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Abstract
This work is a review of the congruent zeta function and the Weil conjectures for non-singular
curves. We derive an equation to obtain the number of solutions of equations over finite fields

using Jacobi sums in order to compute the Zeta function for specific equations. Also, we
introduce the necessary algebraic concepts to prove the rationality and functionality of the zeta

function.

Key Words: Weil Conjectures, Congruent Zeta function, Equations over finite fields,
Gauss sum, Jacobi sum, Nonsingular Complete Curves, Divisors, Riemann-Roch Theorem



Contents

Acknowledgements 5

1 Counting Solutions of Polynomial Equations. 9
1.1 Multiplicative Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Gauss Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Jacobi Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Restrictions and Lifts of Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 First steps to understand the Zeta Function 27
2.1 Dedekind Domians & The Ideal Class Group . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Valuations, Nonsingular Complete Curves & Divisors. . . . . . . . . . . . . . . . . . 30
2.3 Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 The Zeta Function & Weil Conjetures. 43
3.1 A Litlle Bit of History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Examples of the Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Weil Conjectures for Nonsingular Curves. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3



4



Acknowledgements

Este trabajo y todo mi esfuerzo esta dedicado a mi mamá, Yolima. Quiero agradecerle por todo el
amor que me ha brindado en mi vida. Su apoyo y sacrificio ha sido esencial para mi desarrollo
como persona y matemático. Las palabras no me alcanzar para agradecerle por todo lo que me
hado en la vida. También, quiero agradecer a mis tios: Rafael y Patricia, por el apoyo que me
han dado a mi madre y a mi.

Quiero agradecer a mi tutor, Jesus Ochoa, por su tiempo y dedicación en la realización de
este trabajo, y a mi formación como matemático. Sus consejos y conocimiento a lo largo de la
carrera han sido valiosos. Quiero agradecer a los profesores Jorge Plazas y Rafael Gonzáles, por
el conocimiento, el apoyo, y los consejos que me han dado. También, quiero agradecer a todos los
profesores de la Universidad Javeriana que fueron participes en mi educación y en mi formación
como matemático.

Finalemente quiero agradecer a los amigos que hecho en la universidad. Por ser mi acom-
pañamiento durante estos cuatro años. Por los buenos momentos y la felicidad que me han dado.

¡Gracias Totales!

5



6



Introduction

Mathematicians have been interested in polynomial equations with integer solutions since ancient
times. These equations are called Diophantine equations. The most famous example of this type
of equation is

Xn + Yn = Zn, n > 2. (1)

Fermat conjectured that this equation does not have nonzero integer solution. It was until the
end of 20th century that Andrew Wiles solved this problem.
To solve (1) is equivalent to find the solution of

xn + yn = 1, n > 2 (2)

in Q. However, it is still hard to find a solution in Q. Instead, we can consider the equation (2) in
a finite field Fpm . The reason, as Koblitz says in his paper [Kob82] from which we base ourselves
for this introduction, is that it’s easier! Just count the number of solutions. The first chapter
of this work is devoted to finding a method to count the number of solutions of a polynomial
equation over a finite field denoted by Nm; or at least, try to find a bound.
In general, given a prime number p and an equation f (x, y) = 0 with f ∈ Fqm[x, y], where q = pn.
We can encode the sequence {Nm}

∞
m=1 into the generating series

Z(T ) = exp(
∞∑

m=1

NmT m

m
),

called the Congruence Zeta function. The form of Z(T ) may appear strange at first, but it has in-
teresting properties, known as the Weil Conjectures due to the French mathematician André Weil,
who stated the conjectures in [Wei49]. In chapter 3, we derive the zeta function and compare it
with the Riemann and Dedekind ζ function. Also, we compute several examples of the congruence
zeta function and prove two of the Weil conjectures for the case of nonsingular curves. Chapter
2 is devoted to presenting the necessary tools to comprehend chapter 3. We introduce Dedekind
domains, ideal class groups, divisors, and the Riemann-Roch theorem.

It is worth to mention another two reasons to consider equations over finite fields, although
we do not delve deeper about these topics in this work. The first conjecture states that the
zeta function is a rational function, and for curves, the degree of the numerator is twice the Betti
number of the corresponding complex Riemann surface. If we consider the set of complex numbers
(x, y) that satisfy the equation (2), we obtain a surface having g = (N − 1)(N −2)/2 "handles". Thus
there is a relationship between the number-theoretic properties of the equation considered mod p
and its "physical" properties when it is considered complex-analytically. Another parallel between
this two branches, is that, in classical theory of algebraic curves over the complex numbers, one

7



associates to them certain definite integrals, called "periods". In the case of equation (2), these
integrals are of the form

1∫
0

x j/N(1 − x)k/N dx
x(1 − x)

.

In chapter 1, we introduce Jacobi sum, which is analogous to the expression above. So another
reasons for studying equations over finite fields is that deep analogies exist between finite-field
theoretic and complex analytic properties of equations.

The second reason for studying over finite fields is that sometimes such information can be
pieced together to tell us something about the set of solutions in the field Q of rational numbers.
The best example is the conjecture on elliptic curves formulated by Birch and Swinnerton-Dyer
in the early 1960’s. Let y2 = f (x), where f (x) is a cubic polynomial with integer coefficients and
distinct roots. This is called an "ellitic curve". The complex Riemann surface corresponding to
this equation has one "handle", i.e., the Betti number g is equal to 1.

If we now consider the equation y2 = f (x) mod a prime p and count all the solutions (x, y) ∈
Fpm , for each m, then we can consider the zeta function

Zp(T ) = exp
∞∑

m=1

Np,mT m

m
.

Sine g = 1, the numerator of Zp(T ) has dimension 2. Moreover, the Weil conjectures says that

Zp(T ) =
1 − apT + pT 2

(1 − T )(1 − pT )
.

Taking log in both expressions of Zp(T ) and equate coefficients of T in the two power series
expansion, we obtain the formula

ap = p + 1 − N1,p.

We just need to find the value of N1,p and substituting in the equation to obtain ap. Thus, finding
the exact expression for Zp(T ). Since Zp(T ) determines all of the Nm,p, once we know N1,p, all the
Nm,p can be found.

Once we know Zp(T ) for each prime p, we can combine all of this information into a single
function. This function, called the Hasse-Weil zeta function, is defined as follows for s a complex
number:

Z(s) =
∏

p

1
1 − ap p−s + p1−2s .

Using well-known estimates for ap, the infinite product converges when Re(s) > 3/2. Moreover, for
a broad class of elliptic curves, Z(s) is known to extend by analytic continuation to a meromorphic
function on the entire complex s-plane; and this is conjectured to be the case for all elliptic curves.
Assuming that this extendibility conjecture is true, Birch and Swinnerton-Dyer make the following
statement

Conjecture 0.0.1. Z(1) = 0 if and only if the equation y2 = f (x) has infinitely many rational
solutions x, y ∈ Q.

As the reader can see, the connections between information about finite field solutions to
equations, and information about Q-solutions are very subtle, indirect, and difficult. Intensive
efforts by number theorist have been, and for a long time will continue to be, directed toward
understanding such connections.
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Chapter 1

Counting Solutions of Polynomial
Equations.

In this chapter, we want to introduce a method for counting the number of solutions of polynomial
equations defined over a finite field. This method is constructed using Gauss and Jacobi sums.
The behavior of these sums provides a connection with the number of solutions. Through all the
sections we consider the field Fp = Z/pZ with p a prime number, and the field Fq with q elements,
where q = pn for some n > 0.

1.1 Multiplicative Characters

Definition 1.1.1. Let Fq be a finite field, a multiplicative character on Fq is a map χ from F∗q to
the nonzero complex numbers that satisfies

χ(ab) = χ(a)χ(b) for all a, b ∈ F∗q

Example 1.1.1. The trivial multiplicative character is the map ε : F∗q → C defined by ε(a) = 1 for
all a ∈ F∗q.

It is possible to extend the notion of multiplicative character over all Fq as follows:

1. If χ , ε, we define χ(0) = 0.

2. if χ = ε, we take ε(0) = 1.

The next theorem exposes some basic properties of the multiplicative characters.

Theorem 1.1.2. Let χ be a multiplicative character and a ∈ F∗q. Then

1. χ(1) = 1

2. χ(a) is a q − 1 th root of unity.

3. χ(a−1) = χ(a)−1 = χ(a)

Proof. The proof of items 1. and 3. can be found in [IR90, Proposition 8.1.1]. In this reference,
the proof of item 2. is made for q = p, we will prove for q = pn for any n > 0.
We know that aq−1 = 1, for all a ∈ F∗q, which implies that 1 = χ(1) = χ(aq−1) = χ(a)q−1, i.e., χ(a) is
a q − 1 th root of unity.

�
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The next example presents the Legendre and Jacobi symbol, which are a special kind of
character. If the reader wants to know more about these symbols, like the quadratic reciprocity
law, refer to [Apo76] and [IR90].

Example 1.1.3. Consider a,m ∈ Z with (a,m) = 1, then a is called a quadratic residue mod m if
the congruence x2 ≡ a(m) has a solution. Otherwise a is called a quadratic nonresidue mod m.
Associated with this concept, Legendre in 1798 introduced the Legendre symbol (a/p) where p is
a prime number. We define the Legendre symbol by 1 if a is a quadratic residue mod p, −1 if a is
a quadratic nonresidue mod p, and zero if p|a. The Legendre symbol considered as a function of
the coset of a modulo p is a multiplicative character. In [IR90, Chapter 5, Theorem 1] is proved
that (−1/p) = (−1)(p−1)/2.

To determine if a number is a quadratic residue or nonresidue module of a composite number
m it is necessary to consider several cases depending on the quadratic character of the factors.

Suppose m a positive odd integer with prime factorization

m =

r∏
i=1

pai

i .

The Jacobi symbol (n/m) is defined for all integers n by the equation

(n/m) =

r∏
i=1

(n/pi)ai
,

where (n/pi) is the Legendre symbol. Set (n/1) = 1.
The congruence

x2 ≡ n (m)

has a solution if and only if (n|pi) = 1 for all prime pi of the factorization of m.
Again, the Jacobi symbol (−1/m) is given by (−1)(m−1)/2, the proof can be consulted in [Apo76,

Theorem 9.10]

Theorem 1.1.4. Let χ be a multiplicative character. If χ , ε, then
∑
t
χ(t) = 0, where the sum is

over all t ∈ Fq. If χ = ε the value of the sum is q.

Proof. The last assertion is obvious, so we may assume that χ , ε. There exists an a ∈ F∗q such
that χ(a) , 1. Let T =

∑
t∈Fq

χ(t), then

χ(a)T =
∑
t∈Fq

χ(a)χ(t) =
∑
t∈Fq

χ(at) =
∑
t̂∈Fq

χ(t̂) = T.

Since χ(a)T = T and χ(a) , 1, therefore T = 0. �

Remark 1.1.5. The multiplicative characters form a group with composition and inverse defined
as follows:

1. If χ and λ are characters, then χλ is the map that takes a ∈ F∗q to χ(a)λ(a).

2. If χ is a character, χ−1 is the map that takes a ∈ F∗q to χ(a)−1.

3. ε is the identity of the group.
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Theorem 1.1.6. The group of multiplicative characters is a cyclic group of order q − 1.

Proof. We know that F∗q is cyclic since the multiplicative group of a finite field is cyclic. Let g ∈ F∗q
be a generator. Then every a ∈ F∗q has the form a = gl for l ∈ {1, 2, . . . , q − 1}. If χ is a character,
then χ(a) = χ(g)l. This shows that χ is completely determined by the value of χ(g). Since χ(g) is
a q − 1 th root of unity, it follows that the character group has order at most q − 1.

Now define a function λ by the equation λ(gk) = e2πi(k/(q−1)). By the properties of the ex-
ponential, λ is a multiplicative character. Suppose n is the smallest integer such that λn = ε,
then λn(g) = ε(g) = 1. However, λn(g) = e2πi(n/(q−1)) = 1. It follows that q − 1 divides n. Since
λq−1(a) = λ(aq−1) = λ(1) = 1 we have λq−1 = ε so n = q − 1, and all the character ε, λ, λ2, . . . , λq−2

are distinct. We have proved that there are exactly q − 1 characters and λ is a generator. �

Corolary 1.1.1. If a ∈ F∗q and a , 1, then there is a character χ such that χ(a) , 1. Moreover,∑
χ
χ(a) = 0, where the summation is over all characters.

Proof. We have a = gl with q − 1 - l, then λ(a) = λ(g)l = e2πi(l/(q−1)) , 1. Let S =
∑
χ
χ(a). Since

a , 1, there is a character λ such that λ(a) , 1. Then

λ(a)S =
∑
χ

λ(a)χ(a) =
∑
χ

λχ(a) =
∑
χ̂

χ̂(a) = S

The sums are over all the characters. It follows that (λ(a) − 1)S = 0, thus S = 0. �

Now we will state some theorems that will lead us to a method to determine the number of
solution of xn = a.

