, k > 0.

The later can be proved with the Künneth formula (see [13] for the definition). And,
using GAP [11], the first cohomology groups of A4 are

H0(A4) = Z, H1(A4) = 0, H2(A4) = C3,

H3(A4) = C2, H4(A4) = C6, H5(A4) = 0.

Then the E1-term looks like this:

Z4
d0,0

1 Z4

0 0

C3 ⊕ C4
2

d0,2
1 C2

3 ⊕ C2
2

C2 ⊕ C2 0

C3
6 ⊕ C3

2

d0,4
1 C2

3 ⊕ C2
2

C4
2 0

0 . . .

0 . . .

0 . . .

0 . . .

0 . . .

0 . . .

..
.

..
.

0 1 2

0

1

2

3

4

5
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With all the corresponding inclusions, we define the group homomorphims

α1 : H∗(A4)→ H∗(C3) and α2 : H∗(A4)→ H∗(C ′3),

β1 : H∗(S3)→ H∗(C3) and β2 : H∗(S3)→ H∗(C ′2),

γ1 : H∗(S ′3)→ H∗(C ′3) and γ2 : H∗(S ′3)→ H∗(C2),

δ1 : H∗(D2)→ H∗(C ′2) and δ2 : H∗(D2)→ H∗(C2),

induced in cohomology, so we have

d0,q
1 = α1 + β1 ⊕ α2 + γ1 ⊕ β2 + δ1 ⊕ γ2 + δ2 : E0,q

1 −→ E1,q
1 .

The ⊕ are used to separate the components in each direct sum; the + denote the
(abelian) operation in each component. You can go back to the direct sum decom-
position of E0,q

1 and E1,q
1 to make this clear.

We deal with these morphisms by separated cases in order to confirm that the
induced homomoprhisms are not trivial as long as they can be not trivial. Since all
the homomorphisms listed go to cyclic groups, the non-triviality will leave just one
other option (where the final results do not change).

Using the previous notation for A4 = 〈a, c〉, note that there is a group homo-
morphism j : A4 → C3 = 〈a〉 given by j(a) = a and j(c) = a2. Then, the composi-
tion j ◦ i with the inclusion into A4 is the identity map on C3; this implies that the
induced morphism

(j ◦ i)∗ = i∗ ◦ j∗ : H∗(C3)→ H∗(C3)

is the identity map as well, which means that i∗ = α1 must be not trivial whenever
H∗(C3) is not trivial. The same is obtained for α2.

For the group S3, the fact that it is an extension of C3 by C2 gives a homomor-
phism S3 → C2 which becomes the identity on C2 when composed with the inclusion.
Using the same argument we obtain that β2 and γ2 are trivial only when they must
be trivial.

For β1 and γ1, this is not immediate. The result comes from how the cohomology
of S3 can be computed from a Lyndon-Hochschild-Serre spectral sequence using the
isomorphism S3

∼= C3 o C2. This is made explicitly in [23], where we conclude that
these morphisms are non-trivial in even cohomology groups.
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At last, the group D2 is isomorphic to the direct product C2 ⊕ C2, hence there
is a homomorphism D2 → C2 (the projection) that, composed with the inclusion, is
equal to the identity map on C2. As before, δ1 and δ2 are then not trivial whenever
they are not forced to be trivial.

Now we can give explicitly the differentials in the E1-term. For d0,0
1 , all the

homomorphisms are identity maps between Z’s, then

d0,0
1 : (a, b, c, d) 7→ (a+ b, a+ c, b+ d, c+ d),

and we have

Ker(d0,0
1 ) ∼= Z, Im(d0,0

1 ) ∼= Z3, and E1,0
1 /Im(d0,0

1 ) ∼= Z .

For d0,2
1 ,

d0,2
1 : (a, b, c, d1, d2) 7→ (a, a, b+ d1, c+ d1),

(in the image, d1 may be replaced by d2 or d1 + d2; the result is the same) then

Ker(d0,2
1 ) ∼= C2 ⊕ C2, Im(d0,2

1 ) ∼= C3 ⊕ C2 ⊕ C2, and E1,2
1 /Im(d0,2

1 ) ∼= C3.

For d0,4
1 ,

d0,4
1 : (a, b, c, d1, d2, d3) 7→ (a(3) + b(3), a(3) + c(3), b(2) + d1, c(2) + d1),

(in the image, d1 may be replaced by any other nontrivial sum of di’s; the result is
the same). Doing the computations we obtain

Ker(d0,4
1 ) ∼= C6 ⊕ C3

2 , Im(d0,4
1 ) = E1,4

1 , and E1,4
1 /Im(d0,4

1 ) = 0.

Then E2 looks like this:
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Z Z

0 0

C2 ⊕ C2 C3

C2 ⊕ C2 0

C6 ⊕ C3
2 0

C4
2 0

0 . . .

0 . . .

0 . . .

0 . . .

0 . . .

0 . . .

..
.

..
.

..
.

0 1 2

0

1

2

3

4

5

From the comments made in Section 2.1, since the fourth diagonal is the only
one where there is more than one non-trivial factor, we have the group extension

0 −→ C3 −→ H4(Γ1) −→ C2 ⊕ C2 −→ 0.