Theorem 1.1.7. Let α ∈ F∗q. The equation xn = α is solvable iff α(q−1)/d = 1 where d = (n, q− 1). In
addition, d is the number of solutions.

For the proof we need the following result:

Theorem 1.1.8. Let a,m ∈ Z and d = (a,m). The congruence ax ≡ b (m) has solutions iff d|b. If
d|b, then there are exactly d solutions.

Proof. The proof is stated and proved in [IR90, Theorem 3.3.1]. �

Now we continue with the proof of the Theorem 1.1.7.

Proof. Let γ be a generator of F∗q and set α = γa and x = γy. Then

xn = α ⇔ γny = γa ⇔ γny−a = 1 ⇔ (q − 1)|(ny − a) ⇔ ny ≡ a (q − 1)

Then d must divide a as consequence of Theorem 1.1.8.

α(q−1)/d = (γa)(q−1)/d = (γdk)(q−1)/d = γk(q−1) = 1.

Moreover, by the same theorem, the equation has d solutions.
Now suppose α(q−1)/d = 1, then γa(q−1)/d = 1. This means that d|a or q− 1 divides a(q− 1)/d . In

the first case, we get ny ≡ a (q − 1) is solvable, and we obtain the result consequently of the first
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part of the proof. Now, assume that q − 1 divides a(q − 1)/d. Set (q − 1) = dk1 for some k1, notice
that

a(q − 1)/d = (q − 1)k2 ⇔ ak1 = (q − 1)k2 ⇔ a(q − 1) = d(q − 1)k2

⇔ 0 = d(q − 1)k2 − a(q − 1) ⇔ 0 = (q − 1)(dk2 − a) ⇔ dk2 = a.

Hence d|a, and we obtain the first case. In both cases xn = a has a solution.
�

For simplicity, we will assume that n|q−1 and d = (n, q−1), the reason will be given in Theorem
1.1.11.

The next theorems provide a connection between the characters and the solutions of xn = a
with a ∈ Fq.

Theorem 1.1.9. If a ∈ F∗q and xn = a is not solvable, then there is a character χ such that

1. χn = ε

2. χ(a) , 1

Proof. Let g and λ be as in theorem 1.1.6 and set χ = λ(q−1)/n. Then χ(g) = λ(g)(q−1)/n = e2πi/n.
Now let a = gl for some l, and since xn = a is not solvable, we must have that n does not divide
l. Then χ(a) = χ(g)l = e2πi(l/n) , 1. Finally, χn = λq−1 = ε. �

Theorem 1.1.10. For a ∈ Fq, let N(xn = a) denote the number of solutions of the equation xn = a,
then we have

N(xn = a) =
∑
χn=ε

χ(a),

where the sum is over all characters of order dividing n.

Proof. First we prove that there are exactly n character of order dividing n. If g is a generator of
F∗q then the value of χ(g) for such a character must be an nth root of unity, there are at most n
such characters. In the proof of theorem 1.1.9, we found a character χ such that χ(g) = e2πi/n. It
follows that ε, χ, χ2, . . . , χn−1 are n distinct characters of order dividing n.
To prove the formula, notice that x = 0 is the only solution of xn = 0 and

∑
χn=ε

χ(0) = 1.

Now suppose that a , 0 and that xn = a is solvable; i.e., there is an element b such that
bn = a. Remember that by theorem 1.1.7, there are n solutions of xn = a. If χn = ε, then
χ(a) = χ(bn) = χ(b)n = ε(b) = 1. Thus

∑
χn=ε

χ(a) = n = N(xn = a).

Finally, suppose that xn = a is not solvable. Let T =
∑
χn=ε

χ(a). By theorem 1.1.9, there is a character

ρ such that ρ(a) , 1 and ρn = ε. Now

ρ(a)T =
∑
χn=ε

ρ(a)χ(a) =
∑
χn=ε

ρχ(a) =
∑
χ̂n=ε

χ̂(a) = T.

Thus (ρ(a) − 1)T = 0 and T = 0, i.e.,
∑
χn=ε

χ(a) = 0. �

What happen if we put aside the assumption that d = (n, q − 1) = n? The answer is the next
theorem that assures us that we can still compute the number of solution.
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Theorem 1.1.11. Let q = pn, where p is a prime number. Suppose d = (m, q − 1), then N(xm =

a) =
∑
χd=ε

χ(a). Moreover, N(xm = a) = N(xd = a).

Proof. We use the results obtained in the proof theorem 1.1.10, since d = (d, q − 1) we have that
N(xd = a) =

∑
χd=ε

χ(a).

Assume that a = 0, then xm = 0. The unique solution is x = 0, so N(xd = 0) =
∑
χd=ε

χ(0) = 1 =

N(xm = 0).
If a , 0. Case 1: xm = a has a solution, then by theorem 1.1.7 there are d solutions, i.e.,

N(xm = a) = d. Hence N(xd = a) =
∑
χd=ε

χ(a) = d = N(xm = a).

Case 2. Suppose xm = a is not solvable, then a(q−1)/d , 1. Assume that xd = a is solvable, then
a(q−1)/d = 1 which is a contradiction so xd = a is not solvable. Therefore

N(xd = a) =
∑
χd=ε

χ(a) = 0 = N(xm = a).

�

Example 1.1.12. Suppose that p is odd and that n = 2. Using Theorem 1.1.10, we obtain N(x2 =

a) = 1 + (a/p) , where (a/p) is the Legendre symbol.

1.2 Gauss Sums

Definition 1.2.1. Suppose that Fq has q = pn elements for some n > 0. For α ∈ Fq, we define the
trace of α, denoted by tr(α), as the sums α + αp + αp2

+ . . . + αpn−1 .

Some properties of the trace are cited below, the proof of the items that are not proved here
can be found in [IR90, Theorem 10.3.1].

Theorem 1.2.1. If α, β ∈ Fq and a ∈ Fp, then

1. tr(α) ∈ Fp.

2. tr(α + β) = tr(α) + tr(β).

3. tr(aα) = atr(α).

4. tr maps Fq onto Fp.

Proof. 4. The polynomial x + xp + . . . + xpn−1 has at most pn−1 roots in Fq. Since Fq has pn

elements there is an α ∈ Fq such that tr(α) = c , 0. If b ∈ Fp, then using property 3. we obtain
that tr((b/c)α) = (b/c)tr(α) = b. Therefore, the trace is onto. �

Definition 1.2.2. Let ζp = e2πi/p. We define ψ : Fq → C by ψ(α) = ζtr(α)
p .

Theorem 1.2.2. The function ψ has the following properties:

1. ψ(α + β) = ψ(α)ψ(β)

2. There is an α ∈ F such that ψ(α) , 1.
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3.
∑
α∈F

ψ(α) = 0

Proof. 1. Let α, β ∈ F, then

ψ(α + β) = ζ
tr(α+β)
p = ζtr(α)

p ζ
tr(β)
p = ψ(α)ψ(β).

2. tr is onto, so there is an α ∈ Fq such that tr(α) =1. Then ψ(α) = ζp , 1.

3. Let S =
∑
α∈F

ψ(α), choose β such that ψ(β) , 1. Then ψ(β)S =
∑
α∈F

ψ(β)ψ(α) =
∑
α∈F

ψ(β+α) = S .

It follows that S = 0.
�

The next result is taken from [IR90, Theorem 10.3.3], it will help to prove some results involving
Gauss sums. The proof can be consulted there.

Theorem 1.2.3. Let α, x, y ∈ Fq. Then

1
q

∑
α∈Fq

ψ(α(x − y)) = δ(x, y)

where δ(x, y) = 1 if x = y and zero otherwise.

Proof. If x = y, then
∑
α∈Fq

(ψ(α(x − y)) =
∑
α∈Fq

ψ(0) = q.

If x , y, then x − y , 0 and α(x − y) ranges over all of F as α ranges over all of F. Thus∑
α∈Fq

ψ(α(x − y)) =
∑
β∈Fq

ψ(β) = 0 by property 3. of theorem 1.2.2. �

Definition 1.2.3. Let χ be a character of Fq and α ∈ F∗q. The Gauss Sum on Fq belonging to the
character χ is defined by the expression gα(χ) =

∑
t∈Fq

χ(t)ψ(αt). We shall denote g1(χ) by g(χ).

Some properties of the Gauss sums attached to χ are:

Theorem 1.2.4. If gα(χ) is a Gauss sum on Fq, where χ , ε. Then

1. gα(χ) = χ(α)g(χ).

2. gα(χ−1) = gα(χ) = χ(−1)gα(χ)

3. |gα(χ)| = q1/2

4. gα(χ)gα(χ−1) = χ(−1)q

Proof. 1. If χ is a character and α ∈ F∗q, then

χ(α)gα(χ) = χ(α)
∑
t∈Fq

χ(t)ψ(αt) =
∑
t∈Fq

χ(αt)ψ(αt).

Let s = αt, since t runs over all t ∈ F, so s does. Hence

χ(α)gα(χ) =
∑
s∈Fq

χ(s)ψ(s) = g(χ) ⇒ gα(χ) = χ(α)χ(α)gα(χ) = χ(α)g(χ).
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2. This can be verified by a straightforward computation.

gα(χ) =
∑
t∈Fq

χ(t)ψ(−αt) =
∑
t∈Fq

χ(−1(−t))ψ(−αt) =
∑
t∈Fq

χ(−1) χ(−t)ψ(−αt).

Notice that χ(−1) = χ(−1) = ±1. Let s = −t and

gα(χ) = χ(−1)
∑
s∈Fq

χ(s)ψ(αs) = χ(−1)gα(χ) ⇒ gα(χ−1) = gα(χ) = χ(−1)gα(χ).

3. Using item 1.
gα(χ) = χ(α)g(χ) and gα(χ) = χ(α−1)g(χ)

thus
|gα(χ)|2 = χ(α)χ(α−1)g(χ)g(χ) = |g(χ)|2.

If we sum over all α ∈ Fq we get∑
α∈Fq

|gα(χ)|2 = (q − 1)|g(χ)|2.

On the other hand

gα(χ)gα(χ) = (
∑
x∈Fq

χ(x)ψ(αx))(
∑
y∈Fq

χ(x)ψ(−αy)) =
∑
x∈Fq

∑
y∈Fq

χ(x)χ(y)ψ(α(x − y)).

Again, summing over all α ∈ Fq and using theorem 1.2.3 we obtain∑
α∈Fq

|gα(χ)|2 =
∑
α∈Fq

∑
x∈Fq

∑
y∈Fq

χ(x)χ(y)ψ(α(x − y))

=
∑
x∈Fq

∑
y∈Fq

qδ(x, y)χ(x)χ(y) =
∑
x∈Fq

χ(x)χ(x)q =
∑
x∈F∗q

q = q(q − 1).

Combining both results we conclude that

(q − 1)|g(χ)|2 = q(q − 1) ⇒ |g(χ)|2 = q ⇒ |gα(χ)| = |g(χ)| = q1/2.

4. From item 2. we get
gα(χ)gα(χ−1) = χ(−1)|gα(χ)|2 = χ(−1)q.

�

1.3 Jacobi Sums

To introduce Jacobi Sums, we give a motivation about how these sums are necessary when we are
counting the number of solution of equations of the form xn + yn = 1 in Fq (even for more general
polynomial equations with coefficients in a finite field.) First we are going to analyze the case for
n = 2 and n = 3 in the fields Fp and Fq, respectively.
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Since Fp is finite, the equation x2 + y2 = 1 has only finitely many solutions, say N(x2 + y2 = 1).
Observe that

N(x2 + y2 = 1) =
∑

a+b=1
a,b ∈ Fp

N(x2 = a)N(y2 = b).

As consequence of example 1.1.12, we get that

N(x2 + y2 = 1) = p +
∑

a

(
a
p

)
+

∑
b

(
b
p

)
+

∑
a+b=1

(
a
p

) (
b
p

)
.

In the sums, we omit that a, b ∈ Fp. By theorem 1.1.4, we have that N(x2 + y2 = 1) =

p +
∑

a+b=1
( a

p )( b
p ). This is the best result we can obtain for the moment.

To evaluate the number of solution of x3 + y3 = 1 in Fq, we reason in the same way

N(x3 + y3 = 1) =
∑

a+b=1
N(x3 = a)N(y3 = b),

but in this case we analize two cases. If q ≡ 2(3), as consequence of Theorem 1.1.7, N(x3 = a) = 1
for all a due (3, q − 1) = 1. It follows that N(x3 + y3 = 1) = q. Now assume q ≡ 1(3). Let χ , ε be a
character of order 3, so by Theorem 1.1.4, we have that N(x3 = a) = 1 + χ(a) + χ2(a). Thus

N(x3 + y3 = 1) =
∑

a+b=1
(

2∑
i=0

χi(a))(
2∑

j=0
χ j(b)) =

2∑
i=0

2∑
j=0

∑
a+b=1

χi(a)χ j(b).

With the purpose of simplify the expression for number of solutions of the equations x2+y2 = 1
and x3 + y3 = 1 we introduce the Jacobi Sums.