But the only abelian extension of these groups is their direct product.

Finally, we got the first six cohomology groups for Γ1:

H0(Γ1) = Z, H1(Γ1) = Z,

H2(Γ1) = C2
2 , H3(Γ1) = C2

2 ⊕ C3,

H4(Γ1) = C4
2 ⊕ C3, H5(Γ1) = C4

2 .

The only non-periodic cohomology is that of A4, so we can compute the cohomo-
logy of Γ1 as far as we can compute the cohomology of A4.
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More explicitly, we have the E1-term, for k > 0, as

H∗(A4)⊕ C2
6 ⊕ C2k+1

2 C2
3 ⊕ C2

2

H∗(A4)⊕ C2k
2 0

H∗(A4)⊕ C2
2 ⊕ C2k+2

2 C2
3 ⊕ C2

2

H∗(A4)⊕ C2k+1
2 0

0 . . .

0 . . .

0 . . .

0 . . .

0 1 2

4k

4k + 1

4k + 2

4k + 3

The differential d0,4k
1 is surjective always due to the surjectivity of β1 and β2. Its

kernel is isomorphic to H4k(A4)⊕ C2k+1
2 ; this can be seen by thinking that for each

element in H4k(A4), the options to go to zero are given by a C2k+1
2 .

Conversely, for d0,4k+2
1 , since β1 and β2 are zero maps, we have

Ker(d0,4k+2
1 ) ∼= Ker(α1)⊕ C2k+2

2 and Im(d0,4k+2
1 ) ∼= Im(α1)⊕ C2

2 .

In the quotient E1,4k+2
1 /Im d1 the components with C2 become trivial.

These pairs of kernels and images can be verified using the first isomorphism
theorem.

We have then the E2-term:

H∗(A4)⊕ C2k+1
2 0

H∗(A4)⊕ C2k
2 0

Ker(α1)⊕ C2k+2
2 C2

3/Im(α1 ⊕ α2)

H∗(A4)⊕ C2k+1
2 0

0

0

0

0

0 1 2

4k

4k + 1

4k + 2

4k + 3

With this we can conclude that, for q 6≡ 3 mod 4,

Hq(Γ1) = E0,q
∞ = E0,q

2 .
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For q ≡ 3 mod 4, there is an exact sequence

0 −→ C2
3/Im(α̃) −→ Hq(Γ1) −→ Hq(A4)⊕ C(q−1)/2

2 −→ 0,

where α̃ is the morphism Hq−1(A4)→ C2
3 given by (the direct sum of) two copies of

the induced morphism Hq−1(A4)→ Hq−1(C3) = C3.

10.2 Classifying space for proper actions

Now we give the G-CW-complex structure of a model for X = EΓ1, which has
dimension 2. Let

X(0) = Γ1/A4 × {p}
⊔

Γ1/S3 × {q}
⊔

Γ1/D2 × {r}
⊔

Γ1/S
′
3 × {s},

where each D0 (point) has been labelled with a letter. The 1-skeleton is obtained
from the pushout

Γ1/C3 × S0
⊔

Γ1/C
′
2 × S0

⊔
Γ1/C2 × S0

⊔
Γ1/C

′
3 × S0 X(0)

Γ1/C3 × D1
⊔

Γ1/C
′
2 × D1

⊔
Γ1/C2 × D1

⊔
Γ1/C

′
3 × D1 X(1)

ϕ

inclusion

so that X(1) is the union of X(0) and many copies of D1, identifying the image by ϕ
and the inclusion, respectively, of many copies of S0. Writing each copy of S0 as two
ordered points {−1, 1} and denoting a point in X(0) just as the coset, the map ϕ is
defined as follows: For any γ ∈ Γ1,

ϕ : γC3 × {−1, 1} 7→ {γA4 , γS3},
γC ′2 × {−1, 1} 7→ {γS3 , γD2},
γC2 × {−1, 1} 7→ {γD2 , γS

′
3},

γC ′3 × {−1, 1} 7→ {γS ′3 , γA4}.

This means that we will add a segment between two points whenever their cor-
responding cosets intersect as a coset of any of the cyclic groups in Γ1. Take P , Q,
R, S as the trivial cosets of A4, S3, D2, S ′3, respectively. The space X(1) would begin
to look like this:
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•
P

•
Q

• S •R

•
Q1•

Q2

•
Q3 •

P ′
1

•
S′
1

•S′
2

•S′
3

•P1

•
R1

• R2

•Q′
1

•
R′

1

•
R′

2

•
S1

The lines PQi, i = 1, 2, 3, come from the cosets cC3, c2C3, and ac2C3, respec-
tively. There are no more cosets of S3 connected to A4. It continues similarly.

Finally, we add a 2-cell, filling the square:

Γ1/{1} × S1
X(1)

Γ1/{1} × D2
X(2) = X

This space is proper since all the isotropy groups are finite groups, and this is
because X can be thought as the space obtained from a square by the action of Γ1

with the isotropy groups showed below.

•
A4 •

S3

•
S′3

•
D2

C3

C ′
3 C ′

2

C2
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Also, X is indeed a model for EΓ1, since every fixed space XH , H finite subgroup
of Γ1, is weakly contractible.