Definition 1.3.1. Let χ and λ be characters of Fq and set J(χ, λ) =
∑

a+b=1
χ(a)λ(b). J(χ, λ) is called

a Jacobi sum.

Theorem 1.3.1. Let χ and λ be nontrivial characters. Then

1. J(ε, ε) = q.

2. J(ε, χ) = 0.

3. J(χ, χ−1) = −χ(−1).

4. If χλ , ε, then

J(χ, λ) =
g(χ)g(λ)

g(χλ)
.

Moreover |J(χ, λ)| = q1/2.

Proof. The proofs of 1. and 2. follow from the properties of Gauss sums and characters. The
proof of 3. and 4. are in [BEW98, Theorem 2.1.1 and Theorem 2.1.3]. �

We now return to the analysis of N(x2 +y2 = 1). We need to compute the value of
∑

a+b=1

(
a
p

) (
b
p

)
.

By item 3. of Theorem 1.3.1, we obtain J(χ, χ) = −
(
−1
p

)
= −(−1)(p−1)/2. Thus the number of solutions

is N(x2 + y2 = 1) = p − 1 if p ≡ 1(4) and p + 1 if p ≡ 3(4).
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In the case of N(x3 + y3 = 1), applying Theorem 1.3.1 leads to the result

N(x3 + y3 = 1) = q − χ(−1) − χ2(−1) + J(χ, χ) + J(χ2, χ2).

Since −1 = (−1)3, we have χ(−1) = χ3(−1) = 1. Notice that χ2 = χ−1 = χ. Then

N(x3 + y3 = 1) = q − 2 + J(χ, χ) + J(χ, χ) = q − 2 + J(χ, χ) + J(χ, χ)) = q − 2 + ReJ(χ, χ).

This result is not as nice as the result for N(x2 + y2 = 1), however, we can bound the number
of solutions:

|N(x3 + y3 = 1) − q + 2| = |ReJ(χ, χ)| = |J(χ, χ) + J(χ, χ)| ≤ |J(χ, χ)| + |J(χ, χ)| ≤ 2q1/2.

The estimate says that N(x3 + y3 = 1) is approximately equal to q−2 with an "error term" 2q1/2.
Now we will provide some interesting results where the Jacobi sum are involved. They will be

usefull when we compute the zeta function for some curves.

Theorem 1.3.2. Let q be a power of a prime. If q ≡ 1 (4), then there exist integers a and b such
that a2 + b2 = q. If q ≡ 1 (3), then there exist integers a and b such that a2 − ab + b2 = q.

Proof. If q ≡ 1 (4), there is a character χ of order 4. If λ has order q−1, let χ = λ(q−1)/4. The values
of χ are in the set {1,−1, i,−1}. Thus J(λ, λ) =

∑
s+t=1

χ(s)χ(t) ∈ Z[i]. It follows that J(χ, χ) = a + bi,

where a, b ∈ Z; thus q = |J(χ, χ)|2 = a2 + b2 due to theorem 1.3.1.
If q ≡ 1 (3), there is a character χ of order 3. The values of χ are in the set {1, ω, ω2},

where ω = e2πi/3. Thus J(χ, χ) ∈ Z[ω]. As above, we have J(χ, χ) = a + bω where a, b ∈ Z, and
q = |J(χ, χ)|2 = |a + bω|2 = a2 − ab + b2. �

Remark 1.3.3. For q = p, the fact that primes p ≡ 1 (4) can be written as the sum of two squares
was discovered by Fermat. If a, b > 0, a is odd and b is even, then the representation p = a2 + b2

is unique.

Theorem 1.3.4. If q ≡ 1 (3), then there are integers A and B such that 4q = A2 + 27B2. In this
representation of 4q, A and B are uniquely determined up to sign.

Proof. There exist integers a, b such that q = a2−ab+b2. Notice 4q = (2a−b)2+3b2 = (2b−a)2+3a2 =

(a + b)2 + 3(a − b)2. We claim that 3 divides either a, b, or a − b. Suppose that 3 - a and 3 - |b.
Assume that a ≡ 1 (3) and b ≡ 2 (3), then

q = a2 − ab + b2 = (3m + 1)2 − (3m + 1)(3l + 2) + (3l + 2)2 = 3B for some B ∈ Z

which its a contradiction, so the claim is true and 4q = A2 + 27B2. The proof of uniqueness is
omitted. �

Theorem 1.3.5. Suppose that q ≡ 1 (n) and that χ is a character of order n. Then

g(χ)n = χ(−1)qJ(χ, χ)J(χ, χ2) . . . J(χ, χn−2).

Proof. Using part 4. of theorem 1.3.1 we have g(χ)2 = J(χ, χ)g(χ2). Multiply both sides by g(χ) we
get g(χ)3 = J(χ, χ)J(χ, χ2)g(χ3). In this way, we arrive at

g(χ)n−1 = J(χ, χ)J(χ, χ2) . . . J(χ, χn−2)g(χn−1).
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Multiplying both side by g(χ), it gives us

gn(χ) = J(χ, χ)J(χ, χ2) . . . J(χ, χn−2)g(χn−1)g(χ)

= J(χ, χ)J(χ, χ2) . . . J(χ, χn−2)g(χ−1)g(χ) = χ(−1)qJ(χ, χ)J(χ, χ2) . . . J(χ, χn−2),

since g(χ)g(χn−1) = g(χ)g(χ) = −χ(−1)q. �

Corolary 1.3.1. If χ is a cubic character, then

g(χ)3 = qJ(χχ).

Proof. Take n = 3 in the latter theorem. �

Theorem 1.3.6. Suppose that q ≡ 1 (3) and that χ is a cubic character. Set J(χ, χ) = a + bω. Then

1. b ≡ 0 (3).

2. a ≡ −1 (3).

Proof. We shall work with congruences in the ring of integers.

g(χ)3 = (
∑

t

χ(t)ψ(t))3 ≡
∑

t

χ(t)3ψ(3t) (3),

and
g(χ)

3
= g(χ)3 = (

∑
t

χ(t)ψ(t))3 ≡
∑

t

χ(t)3ψ(3t) (3).

Since χ(0) = χ(0) = 0 and χ(t)3 = χ(t)3 = 1 for t , 0 we have∑
t

χ(t)3ψ(3t) =
∑
t,0

ψ(3t) = −1

and ∑
t

χ(t)
3
ψ(3t) =

∑
t,0

ψ(3t) =
∑
s,0

ψ(s) = −1

by theorem 1.2.2.
Set q = 3k + 1 for some k ∈ Z. Thus

g(χ)3 = qJ(χ, χ) = q(a + bω) = (3k + 1)(a + bω) ≡ a + bω ≡ −1 (3),

and
g(χ)

3
= g(χ)3 = qJ(χ, χ) = q(a + bω) = (3k + 1)(a + bω) ≡ a + bω ≡ −1 (3),

Subtracting yields
b(ω − ω) ≡ 0 (3) ⇒ b

√
−3 ≡ 0 (3).

Thus −3b2 ≡ 0 (9) and it follows that

−3b2 = 9k ⇒ −b2 = 3k ⇒ 3|b2 ⇒ 3|b since 3 is prime.

Now the congruence a + bω ≡ −1 (3) is equivalent to a ≡ −1 (3). �

The theorem 1.3.2 guarantees us the existence of the A and B, but the next two statements
show us a method for computing the values A and B.
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Corolary 1.3.2. Assume all the hypothesis of Theorem 1.3.6. Let A = 2a − b and B = b/3. Then
A ≡ 1 (3) and

4q = A2 + 27B2.

Proof. Since J(χ, χ) = a+bω and |J(χ, χ)|2 = q we have q = a2−ab+b2. Thus 4q = (2a)2−2(2a)b+

4b2 = (2a)2 − 2(2a)b + b2 + 3b2 = (2a − b)2 + 3b2 and 4q = A2 + 27B2. By theorem 1.3.6, 3|b and
a ≡ −1 (3). Therefore b ≡ 0 (3) and 2a ≡ −2 ≡ 1 (3), so A = 2a − b ≡ 1 (3) as we required. �

Theorem 1.3.7. Suppose that q ≡ 1(3). Then there are integers A and B such that 4q = A2 + 27B2.
If we require that A ≡ 1(3), A is uniquely determined, and

N(x3 + y3 = 1) = q − 2 + A.

Proof. We have already shown that N(x3 + y3 = 1) = q − 2 + 2ReJ(χ, χ). Since J(χ, χ) = a + bω as
above, we have 2ReJ(χ, χ) = (2a − b) = A ≡ 1(3). We omit the proof of uniqueness. �

Remark 1.3.8. From the proof we can obtain that J(χ, χ) + J(χ, χ) = A. The latter theorem was
due Gauss.

With the definitions and theorems that we have presented so far, we will try to get the number
of solutions of the polynomial xn + yn = 1 in Fq, or, if it is not possible, try to obtain an explicit
bound for N(xn + yn = 1).

We will assume that q ≡ 1 (n). We have that

N(xn + yn = 1) =
∑

a+b=1
N(xn = a)N(xn = b).

Let χ be a character of order n. By Theorem 1.1.10,

N(xn = a) =

n−1∑
i=0

χi(a).

Combining these results yields

N(xn + yn = 1) =

n−1∑
i=0

n−1∑
j=0

J(χiχ j).

Set I = {0, 1 . . . , n − 1}, then

N(xn + yn = 1) =
∑

(i, j) ∈ I2
J(χiχ j).

Theorem 1.3.1 can be used to estimate this sum. We find the next results:

• If i = j = 0 we have J(χ0, χ0) = J(ε, ε) = q. We just consider (0, 0), 1 element of I2.

• If i + j = n, then χi = (χ j)−1 and J(χ j, χi) = −χ j(−1), j varies from 1 to n − 1. We take

n − 1 elements of I2. Hence
n−1∑
j=1

J(χ j, χn− j) = −
n−1∑
j=1
χ j(−1). Consider the sum

n−1∑
j=0
χ j(−1), it

has the value n if −1 is an nth power, and by Corollary 1.1.1, the sum has value 0. Thus
n−1∑
j=1

J(χ j, χn− j) = 1 − δn(−1)n where δn(−1) is 1 when −1 is an nth power and 0 otherwise.
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• If i = 0 and j , 0 or i , 0 and j = 0, then J(χi, χ j) = 0. In each case we consider n − 1
elements.

Finally
N(xn + yn = 1) = p + 1 − δn(−1)n +

∑
i, j

J(χi, χ j).

The sum is over indices i and j between 1 and n − 1 subject to the condition that i + j , n.
Subtracting the elements of the three cases analyzed before, we found that there are (n−1)2−(n−1) =

(n − 1)(n − 2) indices and they all have absolute value q1/2 due to item 4. of Theorem 1.3.1. Thus

|N(x2 + yn = 1) + δn(−1)n − (p + 1)| ≤ (n − 1)(n − 2)q1/2.

Now we want to go further and try to apply the analysis we just made for the general case

a2xl1
1 + a2xl2

2 + . . . + ar xlr
r = b,

where a1, a2, . . . , ar, b ∈ F∗q. Before that, we need to generalize the notion of Jacobi Sums for more
than 2 characters, and present some of its properties.

Definition 1.3.2. Let χ1, χ2, . . . , χl be characters of Fq. A Jacobi sum is defined by the formula

J(χ1, χ2, . . . , χl) =
∑

t1+...+tl=1
χ1(t1)χ2(t2) . . . , χl(tl).

There is another sum that is closely related to Jacobi sums

J0(χ1, χ2, . . . , χl) =
∑

t1+...+tl=0
χ1(t1)χ2(t2) . . . , χl(tl).

The properties of the Jacobi sums of two characters shown in Theorem 1.3.1 hold for a finite
number of characters.

Theorem 1.3.9. 1. J0(ε, ε, . . . , ε) = J(ε, ε, . . . , ε) = ql−1.

2. If some but not all of the χi are trivial. Then J0(χ1, χ2, . . . , χl) = J(χ1, χ2, . . . , χl) = 0.

3. Assume that χl , ε. Then

J0(χ1, χ2, . . . , χl) =

0 , if χ1χ2 . . . χl , ε

χl(−1)(q − 1)J(χ1, χ2, . . . , χl−1) , otherwise

Proof. The proof of the theorem can be found in [BEW98, Theorem 10.1.1 and Theorem 10.1.2]. �

The generalization of Theorem 1.3.1 is the next result:

Theorem 1.3.10. Assume that χ1, χ2, . . . , χr are nontrivial and also that χ1χ2 . . . χr is nontrivial.
Then

g(χ1)g(χ2) . . . g(χr) = J(χ1, χ2, . . . , χr)g(χ1χ2 . . . χr).

Proof. The theorem is proved in [IR90, Chapter 8 Theorem 3]. �

Corolary 1.3.3. Suppose that χ1, χ2, . . . , χr are nontrivial and that χ1χ2 . . . χr is trivial. Then

g(χ1)g(χ2) . . . g(χr) = χr(−1)qJ(χ1, χ2, . . . , χr−1).
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Proof. By theorem 1.3.10

g(χ1)g(χ2) . . . g(χr−1) = J(χ1, χ2, . . . , χr−1)g(χ1χ2 . . . χr−1).