An alternate description/construction of this space can be found in [10] and [24].

10.2.1 In the hyperbolic space

It is known that the group PSL2(C) acts on the hyperbolic 3-space H3. We can
describe the action thinking of H3 as quaternions.

Let H3 be the upper half space {(z, ξ) : ξ > 0} ⊂ C× R, considering each pair
as a quaternion:

(z, ξ) = (x+ iy, ξ) = x+ iy + jξ,

where i, j, and ij are the quaternion units. Then, for q ∈ H3, define(
a b
c d

)
· q = (aq + b)(cq + d)−1,

where q−1 =
q

||q||
. It can be shown that the action is well defined, that is, the image

of q is contained in H3.

With this action, we can view the space EΓ1 described before inside H3. Let
q = x + iy + jξ; we want to solve the equation γq = q for the generators of Γ1. We
have the following: If

q = a q =

(
0 i
i 1

)
q = i(iq + 1)−1 =

x+ i(1− y) + jξ

(1− y)2 + x2 + ξ2
,

then the denominator is 1 and 1− y = y, so we obtain the semicircle

y =
1

2
, x2 + ξ2 =

3

4
.

If

q = b q =

(
0 i
i 0

)
q = i(iq)−1 =

x− iy + jξ

y2 + x2 + ξ2
,

then the denominator is 1 and −y = y, so we obtain the semicircle

y = 0, x2 + ξ2 = 1.

If

q = c q =

(
1 1
−1 0

)
q = (q + 1)(−q)−1 =

−x− (x2 + y2 + ξ2) + iy + jξ

x2 + y2 + ξ2
,
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then the denominator is 1 and −x− 1 = x, so we obtain the semicircle

x = −1

2
, y2 + ξ2 =

3

4
.

If

q = d q =

(
0 −1
1 0

)
q = −(q)−1 =

−x+ iy + jξ

x2 + y2 + ξ2
,

then the denominator is 1 and −x = x, so we obtain the semicircle

x = 0, y2 + ξ2 = 1.

Now, we can see that the intersections of the semicircles give

P = −1

2
+
i

2
+

j√
2
, Q =

i

2
+ j

√
3

2
, R = j, and S = −1

2
+ j

√
3

2
.

Note that all four equations found their solution on the half sphere in H3 of elements
with x2 + y2 + ξ2 = 1, so we can form a square (sheet) in the sphere with these four
points. The space EΓ1 is then the space generated by the action of the group Γ1 on
that sheet PQRS.

As we have mentioned before, the action of any Bianchi group on H3 can be used
to find a presentation for the group and to describe it as an amalgamated product.
This was done by Fine [9].

10.3 Bredon cohomology

The Bredon cochain complex with coefficients in the representation ring for the group
Γ1 and the space X = EΓ1 will be of the form

0 −→
⊕
α

0-cells

R(Sα)
d0−−→

⊕
α

1-cells

R(Sα)
d1−−→

⊕
α

2-cells

R(Sα) −→ 0,

where the sum runs over representatives of n-cells, the Sα are the corresponding
stabilizers, and the differentials are given by restriction of representations. We know
that

R(A4) ∼= Z4, R(S3) ∼= R(S ′3) ∼= Z3, R(D2) ∼= Z4, and R(Cn) ∼= Zn,
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so the cochain complex becomes

0 −→ Z4+3+4+3 d0−−−−→ Z3+2+2+3 d1−−−−→ Z −→ 0.

Here, d1 is represented by the matrix ( 1 1 1 1 1 1 1 1 1 1 ), of rank 1, and d0 by the
matrix

−1 0 0 −1 1 1 0
0 −1 0 −1 0 0 1
0 0 −1 −1 0 0 1

−1 0 −1 1 1 0 0
0 −1 −1 0 0 1 1

−1 0 −1 0 1 0 1
0 −1 0 −1 0 1 1

1 0 0 1 −1 −1 0
0 0 1 1 0 0 −1
0 1 0 1 0 0 −1


,

of rank 8. (All the blank spaces mean block of zeros.)
We obtain

Hn
Γ1

(X;R) ∼=


Z6, n = 0;

Z, n = 1;

0, n ≥ 2.

Note that for Bredon homology, the differentials are in the other direction and
are given by induction of representations, so from Frobenius reciprocity we know the
matrices associated are the transposed matrices. We will obtain

HΓ1
n (X;R) ∼=


Z6, n = 0;

Z, n = 1;

0, n ≥ 2.

10.4 The congruence subgroup

To define the desired Hecke operator in K-theory we use a particular subgroup asso-
ciated to a prime in Z[i], so we take a look at those first.

The units in Z[i], the Gaussian integers, are 1, −1, i, and −i. All the primes,
which are the irreducible elements in Z[i], have either one of the following two forms:
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• a or ia, with a prime in Z, such that |a| ≡ 3 mod 4; or

• a+ ib, with a2 + b2 = p prime in Z.

Regarding the second case, it is known that every prime integer p ≡ 1 mod 4 can
be expressed uniquely as a sum a2 + b2, hence it corresponds to eight primes in Z[i]
given by ± a± ib and ± b± ia. In this way, the second case splits into either p ≡ 1
mod 4 or the special case p = 2, where we have the primes ±1± i.

The prime integer 2 is the only one that can be written as a square in Z[i] (so,
the only one which ramifies), and this has some consequences in the behaviour of the
prime 1 + i, for instance. One example of this exceptional behaviour will be exposed
in the computations for the classifying spaces for proper actions and the isotropy
groups.

Let p be any prime in Z[i]. We are interested in the subgroup

K = Γ1 ∩ g−1Γ1g, where g =

(
p 0
0 1

)
∈ GL2(C).

We can describe this subgroup as follows. For any matrix γ we have

g−1γg =

(
1/p 0
0 1

)(
a b
c d

)(
p 0
0 1

)
=

(
a b/p
pc d

)
.

This means that any matrix in K will be of this form. Then

K =

{(
a b
c d

)
∈ Γ1 : c ∈ p · Z[i]

}
,

or, as a congruence subgroup,

K =

{
γ ∈ Γ1 : γ ≡

(
· ·
0 ·

)
mod p

}
.

We can describe the index of K in Γ1. We need the following lemma.
(The notation P̃SL2(F) is used for SL2(F)/{±I}, since without the tilde it would

be the quotient by all the center of the group.)

Lemma 10.1. For a field with q elements, Fq, the size of the group P̃SL2(Fq) is
q(q2 − 1) if q is even and q(q2 − 1)/2 if q is odd.
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Proof. The group SL2(Fq) is the kernel of the surjective homomorphism

det : GL2(Fq) −→ F∗q, so |SL2(Fq)| = |GL2(Fq)|/|F∗q| = |GL2(Fq)|/(q − 1).

The size of GL2(Fq) is equal to the number of bases for F2
q over Fq (there is a

non-singular matrix for every pair of linearly independent vectors in F2
q), which is

equal to the number of non-zero vectors in F2
q times the number of vectors which are

not a multiple of the first one, that is (q2 − 1)(q2 − q).
Then, |SL2(Fq)| = q(q2 − 1). Finally, since P̃SL2(Fq) = SL2(Fq)/{±I}, we divide

by 2 when q is odd and we do not when q is even, because the characteristic of Fq is
2, so I = −I.

It is known that the quotient Z[i]/p is a field and is isomorphic to F|p|, where |p|
is the norm of p in Z[i] (the square of its absolute value as a complex number).

Consider the surjective homomorphism

π : Γ1 = PSL2(Z[i]) −→ P̃SL2(Z[i]/p).

The kernel of π is the group of matrices that are the identity modulo p; the index of
this subgroup in Γ1 is equal to the size of P̃SL2(F|p|). And since Ker(π) is contained
in the group K, we have

(Γ1 : K) =
(Γ1 : Ker(π))

(K : Ker(π))
=
|P̃SL2(F|p|)|
(K : Ker(π))

.

Besides, the index (K : Ker(π)) is equal to the size of the quotient group

K /Ker(π) ∼=
{(

a b
0 a−1

)
∈ P̃SL2(F|p|)

}
,

and the size of this group is |p|(|p| − 1), if |p| is even, or |p|(|p| − 1)/2, if |p| is odd.
(As before, we do not divide by 2 when |p| is even because F|p| has characteristic 2.)

Thus, we obtain that

(Γ1 : K) =
|p|(|p|2 − 1)

|p|(|p| − 1)
= |p|+ 1.

Furthermore, we can give (left and right) coset representatives for Γ1 modulo K.
There are |p| cosets represented by the matrices

γz =

(
1 0
z 1

)
, with z as representatives of Z[i]/p ∼= F|p|,

52



and the last is given by the matrix σ =

(
0 −1
1 0

)
.

Now, we wish to compute the Bredon cohomology associated to K. First, note
that since K is a subgroup of Γ1, we can think of X = EΓ1 as a model for EK.
Then, we need K-orbit representatives for n-cells in X. We can start from the right
coset partition

Γ1 =
⊔

Kγ∈K\Γ1

Kγ.

Note that for any cell e ⊂ X, the Γ1-orbit of e splits into the union of some K-orbits,

Γ1 · e =
⋃

Kγ∈K\Γ1

Kγ · e,

and, after omitting repetitions, the union would be disjoint (apart from the bound-
aries). To count these repetitions, it is sufficient to find if there exists any k ∈ K
such that

γ−1k γ′ ∈ StabΓ1(e) for two distinct representatives γ, γ′ of K\Γ1,

in which case we would know that the K-orbits of γe and γ′e are the same.

10.4.1 Bredon cohomology

We will focus on the case p = 1 + i. With this prime we will compute Bredon
cohomology, K-theory and the Hecke operator.

We have that (Γ1 : K) = |1 + i|+ 1 = 3 and

Γ1 = Kγ0 t Kγ1 t Kσ = K

(
1 0
0 1

)
t K

(
1 0
1 1

)
t K

(
0 −1
1 0

)
.