Now, multiplying both sides by g(χr)

g(χ1)g(χ2) . . . g(χr−1)g(χr) = J(χ1, χ2, . . . , χr−1)g(χ1χ2 . . . χr−1)g(χr),

since χ1 . . . , χr−1 = χ−1r

g(χ1)g(χ2) . . . g(χr) = J(χ1, χ2, . . . , χr−1)g(χ−1r )g(χr) = χr(−1)qJ(χ1, χ2, . . . , χr−1).

�

Corolary 1.3.4. Let the hypotheses be as in Corollary 1.3.3. Then

J(χ1, . . . , χr) = −χr(−1)J(χ1, χ2, . . . , χr−1).

If r = 2, we set J(χ1) = 1.

Proof. The proof can be read in [IR90, Chapter 8 Corollary 2]. �

Theorem 1.3.11. Assume that χ1, χ2, . . . , χr are nontrivial.

1. If χ1χ2 . . . , χr , ε, then
|J(χ1, χ2, . . . , χr)| = q(r−1)/2.

2. If χ1χ2 . . . , χr = ε, then
|J0(χ1, χ2, . . . , χr)| = (q − 1)q(r/2)−1

and
|J(χ1, χ2, . . . , χr)| = q(r/2)−1.

Proof. 1. From theorem 1.3.10 and theorem 1.2.4

|g(χ1)g(χ2) . . . g(χr)| = |J(χ1, χ2, . . . , χr)||g(χ1χ2 . . . χr)|.

qr/2 = |g(χ1)|g(χ2)| . . . |g(χr)| = |J(χ1, χ2, . . . , χr)||g(χ1χ2 . . . χr)| = q1/2|J(χ1, χ2, . . . , χr)|

Thus |J(χ1, χ2, . . . , χr)| = q(r−1)/2.

2. From theorem 1.3.9 and corollary 1.3.4 we obtain that

|J(χ1, χ2, . . . , χr)| = | − χr(−1)J(χ1, χ2, . . . , χr−1)| = |J(χ1, χ2, . . . , χr−1)| = q(r−2)/2 = q(r/2)−1,

since χ−1r = χ1 . . . , χr−1 , ε and we apply item 1.

|J0(χ1, χ2, . . . , χl)| = |χl(−1)(q − 1)J(χ1, χ2, . . . , χl−1)| = (q − 1)|J(χ1, χ2, . . . , χl−1)| = (q − 1)q(r/2)−1.

�
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It’s time we consider the number of solution for the most general equation

a2xl1
1 + a2xl2

2 + . . . + ar xlr
r = b,

where a1, a2, . . . , ar, b ∈ F∗q. Let N be the number of solutions. Again, we use the methods that
provided us N(xn + yn = 1).

To begin with, we have

N =
∑

N(xl1
1 = u1)(xl2

2 = u2) . . . (xlr
r = ur) (1.1)

where the sum is over all r-tuples (u1, u2, . . . , ur) such that
r∑

i=1
aiui = b.

We shall assume that l1, l2, . . . , lr are divisors of q− 1, although this condition is not necessary.
We explain this reason later. Then li = (li, q−1) for all i ∈ {1, . . . , r}. Let χi vary over the characters
of order li. Then

N(xli
i = ui) =

∑
χi

χi(ui).

Now, substituting into equation 1.1 we obtain

N =
∑

χ1,χ2,...,χr

∑
∑

aiui=b

χ1(u1)χ2(u2) . . . χr(ur).

The inner sum is closely related to the Jacobi sums we have presented so far. In order to
obtain the explicit formula of the Jacobi sum and the sum J0, we need to perform a change of
variable depending if b = 0 or not.

If b = 0, let ti = aiui. Then the inner sum becomes∑
∑

aiui=b

χ1(u1)χ2(u2) . . . χr(ur) =
∑

∑
ti=0

χ1(a−11 t1)χ2(a−12 t2) . . . χr(a−1r tr)

= χ1(a−11 )χ2(a−12 ) . . . χr(a−1r )
∑

∑
ti=0

χ1(t1)χ2(t2) . . . χr(tr) = χ1(a−11 )χ2(a−12 ) . . . χr(a−1r )J0(χ1, χ2, . . . , χr).

If b , 0, let ti = b−1aiui and by a similar computation to the case b = 0 the inner sum becomes∑
∑

aiui=b

χ1(u1)χ2(u2) . . . χr(ur) = χ1χ2 . . . χr(b)χ1(a−11 )χ2(a−12 ) . . . χr(a−1r )J(χ1, χ2, . . . , χr).

Using Theorem 1.3.9 we obtain that in both cases, if χ1 = χ2 = . . . = χr = ε the term has the
value qr−1. If some but not all the χi are equal to ε, then the term has the value zero. In the first
case, the value is zero unless χ1χ2 . . . χr = ε.

In summary, we conclude the following

Theorem 1.3.12. If b = 0, then

N = qr−1 +
∑

χ1(a−11 )χ2(a−12 ) . . . χr(a−1r )J0(χ1, χ2, . . . , χr).

The sum is over all r-tuples of characters χ1, χ2, . . . , χr, where χli
i = ε, χi , ε for i = 1, . . . , r, and

χ1χ2 . . . χr = ε. If M is the number of such r-tuples, then

|N − qr−1| ≤ M(q − 1)q(r/2)−1.
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If b , 0, then

N = qr−1 +
∑

χ1χ2 . . . χr(b)χ1(a−11 )χ2(a−12 ) . . . χr(a−1r )J(χ1, χ2, . . . , χr).

The summation is over all r-tuples of characters χ1, χ2, . . . , χr, where χli
i = ε, χi , ε for

i = 1, . . . , r. If M0 is the number of such r- tuples with χ1χ2 . . . χr = ε, and M1 is the number of
such r-tuples with χ1χ2 . . . χr , ε, then

|N − qr−1| ≤ M0q(r/2)−1 + M1q(r−1)/2.

Proof. To bound the number of solutions, we use theorem 1.3.11 �

Corolary 1.3.5. If di = (li, q − 1), then
r∑

i=1
aixli = b and

r∑
i=1

aixdi = b have the same number of
solutions.

Proof. The reason follows from Theorem 1.1.11. �

This corollary explains why we can assume that li = (li, q − 1) when we derive the theorem
1.3.12.

The next theorem is a consequence of theorem 1.3.12, and is written in terms of algebraic geo-
metric notions, it counts the number of solutions of a hypersurface associated to a homogeneous
equation.

Theorem 1.3.13. Let Fq a finite field such that q ≡ 1 (m). The homogeneous equation a0xm
0 +

a1xm
1 + . . . anxm

n = 0, a0, a1, . . . , an ∈ F
∗
q, defines a hypersurface in Pn(Fq). The numbers of points on

this hypersurface is given by

qn−1 + qn−2 + . . . + q + 1 +
1

q − 1

∑
χ0,χ1,...,χn

χ0(a−10 ) . . . χn(a−1n )J0(χ0, χ1, . . . , χn),

where χm
i = ε, χi , ε, and χ0χ1 . . . χn = ε. Moreover, under these conditions

1
q − 1

J0(χ0, χ1, . . . , χn) =
1
q

g(χ0)g(χ1) . . . g(χn).

Proof. By theorem 1.3.12 we have

NA = qn +
∑

χ0(a−10 ) . . . χn(a−1n )J0(χ0, χ1, . . . , χn)

solution in An+1(Fq). Hence, the number of points in Pn(Fq) is given by

N =
NA − 1
q − 1

= qn−1 + qn−2 + . . . + q + 1 +
1

q − 1

∑
χ0,χ1,...,χn

χ0(a−10 ) . . . χn(a−1n )J0(χ0, χ1, . . . , χn)

By theorem 1.3.10 and corollary 1.3.3 we obtain

J(χ1, χ2, . . . , χn) =
g(χ0)g(χ1)g(χ2) . . . g(χn)

g(χ0)g(χ1χ2 . . . χn)
=
χ0(−1)qJ(χ1, . . . , χn)
g(χ0)g(χ1χ2 . . . χn)

⇒ g(χ0)g(χ1χ2 . . . χn) = χ0(−1)q.
Substituting in the result of theorem 1.3.9 gives us

1
q − 1

J0(χ0, χ1, χ2, . . . , χn) = χ0(−1)
g(χ0)g(χ1)g(χ2) . . . g(χn)

g(χ0)g(χ1χ2 . . . χn)

⇒
1

q − 1
J0(χ0, χ1, χ2, . . . , χn) =

1
q

g(χ0)g(χ1)g(χ2) . . . g(χn).

�
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1.4 Restrictions and Lifts of Characters

Let F be a finite field with q elements and E a field containing F with qs elements.
Now we define the generalization of the trace for arbitrary finite fields and introduce the

notion of norm that will lead to lifted characters . In fact it is possible to generalize both ideas
for arbitrary finite fields extension.

Definition 1.4.1. If α ∈ E, the trace of α from E to F is given by

trE/F(α) =

s−1∑
j=0

αq j
.

If q = p, then the definition of the trace reduces to definition 1.2.1.

Some properties of the trace are the following:

Theorem 1.4.1. If α, β ∈ E and a ∈ F, then

1. trE/F(α) ∈ F.

2. trE/F(α + β) = tr(α) + tr(β).

3. tr(aα) = atr(α).

4. trE/F maps E onto F.

5. trE/F(α) = trK/F(trE/K(α)), where K is an intermediate field between F and E.

Proof. The proof of 1. to 4. is exactly analogous to that of Theorem 1.2.1. The proof of item 5. can
be consulted in [IR90, Theorem 11.2.3]. More properties related to the trace are stated in [BEW98,
Theorem 11.4.6]. �

Definition 1.4.2. The norm of α from E to F is given by

NE/F(α) =

s−1∏
j=0

αq j
.

The most useful properties of the norm are:

Theorem 1.4.2. If α, β ∈ E and a ∈ F, then

1. NE/F(α) ∈ F.

2. NE/F(αβ) = N(α)N(β).

3. N(aα) = asN(α).

4. NE/F maps E onto F.

5. NE/F(α) = NK/F(NE/K(α)), where K is an intermediate field between F and E.

Proof. The proof of the properties can be read in [IR90, Theorem 11.2.2]. Additional properties of
the norm can be obtained in [BEW98, Theorem 11.4.3]. �
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Definition 1.4.3. If a character χ on a finite field E is restricted to a subfield F, it defines a
character on that subfield which we denote by χ

∣∣∣
F or χ∗ if it is known the field where it is defined.

Definition 1.4.4. Let χ be a character F. The lift χ′ of the character χ from F to the extension
E is given by

χ′(α) = χ(NE/F(α)) α ∈ E.

The lifted characters provide us a powerful tool that allow us to compute the number of
solution of equations of any extension E of the field F using the characters of the small one. The
next theorem provides some properties of lifted characters that will help us later.

Theorem 1.4.3. Let χ be a character on F and let χ′ denote the lift of χ from F to E. For a
character λ on E, let λ∗ denote the restriction of λ to F. Then

1. χ′ is a character on E.

2. (χ′)∗ = χs and (λ∗)′ = λd, where d = (qs − 1)/(q − 1).

3. A character λ on E equals to the lift χ′ for some character χ on F if and only if the order
of λ divides (q − 1)

4. If χ′1 = χ′2, then χ1 = χ2.

5. χ′ and χ have the same order.

6. (χ1χ2)′ = χ′1χ
′
2.

Proof. The proof of these properties are in [BEW98, Theorem 11.4.4]. �

Definition 1.4.5. Let χ be a charecter of F and let χ′ be the lift of χ from F to E. Then the lift
of the Gauss sum

g(χ) =
∑
t∈F

χ(t)ψ(t)

from F to E is
g(χ′) =

∑
t∈E

χ′(t)ψ(t)

The next theorem is the most important theorem related to the lift of a character. It is a direct
relation between the Gauss sum of χ with the Gauss sum of χ′

Theorem 1.4.4 (Hasse-Davenport Relation). For a nontrivial character χ on F, the Gauss sum
of χ and the Gauss sum of χ′ are related by

(−1)s−1g(χ)s = g(χ
′

)

Proof. The proof is long enough to skip it, even though it is profoundly interesting, please refer
to [IR90, Chapter 8 Section 4] and [BEW98, Theorem 11.5.2] to consult it. Even Weil proved it in
[Wei49]. �

Corolary 1.4.1. Let χ1, χ2, . . . , χn and χ1χ2 . . . χn be nontrivial character on F. Then.

J(χ′1, χ
′
2, . . . , χ

′
n) = (−1)(s−1)(n−1)J(χ1, χ2, . . . , χn)s
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Proof. From theorem 1.3.10 we have

g(χ1)g(χ2) . . . g(χn) = J(χ1, χ2, . . . , χn)g(χ1χ2 . . . χn) ⇒

g(χ1)sg(χ2)s . . . g(χn)s = J(χ1, χ2, . . . , χn)sg(χ1χ2 . . . χn)s.

Applying Hasse Devenport we obtain

(−1)(s−1)ng(χ′1)g(χ′2) . . . g(χ′n) = (−1)s−1J(χ1, χ2, . . . , χn)sg((χ1χ2 . . . χn)′) ⇒

(−1)(s−1)(n−1)J(χ1, χ2, . . . , χn)s =
g(χ′1)g(χ′2) . . . g(χ′n)

χ′1χ
′
2 . . . χ

′
n

= J(χ′1, χ
′
2, . . . , χ

′
n).

�
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Chapter 2

First steps to understand the Zeta
Function

The second purpose of this work is to introduce the Zeta Function for a finite field, this function
led to the Weil conjectures. We want to understand the function and its properties. Before that,
we need to introduce some notions of algebraic geometry, commutative algebra, and algebraic
number theory. It is expected that the reader grasps basic notions of algebraic geometry. We omit
the proof of most of the theorems.

2.1 Dedekind Domians & The Ideal Class Group

Definition 2.1.1. Let A = Z be the ring of integers. Let K = Q be the field of rational numbers.
A field extension L/Q of finite degree is called a number field.

Example 2.1.1. Q(
√

d) is a number field of degree 2 over Q if d is not a square in Q.

Definition 2.1.2. Let A be a subring of a ring L. An element α ∈ L is said to be integral over
A if it is the root of a monic polynomial f (x) in A[x]. If A = Z, α is called algebraic integer in
L. Let C be a ring that contains A. The ring C is said to be integral over A, or to be a integral
extension of A, if every element of C is integral over A.

Theorem 2.1.2. Let A be a subring of the field L. The set B consisting of all the elements of L
that are integral over A is a ring.

Proof. The theorem is proved in [Lor96][Chapter I, Corollary 2.11]. �

Definition 2.1.3. The ring of Theorem 2.1.2 is called the integral closure B of A in L. It is denoted
by OL. When L is a number field, the integral closure B of Z in L is called the ring of integers of
L.

A domain A is said to be integrally closed if it is equal to its integral closure in its field of
fractions.

Example 2.1.3. The rings Z and k[x] are integrally closed. More generally, any factorial domain
is integrally closed. [Lor96] provide some reason that justify this example.

Now, we define what a Dedekind domain is and give a characterization.
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Definition 2.1.4. Let R be an integral domain. The ring R is called a Dedekind domain if it has
the following three properties

1. R is noetherian.

2. R has dimension 1.

3. R is integrally closed (in its field of fractions).

Theorem 2.1.4. Let A be a Dedekind domain. Let L/K be a finite separable extension of the field
of fractions K of A. Then the integral closure B of A in L is a Dedekind domain.

Proof. [Lor96] proves that B is a Dedekind domain. �

To state a characterization for Dedekind domains, we need to introduce the notion of factor-
ization of ideal into prime ideals that resembles the idea of factorization of integers into prime
numbers.

Definition 2.1.5. An integral domain R is said to have the property of unique factorization of
ideals if every nontrivial ideal I ⊆ R can be written as I = P1 . . .Ps, where Pi is a prime ideal
of R for i = 1, . . . , s , and its factorization is essentially unique, i.e., whenever I = Q1 . . .Qn, then
n = s and Pi = Q j for some permutation.

Theorem 2.1.5. Let R be a noetherian domain of dimension 1. The ring is a Dedekind domian
if and only if R has the property of unique factorization of ideals.

Proof. This characterization is proved in [Lor96][Chapter III, Theorem 2.8] �

Remark 2.1.6. Every prime ideal in a Dedekind domain R is a maximal ideal. The reason is (0)
is a prime ideal and for any prime p we have (0) ⊂ p. Since R has dimension 1, then p must be
maximal.

The idea behind the ideal class group is to measure how far the ring A is to be a principal
ideal domain. [Lor96] gives us a historic review of how this theory developed. This theory was
invented by Krummer in the case of cyclotomic ring of integers Z[e2πi/p] in the mid-nineteenth
century, while he worked on Fermat’s Last Theorem. Krummer’s fundamental theorem states that
Fermat’s Last Theorem is true for the exponent p provided that the order of the ideal class group
of the ring Z[exp 2πi/p] is not divisible by p.

Definition 2.1.6. Let A be any commutative domain. The set M(A) consisting of all the nonzero
ideals of A is commutative monoid when endowed with the composition law of multiplication of

1. Given I, J ∈ M(A), IJ ∈ M(A).

2. The unit ideal (1) = A is an identity element for the multiplication of ideals

Theorem 2.1.7. Let A be any commutative domain. Consider the following relation on the
monoid M(A):

I ∼ J if and only if there exist α, β ∈ A − {0} such that (α)I = (β)J.

This relation is an equivalence relation. Set Cl(A) = M(A)/ ∼. If A is a Dedekind domain, then
Cl(A) is an abelian group under the product of ideals

M(A) ×M(A)→M(A)
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(class of I, class of J) 7→ class of IJ

The group Cl(A) is called the ideal class group of A.

Proof. Let’s prove that ∼ is an equivalence relation.

1. Take I ∈ M(A), notice (1)I = (1)I and I ∼ I.

2. Suppose I ∼ J, there exist α, β ∈ A − {0} s.t (α)I = (β)J, that is, J ∼ I.

3. Suppose I ∼ J, and J ∼ K, there exist α, β, γ, λ ∈ A − {0} s.t (α)I = (β)J, and (γ)J = (λ)K.
Then (αγ)I = (βλ)K, that is, I ∼ K.

Hence ∼ is an equivalence relation.
Suppose I ∼ I∗ and J ∼ J∗, that is, (α)I = (α∗)I∗, and (β)J = (β∗)J∗, where α, α∗, β, β∗ ∈ A − {0}.

Since A is commutative, we have

(αβ)IJ = (α)(β)IJ = (α)I(β)J = (α∗)I∗(β∗)J∗ = (α∗)(β∗)I∗J∗ = (α∗β∗)I∗J∗.

αβ, α∗β∗ ∈ A − {0} since A is an integral domain, so IJ ∼ I∗J∗. Hence, the product is well defined.
Let I, J,K ∈ Cl(A), we need to see that I(JK) = (IJ)K. Since the product of ideals is associative
we have I(JK) = class of I(JK) = class of (IJ)K, so the product in Cl(A) is associative.
The identity is (1) = A, so Cl(A) is a monoid, it doesn’t matter if A is a Dedekind domain or not.
Let α ∈ I, α , 0. Since the nontrivial ideals of A have a unique factorization into a product of
maximal ideals, we can write that (α) = IJ for some ideal J in M(A), i.e. (α)A = (1)IJ, so IJ ∼ (1)
and J is the inverse of I. We conclude Cl(A) is a group.

�

Lemma 2.1.1. Let A be a commutative domain. Then Cl(A) = {(1)} if and only if A is a principal
ideal domain.

Proof. Suppose that Cl(A) = {(1)}. Let I ∈ M(A). Then there exist a, b ∈ A such that (a)I = (b).
In particular, b = ac, for some c ∈ I. We want to see that (c) = I. We have already known that
(c) ⊆ I. Let x ∈ I, then ax = bd for some d ∈ A. Hence, a(x − cd) = 0. Since A is a domain, we
obtain that x = cd ∈ (c).

Suppose that A is a principal ideal domain, consider I = (a) and J = (b) with a, b ∈ A. Then
(a)(b) = (b)(a), so I ∼ J and Cl(A) = {(1)}. �

[Lor96] proves that Cl(A) is a finite group when A = Z, and A is the integral closure of k[x]
in a finite extension of k(x), with k a finite field. However, we omit the reasons.

We start with the definition of finite quotients and its norm that will help us letter to obtain
the Zeta function.

Definition 2.1.7. We say that a Dedekind domain A has finite quotients if, for any P ∈ Max(A) :=
{the set of maximal ideals of A}, the residue field A/P is a finite field.

Definition 2.1.8. Let A be a Dedekind domain with finite quotients. We define the norm of a
non-zero ideal I to be

||I||A := cardinality of A/I.

Remark 2.1.8. ||I||A = 1 if and only if I = A.
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Example 2.1.9. The ring A = Z has finite quotients since the maximal ideals are the ideals
generated by a prime number, and Z/pZ is a finite field. Because Z is a principal ideal domain,
let I = (a) be any non-zero ideal. Then

||I||A := |Z/aZ| = |a|

Moreover, for any real number λ, there exist only finitely many ideals I in Z with ||I||Z ≤ λ.

In this example, the norm is an integer. This behavior holds for any Dedekind domain.

Lemma 2.1.2. Let A be a Dedekind domain. Let P ∈ Max(A). Then, for all n ∈ N, the A−module
Pn−1/Pn is isomorphic to the A−module A/P. In particular, if the set A/P is finite, then the set
A/Pr is also finite, and |A/Pr | = |A/P|r.

Proof. We need this lemma to prove that ||I||A is an integer. The proof is in [Lor96][Chapter V,
Lemma 3.4.] �

Theorem 2.1.10. Let A be a Dedekind domain with finite quotients. The norm of any nonzero
ideal of A is an integer, and the map | · |A :M(A)→ N is multiplicative.

Proof. Let P ∈ Max(A). By Lemma 2.1.2 we have that |A/Pr | = |A/P|r. If I := Pa1
1 . . . P

ar
r is any

non-zero ideal of A, then the isomorphism

A/I � A/Pa1
1 × . . . × A/Par

r

shows that ||I||A :=
∏r

i=1 ||Pi||
ai
A . �

The next theorem establish that the integrally closure of a Dedekind domain with finite quotient
inherits these properties.

Theorem 2.1.11. Let A be a Dedekind domain with finite quotients. Let K be its field of fraction.
Let L/K be a finite extension. Assume that the integral closure B of A in L is a finitely generated
A-module. Then B is a Dedekind domain with finite quotients.

Proof. [Lor96][Chapter V, Proposition 3.6] �

Assume that A denotes either the ring Z or the ring k[x], with k a finite field. L denotes a
finite extension of degree n of the field of fraction K of A, and we let B be the integral closure of
A in L.

Theorem 2.1.12. Assume B is a finitely generated A-module. Fix a number λ ∈ R. There exist
only finitely many ideals I of B with ||I||B ≤ λ.

Proof. The theorem is proved in [Lor96][Chapter V, Lemma 3.7] �

2.2 Valuations, Nonsingular Complete Curves & Divisors.

Before introducing the concepts of nonsingular complete curve which is a generalization of a
nonsingular curve, we need to define what a valuation is.

Definition 2.2.1. Let L be any field. A valuation of L is a map v : L∗ → Z such that the following
properties are satisfied:

30



1. v(xy) = v(x) + v(y) for all x, y ∈ L∗, i.e., v is a group homomorphism.

2. v(x + y) ≥ min(v(x), v(y)) for all x, y ∈ L∗.

We extend v to L by setting v(0) = +∞.

Remark 2.2.1. Let Γ be any totally ordered abelian group (e.g. Γ = (R,+,≥)). A map v : L∗ → Γ

satisfying the axioms of valuation is also called a valuation of L. When the study of valuation
with target groups Γ different from (Z,+) is required, the valuation defined on definition 2.2.1 is
called discrete valuation of L∗.

It is possible to associate an absolute value throughout e−v(x). For more detail, look at
[Lor96][Chapter V, Lemma 6.6]

Example 2.2.2. Let v : L∗ → Z be a valuation. Let n ∈ N. The map nv : L∗ → Z, which sends x
to nv(x), is also a valuation of L. Similarly, for each s ∈ R>0, the map sv : L∗ → R is a valuation
of L.

Example 2.2.3. Let v : L∗ → 0 ⊂ Z. Clearly, v is a valuation. It is called the trivial valuation.

Example 2.2.4 (p-adic valuation of Q.). Let p be a prime number. We define a valuation
vp : Q∗ → Z as follows. Let x ∈ Q∗. We can factor x as

∏
p prime

pordp(x), where ordp(x) is defined as

follows: Let z ∈ Z, ordp(z) is the highest power of p which divides z. If p - |z, then ordp(z) = 0
For a rational number x = a

b ∈ Q
∗, ordp(x) is defined by

ordp(
a
b

) = ordp(a) − ordp(b).

Set vp(x) := ordp(x). The map vp is a valuation.
To see it, consider x, y ∈ Q∗, where x =

∏
p prime

pordp(x) and y =
∏

p prime
pordp(y). The product xy can

be represented as
∏

p prime
pordp(xy), however xy =

( ∏
p prime

pordp(x)
) ( ∏

p prime
pordp(y)

)
=

∏
p prime

pordp(x)+ordp(y).

Hence vp(xy) = ordp(xy) = ordp(x) + ordp(y) = vp(x) + vp(y).
Let x = a

b and y = c
d , where gcd(a, b) = 1 and gcd(c, d) = 1. Let p be any fixed prime number. We

will prove that vp(x + y) ≥ min(vp(x), vp(y)) in three cases.