First we search for repeated K-orbits. These are all we need:

γ−1
0

(
−i i
i− 1 1

)
γ1 =

(
0 i
i 1

)
= a, σ−1

(
i 1
0 −i

)
γ0 =

(
0 i
i 1

)
= a,

γ−1
0

(
1 −1
0 1

)
γ1 =

(
0 −1
1 1

)
= c2, σ−1

(
1 0
0 1

)
γ1 =

(
1 1
−1 0

)
= c,

σ−1

(
i 0
0 −i

)
γ0 =

(
0 i
i 0

)
= b, σ−1

(
1 0
0 1

)
γ0 =

(
0 −1
1 0

)
= d,
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γ−1
0

(
i 1
0 −i

)
γ1 =

(
1 + i 1
−i −i

)
= a2c, σ−1

(
i i

1 + i 1

)
γ0 =

(
1 + i 1
−i −i

)
= a2c,

γ−1
0

(
i 0

1 + i −i

)
γ1 =

(
i 0
1 −i

)
= ad, σ−1

(
−i i
i− 1 1

)
γ1 =

(
i 1
0 −i

)
= a2d,

γ−1
0

(
−i 0
0 i

)
γ1 =

(
−i 0
i i

)
= bc, σ−1

(
−i i
0 i

)
γ1 =

(
i i
0 −i

)
= bc2.

For 0-cells we have

Γ1 · P = K · P, Γ1 ·Q = K ·Q, Γ1 · S = K · S, and

Γ1 ·R = K ·R t Kγ1 ·R = K ·R t K · R̃,

with R̃ = γ1R. For 1-cells, we have

Γ1 · PQ = K · PQ, Γ1 ·QR = K ·QR t K ·QR̃,

Γ1 ·RS = K ·RS t K · R̃S, and Γ1 · SP = K · SP,

with QR̃ = γ1QR and R̃S = γ1RS. And last, the orbit of the 2-cell is not repeated,
so there are three 2-cells in the quotient X/K. Let E be the 2-cell PQRS.

The quotient space X/K would look like this:

•P •
Q

•
S

•
R
•
R̃

With two 2-cells E and σE with the same
boundary, and one other 2-cell γ1E.

The stabilizer of each orbit representative is the intersection between the stabilizer
in Γ1 and the subgroup K, so

StabK(P ) = A4 ∩K = 〈ac, ca, ac2a〉 ∼= D2,

StabK(Q) = S3 ∩K = 〈a2d〉 ∼= C2, StabK(R) = D2 ∩K = 〈bd〉 ∼= C2,
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StabK(R̃) = γ1 StabK(R)γ−1
1
∼= C2, StabK(S) = S ′3 ∩K = 〈bc2〉 ∼= C2.

All the other stabilizers are trivial. The cochain complex becomes

0 −→ Z4+2+2+2+2 d0−−−−→ Z6 d1−−−−→ Z3 −→ 0 −→ · · · .

Here, d0 is represented by the matrix
−1 −1 −1 −1 1 1

−1 −1 1 1
−1 −1 1 1

−1 −1 1 1
−1 −1 1 1

1 1 1 1 −1 −1

 ,

of rank 4, and d1 by the matrix 1 1 0 1 0 1
1 1 0 1 0 1
1 0 1 0 1 1

 ,

of rank 2.
We obtain

Hn
K(X;R) ∼=


Z8, n = 0;

0, n = 1, n > 2;

Z, n = 2.

As before, the homology is computed with the transposed matrices. We have

HK
n (X;R) ∼=


Z8, n = 0;

0, n = 1, n > 2;

Z, n = 2.

10.4.2 The conjugate

To compute the Hecke operator, we will use the group

gK := gKg−1 = Γ1 ∩ gΓ1g
−1.
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In this case,

gK =

{
γ ∈ Γ1 : γ ≡

(
· 0
· ·

)
mod p

}
.

For the coset representatives, we can take ηz as the transpose of γz and it works in
the same way.

With p = 1 + i, we do the same computations as for K, we obtain that X/gK
looks the same as X/K, and

StabgK(P ) = A4 ∩ gK = 〈ac, ca, ac2a〉 ∼= D2,

StabgK(Q) = S3 ∩ gK = 〈ad〉 ∼= C2, StabgK(R) = D2 ∩ gK = 〈bd〉 ∼= C2,

StabgK(R̃) = η1 StabgK(R) η−1
1
∼= C2, StabgK(S) = S ′3 ∩ gK = 〈bc〉 ∼= C2.

Here, η1 =

(
1 1
0 1

)
and R̃ = η1R. All the other stabilizers are trivial. The cochain

complex would be the same and

Hn
gK(X;R) ∼=


Z8, n = 0;

0, n = 1, n > 2;

Z, n = 2.

10.4.3 For other primes

For any other prime in Z[i], we can use the same process described before to obtain
the structure of the quotient space X/K and then the isotropy groups of each orbit.

With p a prime in Z[i], we can compute the orbits of cells with the following GAP
program.

R := GaussianIntegers;

i := Sqrt(-1);

q := RealPart(p)^2 +ImaginaryPart(p)^2;

max := Maximum( RealPart(p), ImaginaryPart(p) );

## Representatives for Z[i] mod p

list := [];

for x in [ 0 .. max ] do
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for y in [ 0 .. max ] do

z := QuotientMod( R, x+y*i, 1, p );

Add( list , z );

od;

od;

reprsZi := ShallowCopy( DuplicateFreeList( Concatenation( list

, -1*list , i*list , -i*list ) ) );

## Coset representatives for Gamma1 mod K

reprs := [ [[1,0],[0,1]], [[0,-1],[1,0]] ];

for j in [ 2 .. Length(reprsZi) ] do

new := [[1,0],[ reprsZi[j] ,1]];

Add( reprs , new );

od;

## Generators for Gamma1

a := [[0,i],[i ,1]];

b := [[0,i],[i ,0]];

c := [[1,1],[-1 ,0]];

d := [[0, -1] ,[1 ,0]];

## Finite subgroups of Gamma1

Ca := Group( [a] ); Cb := Group( [b] ); Cc := Group( [c] ); Cd

:= Group( [d] );

A := Group( [a,c] ); S1 := Group( [a,d] ); S2 := Group( [b,c]

); D := Group( [b,d] );

## Lists that will be orbit partition for cells

Porb := []; Qorb := []; Rorb := []; Sorb := [];

PQorb := []; QRorb := []; RSorb := []; SPorb := [];

PQRSorb := [];

## Association of cells with their isotropy groups

cells := [ [Porb , A, "0-cell P"], [Qorb , S1, "0-cell Q"], [

Rorb , D, "0-cell R"], [Sorb , S2 , "0-cell S"],

[PQorb , Ca , "1-cell PQ"], [QRorb , Cd, "1-cell QR"], [RSorb , Cb
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, "1-cell RS"], [SPorb , Cc, "1-cell SP"],

[PQRSorb , [[[1 ,0] ,[0 ,1]]] , "2-cell"] ];

## Making of the partition of orbit representatives

for e in [ 1 .. Length(cells) ] do

orbits := ShallowCopy(reprs);

partition := cells[e,1];

group := cells[e,2];

count := 0;

while Length(orbits) > 1 do

Add( partition , [] );

count := count +1;

g1 := orbits [1];

Add( partition[count], g1 );

for j in [ 2 .. Length(orbits) ] do

g2 := orbits[j];

switch := 0; k := 1;

while switch = 0 and k <= Length( Elements(group)

) do

x := Elements(group)[k];

y := g1 * x * g2^(-1);

if y[2,1]/p in R then

Add( partition[count], g2 );

orbits[j] := g1;

switch := 1;

fi;

k := k+1;

od;

od;

orbits := DuplicateFreeList( orbits );

Remove( orbits , 1 );

od;

if Length(orbits) = 1 then

Add( partition , [ orbits [1] ] );

fi;

Print( "Orbits of ", cells[e,3], ": ", Size( partition ),

"\n" );

od;
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The part Representatives for Z[i] mod p does not work for p := 1+i. In
that case we just need reprsZi := [ 0, 1 ].

As said earlier, each orbit in X/Γ1 splits in at most (Γ1 : K) different orbits in
X/K. This GAP program searches which of those (Γ1 : K) orbits are actually the
same by the action of K and make that partition in the lists Porb, . . . , PQorb, . . . .

For example, for p := 1+i the output is

Orbits of 0-cell P: 1

Orbits of 0-cell Q: 1

Orbits of 0-cell R: 2

Orbits of 0-cell S: 1

Orbits of 1-cell PQ: 1

Orbits of 1-cell QR: 2

Orbits of 1-cell RS: 2

Orbits of 1-cell SP: 1

Orbits of 2-cell: 3

And, having made the change reprsZi := [ 0, 1 ], we have

gap > Rorb [1];

[ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, -1 ], [ 1, 0 ] ] ]

gap > Rorb [2];

[ [ [ 1, 0 ], [ 1, 1 ] ] ]

For p := 2+i (a prime in Z[i] with the next smallest norm), we have (Γ1 : K) =
|2 + i|+ 1 = 6 and

Orbits of 0-cell P: 1

Orbits of 0-cell Q: 2

Orbits of 0-cell R: 3

Orbits of 0-cell S: 2

Orbits of 1-cell PQ: 2

Orbits of 1-cell QR: 4

Orbits of 1-cell RS: 4

Orbits of 1-cell SP: 2

Orbits of 2-cell: 6

so there are four 1-cells (from QR) joining two 0-cells (from Q) with three 0-cells
(from R). To know where the lines should be, we use the partition for those orbits:
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gap > Qorb;

[ [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, -1 ], [ 1, 0 ] ], [ [ 1, 0

], [ E(4), 1 ] ] ],

[ [ [ 1, 0 ], [ 1, 1 ] ], [ [ 1, 0 ], [ -1, 1 ] ], [ [ 1,

0 ], [ -E(4), 1 ] ] ] ]

gap > Rorb;

[ [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, -1 ], [ 1, 0 ] ] ],

[ [ [ 1, 0 ], [ E(4), 1 ] ], [ [ 1, 0 ], [ -E(4), 1 ] ] ],

[ [ [ 1, 0 ], [ 1, 1 ] ], [ [ 1, 0 ], [ -1, 1 ] ] ] ]

gap > QRorb;

[ [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, -1 ], [ 1, 0 ] ] ],

[ [ [ 1, 0 ], [ E(4), 1 ] ] ],

[ [ [ 1, 0 ], [ 1, 1 ] ], [ [ 1, 0 ], [ -1, 1 ] ] ],

[ [ [ 1, 0 ], [ -E(4), 1 ] ] ] ]

Then the quotient space X/K is

• •
•

•
•
•

•
•

where there are two 2-cells in the main square PQRS and the other four are all the
other possible combinations.