1. Suppose pordp(a)|a and pordp(c)|c, then a = pordp(a)m and c = pordp(c)n. Assume ordp(a) ≥
ordp(c).

x + y =
a
b

+
c
d

=
ad + cb

bd
=

pordp(a)md + pordp(c)nb
bd

=
pordp(c)(pordp(a)−ordp(c)md + nb)

bd
.

Let z = pordp(a)−ordp(c)md + nb, notice ordp(z) ≥ 0, so x + y =
pordp(c)+ordp(z)k

bd , for some k ∈
Z, and vp(x + y) = ordp(x + y) = ordp(c) + ordp(z) ≥ ordp(c) = min{ordp(a), ordp(c)} =

min{ordp(x), ordp(y)}.

2. Suppose pordp(a)|a and pordp(d)|d, then a = pordp(a)m and d = pordp(d)n. Evidently ordp(a) ≥
−ordp(d).

x+y =
a
b

+
c
d

=
pordp(a)m

b
+

c
pordp(d)n

= p−ordp(d)(
pordp(a)+ordp(d)m

b
+

c
n

) = p−ordp(d)(
pordp(a)+ordp(d)mn + cb

bn
).
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Let z = pordp(a)+ordp(d)mn + cb, notice ordp(z) ≥ 0, so x + y =
p−ordp(d)+ordp(z)k

bn , for some k ∈ Z,
and vp(x + y) = ordp(x + y) = −ordp(d) + ordp(z) ≥ −ordp(d) = min{ordp(a),−ordp(d)} =

min{ordp(x), ordp(y)}

3. Suppose pordp(b)|b and pordp(d)|d, then b = pordp(b)m and d = pordp(d)n. Notice ordp(x) =

−ordp(b) and ordp(y) = −ordp(d) . Assume −ordp(b) ≥ −ordp(d), that is, ordp(d) ≥ ordp(b).

x + y =
a
b

+
c
d

=
ad + cb

bd
=

apordp(d)n + cpordp(b)m
pordp(b)+ordp(d)nm

=
pordp(b)(pordp(d)−ordp(b)an + cm)

pordp(b)+ordp(d)nm
=

p−ordp(d)(
pordp(d)−ordp(b)an + cm

nm
).

Let z = pordp(d)−ordp(b)an + cm, notice ordp(z) ≥ 0, so x + y =
p−ordp(d)+ordp(z)k

bn , for some k ∈ Z,
and vp(x + y) = ordp(x + y) = −ordp(d) + ordp(z) ≥ −ordp(d) = min{−ordp(b),−ordp(d)} =

min{ordp(x), ordp(y)}.

In conclusion v(x + y) ≥ min(v(x), v(y)) for all x, y ∈ Q∗.

This valuation is called the p-adic valuation of Q. The p-adic absolute value | · |p of Q attached
to vp is defined as

| · |p : Q→ R≥0

x 7→ |x|p := p−vp(x), if x , 0

and |0|p = 0. Note that in order for an integer x to have a small absolute value |x|p, it must be
divisible by a large power of p.

Example 2.2.5 (P-adic valuations). Let A be a Dedekind domain, and let K denote its field of
fractions. Let P ⊂ A be a maximal ideal. We associate to P a surjective valuation vP : K∗ → Z as
follows. If x ∈ A, then write the factorization of the ideal (x) in A as

(x) :=
∏

P∈Max(A)

PordP(x),

where ordP(x) is defined in analogy with Z. Define vP(x) := ord(x). If x = a/b ∈ K, with a, b ∈ A,
the set

vP(x) := vP(a) − vP(b).

vp is a valuation of K. Unlike the p-adic valuation of Q, we omit the proof that vP is a valuation.
When A has finite quotients, we define the standardized absolute value | · |P associated to vP as
follows:

| · |P : K → R≥0

x 7→ |x|P := |A/P|−vP(x), ifx , 0,

and |0|P = 0.

From a valuation, we can obtain a local ring as follows:

Theorem 2.2.6. Let K be any field. Consider the valuation v : K∗ → Z. Define

Ov := {α ∈ K∗ : v(α) ≥ 0} t {0}, and Mv := {α ∈ K∗ : v(α) > 0} t {0}.

The set Ov is a ring, and the set Mv is a proper ideal. An element of Ov is invertible in Ov if and
only if v(α) = 0. Moreover Ov is a local ring with maximal ideal Mv.
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Proof. The proof follows from the definition of a valuation. To prove Ov is a ring, let α, β ∈ Ov,
that is, v(α) ≥ 0, and v(β) ≥ 0. If one of them is zero, say α, then v(α + β) ≥ 0 and α + β ∈

Ov. Assume neither is zero, so v(α + β) ≥ min{v(α), v(β)} ≥ 0, then α + β ∈ Ov. Observe that
v(β2) = v((−β)(−β)) = 2v(−β) ≥ 0, then v(−β) ≥ 0 and −β ∈ Ov. The product is closed in Ov since
v(αβ) = v(α) + v(β) ≥ 0. Ov has unit because v(1) = v(1 · 1) = 2v(1) ⇒ v(1) = 0 and 1 ∈ Ov. Hence
Ov is a ring with unit. For α, β ∈ Mv by the same arguments we have α − β ∈ Mv. Take γ ∈ Ov,
and α ∈ Mv, then v(γα) = v(γ) + v(α) > 0. We conclude Mv is an ideal of Ov. Notice 1 <Mv due
v(1) = 0, so Mv is a proper ideal.
Let α ∈ Ov a unit, there exists β ∈ Ov s.t 0 = v(1) = v(αβ) = v(α) + v(β), therefore v(α) = 0, and
α <Mv, i.e. Mv is the set of non-units, and Ov is a local ring with maximal idealMv. If v(α) = 0,
then α is a unit. �

Remark 2.2.7. Let kv := Ov/Mv denote the residue field.

Theorem 2.2.8. Let K be any field. Let v : K∗ → Z be a non-trivial valuation. Then Ov is a local
principal ideal domain. The map v is uniquely determined by the value v(t), where t is a generator
of Mv. The map v 7→ Ov, from the set of surjective valuations of K to the set of local principal
ideal domains contained in K and with field of fractions K, is a bijection.

Proof. This theorem is proved in [Lor96][Chapter V, Proposition 9.1]. �

Definition 2.2.2. For A non-trivial discrete valuation v : K∗ → Z, the ring Ov is called a discrete
valuation ring.

Definition 2.2.3. Let k be any field. Let L/k be any field extension. We say that a valuation
v : L∗ → Z is trivial on k if v(k∗) = {0}. Let V(L/k) denote the set of surjective valuations
v : L∗ → Z trivial on k.

Definition 2.2.4. Let k be any field. A field L containing k is called a field of transcendece degree
n over k if there exist x1, . . . , xn in L such that L is a finite extension of k(x1, . . . , xn), and such
that k(x1, . . . , xn) is isomorphic, as k−algebra, to the field of rational fractions in n variables over
k.

We have the necessary concepts to introduce the nonsingular complete curves.

Definition 2.2.5. Let k be any field. A nonsingular complete curve X/k over k is a pair (X, k(X)/k)
consisting in a field k(X)/k of transcendence degree 1 over k, and a set X identified with the set
V(k(X)/k) through a given bijection between X and V(k(X)/k). An element P of X is called a
point. The field k(X) is called the field of rational functions on X. To each point corresponds a
valuation vp of V(k(X)/k), and a local principal ideal domain OP := OvP , with maximal ideal MP.
The ring OP is called the ring of rational function defined at P. An element of OP is called a
function on X defined at P. A function α ∈ OP is said to vanish at P, or to have a zero at P, if
α ∈ MP. The integer vP(α) is called the order of vanishing of α at P, sometimes, we denote it by
ordP(α). A function α ∈ k(X)\OP is said to have a pole of α at P. The domain of α ∈ k(X) is the
set of points in X where α is defined. If U ⊆ X, then we let OX(U) := ∩P∈UOP, and we call this
the ring of functions on X defined everywhere on U . We assume OX(X) = k. We endow X with
the Zariski topology, where a set C is closed if and only if C is either empty, X, or a finite set of
points.
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Definition 2.2.6. An open set U of X is called affine if the ring OX(U) is a finitely generated
k-algebra and a Dedekind domain, and if the map U → Max(OX(U)), with P 7→ MP ∩ OX(U), is
well defined and bijective.

In other words, the open set U is an affine open set if it is in bijection, as above, with the
nonsingular affine curve (Max(OX(U)),OX(U)).

Remark 2.2.9. Any field L/k of transcendence degree 1 over k defines a nonsingular complete
curve X/k, namely, (V(L/k), L/k).

Definition 2.2.7. Let X/k and Y/k be two nonsingular complete curves over k. A (nonconstant)
morphism ϕ : X → Y of nonsingular complete curves over k is a map given by a homomorphism
of k-algebras ϕ∗ : k(Y) → k(X) in the following way: if P ∈ X corresponds to the valuation vP,
then ϕ(P) correspond in Y to the unique surjective valuation attached to the valuation vP ◦ ϕ.

Theorem 2.2.10. Let XF(k) be a nonsingular curve in P2(k). Let P ∈ XF(k). The ring OP ⊆ k(XF)
is a local principal ideal domain. Let π ∈ OP be a generator of the maximal ideal MP of OP. The
map vP : k(XF)∗ → Z, with z 7→ vP(z) = ordπ(z), is a surjective valuation such that OvP = OP.

Let F ∈ k[x0, x1, x2] be a homogeneous polynomial. Assume that the plane projective curve
XF(k) is nonsingular. Then the map

XF(k)→V(k(XF)/k)

P 7→ vP

is bijective.

Remark 2.2.11. As consequence, XF(k) is a nonsingular complete curve.

Definition 2.2.8. Let k be any field. A field L containing k is called a function field over k if the
field L is a field of transcendence degree 1 over k, and k is algebraically closed in L.

Definition 2.2.9. Let Fq be a finite field with q elements. Let X/Fq be a nonsingular complete
curve. Let Fq(X) denote the function field of X, and fix an algebraic closure Fq(X) of Fq(X).
Let Fqn/Fq be any algebraic extension of Fq contained in Fq(X). Let Fqn(X) := Fqn · Fq(X) =

subfield of Fq(X) generated by Fqn and Fq(X). Let XFqn /Fqn denote the nonsingular complete curve
associated to the function field Fqn(X)/Fqn . The curve XFqn /Fqn is said to be obtained from X/Fq

by a constant field extension or by extension of the scalars, or by base change. The extension
Fqn(X)/Fq(X) is called a constant field extension.

Remark 2.2.12. This definition works for any perfect field.

When we are dealing with affine or projective curves in a finite field Fq, where q is a power
of a prime p, these sets have finite elements. For any affine variety, notice |An(Fq)| = qn, so every
algebraic set has at least qn elements. For the projective case observe that An+1(Fq)− {(0, 0, . . . , 0)}
has qn+1 − 1 elements. Since F∗q has q− 1 elements each equivalence class has q− 1 elements. Thus
Pn(Fq) has (qn+1 − 1)/(q − 1) = qn + qn−1 + qn−2 + . . . + q + 1 elements, and every algebraic set has
at most this number of elements. The same occurs if we work over nonsingular complete curves
curves.

Theorem 2.2.13. Let X/Fq be a nonsingular complete curve. Then for all n ∈ N, the set X(Fq) is
finite.
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Proof. The statement is verified in [Lor96][Chapter 7, Lemma 6.18]. �

In the previous chapter, we obtain a formula to compute the number of points in an affine,
and projective hypersurface defined over Fq using characters, Gauss, and Jacobi sums, and by the
Hasse-Davenport relation, we extend it to Fqn . Now, we derive other method to determine the
number of points in any affine, projective, and complete curves using algebraic tools. Firstly, we
state the affine case.

Theorem 2.2.14. Fix an algebraic closure Fq of the field Fq. Denote by Fqn the unique subfield of
degree n over Fq. Let f ∈ Fq[x, y] be an absolutely irreducible polynomial. Let C f := Fq[x, y]/( f ).
Then the set {M ∈ Max(C f ) : [C f /M : Fq] = d} and the set Z f (Fqn) are finite. Let Nn := |Z f (Fqn)|,
and let bd := |{M ∈ Max(C f ) : [C f /M : Fq] = d}|. Then Nn =

∑
d|n

dbd.

Proof. We have already proof that Nn is finite. The rest of the prove can be consulted in
[Lor96][Chapter 7, Proposition 3.5]. �

Theorem 2.2.15. The group Gal(k/k) acts on P2(k) as follows:

Gal(k/k) × P2(k)→ P2(k)

(σ, [x0, x1, x2]) 7→ σ · [x0, x1, x2] := [σ(x0), σ(x1), σ(x2)].

Proof. First, we need to check that the map is well-defined. Let σ ∈ Gal(k/k), and [x0, x1, x2] =

[λx, λy, λz] ∈ P2(k), where λ ∈ k∗. Then

σ · [λx0, λx1, λx2] = [σ(λx0), σ(λx1), σ(λx2)]

= [σ(λ)σ(x0), σ(λ)σ(x1), σ(λ)σ(x2)] = [σ(x0), σ(x1), σ(x2)] = σ · [x0, x1, x2].