Now, with any prime in Z[i] different from 1 + i, the isotropy group of any 0-cell
is a cyclic group of order two and the rest are all trivial. This is simply because those
are the intersections of the isotropy groups with K. As a consequence, computing
the Bredon cohomology is easy. We just need to know the relation between the orbits
of cells to compute the differentials.

As part of possible future work, we can develop an algorithm to obtain explicitly
the structure of the quotient space X/K, and furthermore the Bredon cohomology
groups Hn

K(X;R).
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10.5 K-theory and Hecke operator

From the Atiyah-Hirzebruch spectral sequence we know that, since Bredon cohomo-
logy Hn

Γ1
(X;R) is trivial for n ≥ 2,

Kn
Γ1

(X) ∼=

{
Z6, n even;

Z, n odd.

Similarly, for the subgroup K (and gK), the spectral sequence converges already
in E2 so there is a short exact sequence

0 −→ H2
K(X;R) −→ K0

K(X) −→ H0
K(X;R) −→ 0,

but in this case Bredon cohomology groups are free Z-modules, so the extension
problem is trivial. Therefore we have

Kn
K(X) ∼=

{
Z9, n even;

0, n odd.
∼= Kn

gK(X)

Note that the K-theory of this groups are free Z-modules, so after dropping the
C we have the isomorphism

Kn
G(X) ∼=

⊕
[g] in G

Kn(Xg)C(g)

for Γ1, K, and gK. We compute the Hecke operator there directly, using the defini-
tion in Section 6.5.

We need the conjugacy classes of Γ1 and K (and gK). First, note that we only
care for conjugacy classes of elements of finite order. Since Γ1 is an amalgamated
product, all elements of finite order are conjugate to those in the factor groups A4,
S3, S ′3, and D2. So we just need to know which of them are conjugate.

In each group the conjugacy classes are the following:

A4 = {1} t {a, c2, a2c, ca2} t {c, a2, c2a, ac2} t {ac, ac2a, a2c2},

S3 = {1} t {a, a2} t {d, ad, a2d}, S3 = {1} t {c, c2} t {b,bc,bc2},

D2 = {1} t {b} t {d} t {bd}.
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Combining them, we obtain six conjugacy classes of finite elements. These are rep-
resented by

1, a, ac, b, d, and bd.

We know there must be six because HΓ1
0 (X;R) = Z6, as seen in Theorem 4.1.

For the conjugacy classes in the subgroup K (and gK), first we already know the
intersections of the factor groups of Γ1 with K (and gK). Also, we know what is the
orbit space X/K (and X/gK). We can affirm that the elements of finite order in K
(and gK) are conjugate to those in the stabilizers associated to each orbit of cells in
X/K (and X/gK). Thus, we have the eight conjugacy classes with representatives

1, ac, ac2a, a2c2, bc2, a2d, bd, and γ1bdγ−1
1

(and
1, ac, ac2a, a2c2, bc, ad, bd, and η1bdη−1

1 ).

We know there must be eight because HK
0 (X;R) = Z8 (and HgK

0 (X;R) = Z8).

Having Theorem 5.2, we want to identify each copy of Z in the 0-th K-theory of
Γ1 and K (and gK) with one of the summands K∗(Xg)C(g) to split each map. For
Γ1, each conjugacy class corresponds to one copy of Z. In K (and gK), the factor
corresponding to the trivial conjugacy class is

K0(X1)CK(1) ∼= K0(X/K) ∼= Z⊕Z,

since X/K is homotopy equivalent to S2 (and the same for gK).

First, for
res : K0

Γ1
(X) ∼= Z6 −→ K0

K(X) ∼= Z9

in conjugacy classes, we have

[1] −→ [1]

[a] −→

[ac] −→ [ac], [ac2a], [a2c2]

[b] −→ [bc2]

[d] −→ [a2d]

[bd] −→ [bd], [γ1bdγ−1
1 ].
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The part corresponding to the identity is a homomorphism Z → Z⊕Z, where the
second component in K0(X/K) comes from a non-trivial vector bundle, and here
the image of a trivial bundle cannot be a non-trivial bundle, so this part would be
just an inclusion into the first component.

With the others, the map can be represented by the matrix

1 a ac b d bd
1 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 1 0 0 0 ac
0 0 1 0 0 0 ac2a
0 0 1 0 0 0 a2c2

0 0 0 1 0 0 bc2

0 0 0 0 1 0 a2d
0 0 0 0 0 1 bd
0 0 0 0 0 1 γ1bdγ−1

1


.