Let id ∈ Gal(k/k), then

id · [x0, x1, x2] = [id(x0), id(x1), id(x2)] = [x0, x1, x2].

Take σ, τ ∈ Gal(k/k), then

σ · (τ · [x0, x1, x2]) = σ · [τ(x0), τ(x1), τ(x2)] = [στ(x0), στ(x1), στ(x2)] = στ · [x0, x1, x2].

In conclusion, the map defines an action.
�

Remark 2.2.16. Let F ∈ k[x0, x1, x2] be a homogeneous polynomial. Since F has coefficients in k,
the action of the group Gal(k/k) induces, by restriction, an action on XF(k).

Theorem 2.2.17. Assume the hypothesis of theorem 2.2.14. Let F ∈ Fq[x0, x1, x2] be a homoge-
neous polynomial such that XF(Fq) is a nonsingular projective curve. Let bd denote the number
of orbits of length d of XF(Fq) under Gal(Fq/Fq). Then Nn =

∑
d|n

dbd.

Proof. We omit the proof, if the reader want to consult it, refer to [Lor96][Chapter 7, Proposition
3.11]. �
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Definition 2.2.10. Let k be any field. Let X/k be a nonsingular complete curve. Let Q ∈ X,
corresponding to a principal ideal domain OQ in k(X). The degree of Q, denoted by deg(Q), is the
integer [OQ/MQ : k].

Theorem 2.2.18. Let X/Fq be a nonsingular curve. Fix an algebraic closure Fq(X) of Fq(X). Let
Fq denote the algebraic closure of Fq in Fq(X). Let Fqn denote the unique subfield of Fq of degree
n over Fq. Let Nn := |X(Fqn)|, and bd := {Q ∈ X : deg(Q) = d}. Then Nn :=

∑
d|n

dbd.

Proof. This theorem is shown in [Lor96]. �

We want to associate to each nonsingular complete curve X/k an abelian group called the
Picard group. In [Lor96], they consider a more general case for a field L containing the Dedekind
domain B whose field of fractions is L. This abelian group gives rise to a new description of the
group Cl(B), however, we omit this case.

Definition 2.2.11. Let L/k be any extension and V(L/k) defined in definition 2.2.3. When
V(L/k) , ∅, the free abelian group Div(L/k) generated by the set {xv : v ∈ V(L/k)},

Div(L/k) := ⊕v∈V(L/k)Zxv

is called the group divisors of L/k. An element D in Div(L/k) is written as a sum D =
∑

avxv,
with av ∈ Z, and av for all but finitely many v ∈ V(L/k). The element D is called a divisor of L.
If av ≥ 0, for all v ∈ V(L/k), then D is called an effective, or positive divisor. The set of effective
divisor is denoted by Eff(L/k).

Consider the map
divL : L∗ → Div(L/k)

f 7→ divL( f ) :=
∑

v∈V(L/k)

v( f )xv.

The next proposition provide a reason why divL is well defined.

Theorem 2.2.19. Let k be any field. Let L/k be a field of transcendence degree one over k. Let
α ∈ L∗. Then the set {v ∈ V(L/k) : v(α) , 0} is a finite set.

Proof. The theorem is shown in [Lor96][Chapter VI, Proposition 4.11]. �

Definition 2.2.12. Let L/k(x) be a finite extension. The Picard group Pic(L/k) is the quotient of
the group Div(L/k) by the image of the map div.

Theorem 2.2.20. The following sequence of abelian groups is exact

(1)→
⋂

v∈V(L/k)

O∗v
i
−→ L∗

div
−−→ Div(L/k)

cl
−→ Pic(L/k) −→ (0).

i denotes the inclusion and cl the canonical projection.

Proof. The sequence is exact by the definition of the groups and the homomorphism. �

The previous definition holds for any function field K(x)/k, so we can extend these definitions
to nonsingular complete curves as follows:
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Definition 2.2.13. Let k be any field. Let k(X)/k be a function field, and let X/k denote the
associated nonsingular complete curve. To each point P ∈ X is associated a local principal ideal
domain OP with valuation vP. Let Div(X/k) := ⊕P∈XZP, and div : k(X)∗ → Div(X/k), with
f 7→

∑
P∈X

vP( f )P. Since we identify X with V(k(X)/k), the group Div(X/k) can be identified with

the group Div(k(X)/k) is such a way that the map div becomes identified with divk(X). Let Pic(X/k)
denote the quotient of Div(X/k) by the image of div.

Theorem 2.2.21. The following sequence of abelian groups is exact

(1) −→ k∗ −→ k(X)∗
div
−−→ Div(X/k)

cl
−→ Pic(X/k) −→ (0).

Proof. From the definition of nonsingular complete curve we have that
⋂

v∈V(L/k) O
∗
v = k∗, and by

theorem 2.2.20 we have that the sequence is exact. �

Example 2.2.22. Let F ∈ k[x0, x1, x2] be a homogeneous polynomial defining a nonsingular plane
projective curve XF(k). Let k(XF)/k denote the function field of XF(k). Let X/k denote the
nonsingular complete curve associated to k(XF)/k. Upon identifying X with the set XF(k), a
divisor D ∈ Div(X/k) can be thought of as a finite set of points of XF(k) with multiplicities. A
standard way to produce geometrically meaningful effective divisors on XF(k) is to intersect the
curve XF(k) with other plane curves. Let XH(k) be any other plane curve that intersects XF(k)
in finitely many points. For each point P in XF(k) ∩ XH(k), consider the intersection number
IP(XF , XH). The positive integer IP(XF , XH) equals 1 if the given curves have distinct tangent lines
at P, and is bigger than 1 otherwise. If P < XF(k) ∩ XH(k), then set IP(XF , XH) = 0. The divisor∑
P∈X

IP(XF , XH)P is called the intersection divisor of XF(k) and XH(k). If the reader is interested in

the definititon of intersection number, consult [Ful89].

Definition 2.2.14. Let k be any field. Let X/k be a nonsingular complete curve. The map

deg : Div(X/k)→ Z

deg(
∑
P∈X

aPP) =
∑
P∈X

aPdeg(P).

is called the degree map.

Theorem 2.2.23. Let k be any field. Let X/k be a nonsingular complete curve. Then, for all
α ∈ k(X)∗, deg(div(α)) = 0.

Proof. Refer to [Lor96][Chapter VII, Theorem 7.9] to consult the proof. �

Theorem 2.2.24. Let X/k be a nonsingular complete curve. The map deg : Div(X/k)→ Z induces
a nontrivial group homomorphism deg : Pic(X/k)→ Z, with cl(D) 7→ deg(D).

Proof. The proof is included in [Lor96][Chapter VII, Corollary 7.10.] �

Definition 2.2.15. Let Div0(X/k) denote the kernel of the map deg : Div(X/k)→ Z. Let Pic0(X/k)
denote the kernel of the map deg : Pic(X/k)→ Z.

Theorem 2.2.25.
Pic0(X/k) = Div0(X/k)/div(k(X)∗).

37



Proof. Let L ∈ Pic0(X/k), there exists D ∈ Div(X/k) s.t. cl(D) = L, however, deg(D) = deg(L) = 0
so D ∈ Div0(X/k), and cl(D) ∈ Div0(X/k)/div(K(X)∗). Let L ∈ Div0(X/k)/div(K(X)∗) ⊆ Div(X/k)/div(K(X)∗) =

Pic0(X/k). �

Theorem 2.2.26. The following sequence of abelian groups is exact

(1) −→ k∗ −→ k(X)∗ −→ Div0(X/k)
cl
−→ Pic0(X/k) −→ (0).

Proof. This results follows by theorem 2.2.20 and theorem 2.2.27. �

Theorem 2.2.27. Let k be a finite field. Let X/k be a nonsingular complete curve. Then the group
Pic0(X/k) is finite.

Proof. The proof can be consulted in [Lor96][Chapter VII, Theorem 7.13]. It uses the Riemann-
Roch theorem which we introduce in the next section. �

Remark 2.2.28. When k is a finite field, the order of the group Pic0(X/k) is called the class
number of X/k, and is denoted by the letter h.

Definition 2.2.16. Let d ∈ N. Set Picd(X/k) := {L ∈ Pic(X/k) : deg(L)) = d}. Set Effd(X/k) := {D ∈
Eff(X/k) : deg(D) = d}.

The map deg is a group homomorphism, so deg(Pic(X/k)) = eZ, where e ∈ N. Later we see that
e = 1. The proof of theorem 2.2.27 uses the following result:

Theorem 2.2.29. Let d ∈ N ∩ deg(Pic(X/k)). The set Picd(X/k) and Pic0(X/k) are in bijection.

Proof. Every left coset of Pic0(X/k) has the same cardinality. Let L be any element of Picd(X/k),
then L + Pic0(X/k) ⊆ Picd(X/k) since deg is a group homomorphism. On the other hand, pick
L∗ ∈ Picd(X/k), then deg(L−L∗) = deg(L)−deg(L∗) = 0, and L∗ ∈ L+Pic0(X/k). Hence Picd(X/k)
is a left coset of Pic0(X/k) in Pic(X/k). �

2.3 Riemann-Roch Theorem

The proof of the Weil conjectures uses an important result in Algebraic Geometry, Riemann-Roch
theorem. In this section we provide the basic elements to state the theorem and some of its
consequence that will be helpful later.

Definition 2.3.1. Let X/k be any nonsingular complete curve. We denote by O the identity
element of Div(X). Consider the following partial ordering ≥ on the group Div(X):

D
′

≥ D if and only if D
′

− D is a positive divisor.

In particular, D is a positive divisor if and only if D ≥ 0.
By definition 2.2.13, to each function α ∈ k(X)∗ is associated a divisor div(α) ∈ Div(X). We add

another element, called div(0), to the set Div(X) t {div(0)}. This element satisfies that div(0) ≥ D
for all D ∈ Div(X). Let D ∈ Div(X), define H0(D) := {α ∈ k(X) : div(α) + D ≥ 0}.
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Example 2.3.1. Let k be an algebraically closed field. Let D =
s∑

i=1
aiPi ≥ 0 be an effective divisor.

Then H0(D) is the set of all functions in k(X) with poles of order at most ai at Pi and no poles
anywhere else. In particular, H0(D) ⊃ k.

Example 2.3.2. Let D ∈ Div(X) be such that deg(D) < 0. Then H0(D) = {0}. If α ∈ k(X)∗, then
deg(div(α) + D) = 0 + deg(D) < 0. Therefore, div(α) + D cannot be a positive divisor.

Example 2.3.3. Let D = 0. Then H0(D) = k. By definition, the only functions in k(X) with
no poles are the constant functions. Similarly, if α ∈ k(X)∗, then H0(div(α)) = kα−1. Let α−1 ∈
H0(div(α)), and if β ∈ H0(div(α)), β , 0, then div(β) + div(α) = div(βα) ≥ 0, that is, βα ∈ k and
β = βα · α−1 ∈ kα−1.

We are interested in H0(D) because it has a vector space structure. Moreover, it is a finite-
dimensional vector space, but we see it later.

Theorem 2.3.4. H0(D) is a k-vector space.

Proof. By definition div(0) ≥ −D, then 0 ∈ H0(D). Let α, β ∈ H0(D) and c ∈ k. Then

div(α + β) =
∑
Pv∈X

v(α + β)Pv =
∑
Pv∈X

min(v(α), v(β))Pv.

Set
∑

Pv∈X
avPv. Notice min(v(α), v(β)) + av ≥ 0, hence div(α + β) + D ≥ 0, and α + β ∈ H0(D).

Now,
div(cα) =

∑
P∈X

v(cα)P =
∑
P∈X

(v(c) + v(α))P =
∑
P∈X

v(α)P,

since v is trivial on k, we have cα ∈ H0(D). In conclusion H0(D) is a vector space. �

To prove that H0(D) is finite-dimensional we try to find a bound.

Definition 2.3.2. Let k be any field and X/k be a nonsingular complete curve. Let D ∈ Div(X).
For each P ∈ X, define

L(D)P := {α ∈ k(X) : ordP(α) ≥ −ordP(D)}.

Consider the following map of k-vector spaces

ϕD : k(X)→ ⊕P∈X(k(X)/L(D)P)

f 7→ ⊕P∈X( f modL(D)P).

By definition, Ker(ϕD) = H0(D). Let H1(D) := Coker(ϕD).

Remark 2.3.5. Like H0(D), H1(D) is finite dimensional vector spaces, let h0(D) and h1(D) be their
dimension, respectively. The reasons are provided in the remainder of the section.

Definition 2.3.3. Let X/k be a nonsingular complete curve. The integer h1(0) is called the genus
of X, and is denoted by g = g(X).

Theorem 2.3.6. Let D ∈ Div(X) with deg(D) ≥ 0. Then h0(D) ≤ deg(D) + 1. For all D ∈ Div(X),
H0(D) is a finite-dimensional vector space.