Next, for the map

Adg : K0
K(X) ∼= Z9 −→ K0

gK(X) ∼= Z9,

after some computations we have the identifications, given by conjugation g g−1,

[1] −→ [1]

[ac] −→ [bc]

[ac2a] −→ [ad]

[a2c2] −→ [η1bdη−1
1 ]

[bc2] −→ [ac2a]

[a2d] −→ [a2c2]

[bd] −→ [bd]

[γ1bdγ−1
1 ] −→ [ac]
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then the matrix is

1 1 ac ac2a acc2 bc2 a2d bd γ1bdγ−1
1

1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 ac
0 0 0 0 0 1 0 0 0 ac2a
0 0 0 0 0 0 1 0 0 a2c2

0 0 1 0 0 0 0 0 0 bc
0 0 0 1 0 0 0 0 0 ad
0 0 0 0 0 0 0 1 0 bd
0 0 0 0 1 0 0 0 0 η1bdη−1

1


.

At last, for the corestriction map

cores : K0
gK(X) ∼= Z9 −→ K0

Γ1
(X) ∼= Z6,

we have in conjugacy classes

[1] −→ [1]

−→ [a]

[ac], [ac2a], [a2c2] −→ [ac]

[bc] −→ [b]

[ad] −→ [d]

[bd], [η1bdη−1
1 ] −→ [bd].

We want to describe how each centralizer (of the representatives of conjugacy

classes in gK) in Γ1 intersects with gK. For γ =

(
a b
c d

)
, we want to know when

each element commute with γ, that is, when γ−1kγ = k. Recall that all the calcula-
tions must be made modulo ±I, the identity matrix.

First, (CΓ1(1) : CgK(1)) = (Γ1 : gK) = 3, and there is a homomorphism

K0(X)gK ∼= Z⊕Z −→ K0(X)Γ1 ∼= Z .

This part of the transfer map would be the block ( 3 3 ).
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Now, we have the following:

γ−1acγ = γ−1

(
−i 0
i− 1 i

)
γ =

(
· b((1− i)b− 2id)
· ·

)
,

so b = 0 or (1 − i)b = 2id = i(1 + i)(1 − i)d and b = i(1 + i)d, thus b is always a
multiple of 1 + i. This means that CΓ1(ac) = CgK(ac).

γ−1ac2aγ = γ−1

(
−1 i− 1
i+ 1 1

)
γ =

(
· (i− 1)(ib+ d)(b+ d)
· ·

)
,

so (ib+d)(b+d) = ±1. When it is equal to 1 it means that either ib+d = b+d = ±1,
that implies b = 0, or ib + d = −b − d = ±i, that implies b = ±(1 − i). The other
case forces b to be a multiple of 1 + i as well. We have CΓ1(ac2a) = CgK(ac2a) as
before.

γ−1a2c2γ = γ−1

(
i 1 + i
0 −i

)
γ =

(
· (1 + i)((1 + i)b+ d)d
· ·

)
,

so ((1+i)b+d)d = ±1. When it is equal to 1 it means that either (1+i)b+d = d = ±1,
that implies b = 0, or (1 + i)b+ d = −d = ±i, that implies b = ±(−1− i). The other
case forces b to be a multiple of 1 + i as well. We have again CΓ1(a

2c2) = CgK(a2c2).

γ−1bcγ = γ−1

(
−i 0
i i

)
γ =

(
· −ib(b+ 2d)
· ·

)
,

so either b = 0 or b = −2d = (1 + i)(i− 1)d. This means that CΓ1(bc) = CgK(bc).

γ−1adγ = γ−1

(
−i 0
−1 i

)
γ =

(
· b(b− 2id)
· ·

)
,

so either b = 0 or b = 2id = (1 + i)2d. This means that CΓ1(ad) = CgK(ad).

γ−1bdγ = γ−1

(
−i 0
0 i

)
γ =

(
−i(ad+ bc) −2ibd

2iac i(ad+ bc)

)
,

so either b = 0 or d = 0. If b = 0, γ is the identity matrix. In the later case, we
have bc = ±1, but since ad − bc = 1, bc must be −1, which leaves only one other
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possibility not in K, because a = 0. Then, (CΓ1(bd) : CgK(bd)) = 2.

γ−1(η1bdη−1
1 )γ = γ−1

(
−i 2i
0 i

)
γ =

(
· 2id(d− b)
· ·

)
,

so d(d − b) = ±1; all cases lead to b = 0 or b = ±2i. Thus, CΓ1(η1bdη−1
1 ) =

CgK(η1bdη−1
1 ).

Then, gathering the previous information, the map would be represented by the
matrix 

1 1 ac ac2a a2c2 bc ad bd η1bdη−1
1

3 3 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 a
0 0 1 1 1 0 0 0 0 ac
0 0 0 0 0 1 0 0 0 b
0 0 0 0 0 0 1 0 0 d
0 0 0 0 0 0 0 2 1 ac


.

Finally, we obtain the Hecke operator

Tg : K0
Γ1

(EΓ1) −→ K0
Γ1

(EΓ1)

given by the matrix 

1 a ac b d bd
3 0 0 0 0 0 1
0 0 0 0 0 0 a
0 0 0 1 1 1 ac
0 0 1 0 0 0 b
0 0 1 0 0 0 d
0 0 1 0 0 2 bd


.
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