Proof. The theorem is proved in [Lor96][Chapter VIII, Lemma 3.7] �
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The last theorem proves that H0(D) is a finite finite-dimensional vector space, the next does
the same for H1(D).

Theorem 2.3.7. Let k be any field. Let X/k be a nonsingular complete curve. Then, given
D ∈ Div(X), the k-vector space H1(D) has finite dimension, denoted by h1(D). Moreover, h0(D) =

deg(D) + 1 − g + h1(D).

Proof. The reader can consult the proof in [Lor96][Chapter VIII, Theorem 3.8] �

Remark 2.3.8. Notice that deg(D) + 1 − h0(D) + h1(D) is constant.

Theorem 2.3.9 (Riemann’s Theorem). For all D ∈ Div(X),

h0(D) ≥ deg(D) + 1 − g

Proof. It follows from the previous theorem. Since h1(D) is a finite nonnegative integer we obtain
the inequality �

Theorem 2.3.10 (Riemann-Roch). Let k be any field. Let X/k be a nonsingular complete curve.
Then there exists a divisor K in Div(X) such that, for all D ∈ Div(X), the k-vector space
Homk(H1(D), k) is isomorphic to the space H0(K − D). In particular, h1(D) = h0(K − D) and

h0(D) = deg(D) + 1 − g + h0(K − D).

Corolary 2.3.1. 1. h1(O) = h0(K − O) = g,

2. h1(K) = h0(K − K) = 1, and

3. deg(K) = h0(K) − 1 + g − h1(K) = 2g − 2.

Proof. 1. By example 2.3.1 we have h0(0) = deg(0)+1−g+h1(0) ⇔ 1 = +1−g+h1(0) ⇔ h1(0) = g.

2. h1(K) = h0(K − K) = k0(0) = 1.

3. deg(K) = h0(K) − 1 + g − h1(K) ⇔ deg(K) = 2g − 2.
�

Remark 2.3.11. The class of K in Pic(X/k) is called the canonical class. A divisor in the canonical
class is called a canonical divisor.

Corolary 2.3.2. Let k be any field. Let X/k be a nonsingular complete curve. Let L ∈ Pic(X/k).
If deg(L) ≥ 2g − 1, then h0(L) = deg(L) + 1 − g.

Proof. Let D be a divisor whose class in Pic(X/k) is L. Since deg(D) > deg(K), we find that
deg(K − D) < 0, and hence, h0(K − D) = 0 by example 2.3.1. �

Definition 2.3.4. Fix an element L ∈ Pic(X). Let EL := {D ∈ Div(X) : D ≥ 0 and cl(D) = L}.

Remark 2.3.12. EL = ∅ if deg(L) < 0, since the degree of an effective divisor is always non-
negative.
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Theorem 2.3.13. Let k be any field. Let X/k be a nonsingular complete curve. Let L ∈ Pic(X).
Assume that EL , ∅ and let D ∈ EL. Let ψD : H0(D)\{0} → EL, with α 7→ div(α) + D. Then the
map ψD is surjective. Moreover, the group k∗ acts on H0(D)\{0} by

k∗ × H∗\{0} 7→ H0(D)\{0}

(c, α) 7→ cα,

and EL can be identified with the quotient of H0(D)\{0} by the action of k∗. In particular, EL is
in bijection with Ph0(D)−1(k).

Proof. Consult [Lor96][Chapter VIII, Lemma 1.7] to find details about the proof. �

Corolary 2.3.3.

|EL| =
qh0(D) − 1

q − 1
.
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Chapter 3

The Zeta Function & Weil Conjetures.

3.1 A Litlle Bit of History

This historical review is taken from [Lor96][Chapter VIII, Introduction]. Let p be a prime and let
q = pr for some r ≥ 1, and consider Fq. Let F ∈ Fq[x0, x1, x2] be a homogeneous polynomial, and
define Nn := |XF(Fq)|, where Fqn denotes the unique Galois extension of Fq of degree n.

To study the behavior of the sequence {Nn}n∈N attached to a given nonsingular curve XF(Fq),
we will consider the power series

Z(XF/Fq,T ) := exp
∞∑

n=1
Nn

T n

n
.

The definition of the zeta function of a curve is made in analogy with the definition of the
historical Riemann ζ−function and Dedekind ζ−functions. It was Artin, in the 1920s, who first
developed the theory of the zeta-function in the case of hyperelliptic curves. Once arithmetic
geometers realized how to translate the definition of these fuctions from the context of number
fields to the context of function fields, it became clear to them that they should also try to prove
that the analogues of these properties hold in the context of function fields. In 1931, Schmidt
proved the functional equation of the zeta function of a curve and conjectured that the analogue
of the Riemann hypothesis holds. Hasse soon thereafter proved this conjecture in the case of
elliptic curves. The general case was proved in 1940s by Weil. The Riemann hypothesis for
number fields is still an open question today. Weil, in [Wei49] proposed a series of conjectures
that, if true, would extend his result for curves to higher dimensions. These conjectures became
known as the Weil Conjectures..

3.2 The Zeta Function

In the first part of this section, we introduce the Riemann ζ-function and the Dedekind ζ-function.
The idea is to compere the proposition and conjectures stated for these ζ-functions that are valid
for the Zeta function of nonsingular curves. From now on, we just call it the Zeta function.

Definition 3.2.1. Let {an}n∈N be an infinite sequence with an ∈ C, for all n ∈ N. The infinite series
∞∑

n=0
ann−s, with s ∈ C, is called a Dirichlet series.
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Let r ∈ R. Let
Hr := {s ∈ C|Re(s) > r}.

If there exists s0 ∈ C such that the infinite series
∞∑

n=0
ann−s0 converges, then the series

∞∑
n=0

ann−s

converges for all s ∈ HRe(s0). Moreover, the Dirichlet series converges uniformly on any compact

subspace of HRe(s0), and the function s 7→
∞∑

n=0
ann−s is holomorphic on HRe(s0).

Definition 3.2.2. The Dirichlet series ζ(s) :=
∞∑

n=0
is called the Riemann ζ-function.

Theorem 3.2.1. The ζ-function defines a holomorphic function ζ : H1 → C. It can be extended
to a meromorphic function on C, with a simple pole at s = 1. Moreover, lim

s→1
ζ(s)(s − 1) = 1.

Proof. The proof is omitted. �

Conjecture 3.2.1 (Riemann Hypothesis.). Let s ∈ C be such that ζ(s) = 0. If 0 ≤ Re(s) ≤ 1, then
Re(s) = 1

2 .

The strip {s : 0 ≤ Re(s) ≤ 1} is called the critical strip. The line {s : Re(s) = 1
2 } is called the

critical line. We can restate the Riemann Hypothesis, that is, the zeros of ζ(s) in the critical strip
lie in the critical line.

Theorem 3.2.2 (Functional equations of the Riemann ζ-function.). Let Γ(s) denote the Gamma
function. Let ζ(s) := π−s/2Γ(s/2)ζ(s). Then ζ(s) = ζ(1 − s).

Now let K/Q be any number field. For n ∈ N, let jn denote the number of ideals of Ok with
||I||Ok := |Ok/I| = n. By remark, 2.1.8, j1 = 1. By Theorem 2.1.12, jn is a finite number for all n ∈ N.

Definition 3.2.3. Let K/Q be a number field. The Dirichlet series ζ(K, s) :=
∞∑

n=0

jn
ns is called the

Dedekind ζ-function of the number field K.

Example 3.2.3. ζ(Q, s) is equal to the Riemann ζ-function. This result is derived from example
2.1.9 and the fact that Z is integrally closed in Q.

There is a result that generalizes theorem 3.2.2 for Dedekind ζ-fuction, but it is necessary to
define several concepts, so we omit it.

Conjectures which predict that the non-trivial zeros of a given Dirichlet series lie on a specific
vertical lines are referred to in the literature as Generalized Riemann Hypothesis (GRH), or
Extended Riemann Hypothesis (ERH). A Dedekind ζ-function is also conjecture to satisfy an ERH
describing the location of its zeros in the critical strip.

In analogy with the case of number fields, we now associate a ζ-function to any Dedekind
domain with finite quotients.

Definition 3.2.4. Let A be any Dedekind domain with finite quotients. The formal expression

ζ(A, s) :=
∑

I∈M(A)

1
||I||s

is called the ζ-function of A.
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Let jn := |{I ∈ M(A) : ||I|| = n}|. If jn < ∞ for all n ∈ N, then

ζ(A, s) :=
∑

I∈M(A)

1
||I||s

=

∞∑
n=1

jn
ns

Again, this ζ-function is a generalization of the other two ζ-functions we have presented so
far.

Example 3.2.4. If A = Z, then ζ(Z, s) is the Riemann ζ-function.

Example 3.2.5. If A = K, where K is a number field and OK its ring of integers. Then ζ(Ok, s) is
equal to the Dedekind ζ-function associated to K.

Let A be any Dedekind domain with finite quotients. Every ideal I ∈ M(A) factors into a
product I = Pa1

1 . . . P
ar
r , where P1 . . . , Pr are maximal ideals of A. This factorization is unique up

to permutation of the indices. By definition 2.1.10, the norm of ideals is multiplicative, so we can
make the following computations.

1
1 − 1

||P||s
= 1 +

1
||P||s

+
1
||P||2s + . . . =

∞∑
n=0

1
||P||ns .

Then ∑
I∈M(A)

=
∏

P∈Max(A)

(
∞∑

n=0

1
||P||ns ) =

∏
P∈Max(A)

(1 −
1
||P||s

)−1.

The right hand side of this equality is sometimes called the factorization of ζ(A, s) into a Euler
product.

Remark 3.2.6. Let A = Z. Then

ζ(Z, s) =

∞∑
n=0

1
ns =

∏
p prime

(1 −
1
ps )−1.

To continue with the derivation of the Zeta function we need the next result taken from
[Lor96][Chapter VII, Corollary 2.7]

Theorem 3.2.7. Let k be any field. Let f ∈ k[x, y] be an absolutely irreducible polynomial. If Z f (k)
is nonsingular or, equivalently, if C f := k[x, y]/( f ) is a Dedekind domain, then C f := k[x, y]/( f ) is
a Dedekind domain. Moreover, if k is a finite field, then C f is a domain with finite quotients.

Let us now define the main objective of study of this work, the Zeta function.
Let f ∈ Fq[x, y] be an absolutely irreducible polynomial. Assume that Z f (Fq) is a nonsingular
curve, then the ring C f := Fq[x, y]/( f ) is a Dedekind domain with finite qoutients.
Let

ζ(Z f /Fq, s) := ζ(C f , s) =
∑

I∈M(C f )

1
||I||s

=
∏

M∈Max(C f )

(1 −
1
||M||s

)−1.

Consider
bd := #{M ∈ Max(C f ) : |C f /M : Fq| = d}.
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From theorem 2.2.14, we know that bd is an integer. If |C f /M : Fq| = d, then ||M|| = |C f /M| = qd.
Therefore,

ζ(Z f /Fq, s) =
∏
d∈N

(1 −
1

qsd )−bd .

Let T := q−s. Define
Z(Z f /Fq,T ) :=

∏
d∈N

(1 − T d)−bd ,

so that Z(Z f /Fq,T ) = ζ(Z f /Fq, s). When no confusion may result, we will denote the function
Z(Z f /Fq,T ) simply by Z(T ).

Taking the logarithm, we find that

log(Z(T )) = −
∑
d∈N

bdlog(1 − T d) ⇒ log(Z(T )) =
∑
d∈N

bd(
∞∑
i=1

T di

i
).

Reordering the terms in the above series, and using the theorem 2.2.14, we obtain that

log(Z(T )) =

∞∑
n=1

(
∑
d|n

dbd)
T n

n
=

∞∑
n=1

NnT n

n
.

Therefore

Z(Z f /Fq,T ) = exp(
∞∑

n=1

NnT n

n
).

Definition 3.2.5. The power series Z(T )) ∈ Q[[T ]] is called the zeta-function of the affine curve
Z f (Fq) over Fq.

From theorems 2.2.17 & 2.2.18 we can derive the zeta function for projective curves and for
nonsigular complete curves. We just state the definitions.

Definition 3.2.6. Let F ∈ Fq[x0, x1, x2] be a homogeneous polynomial. Let Nn := |XF(Fqn)|. The
zeta-function of XF(Fq) over Fq is the power series

Z(XF/Fq,T )) = exp(
∞∑

n=1

NnT n

n
).

Definition 3.2.7. The zeta function of a nonsingular complete curve X/Fq is the power series

Z(XF/Fq,T )) =
∏
P∈X

(1 − T deg(P))−1 = exp(
∞∑

n=1

NnT n

n
),

where Nn = |X(Fqn)|.

Theorem 3.2.8. Let X/Fqn . Consider XFqn /Fqn the nonsingular complete curve associated to
Fqn(X)/Fqn . See definition 2.2.9. Then

Z(XFqn /Fqn
,T n) =

n∏
i=1

Z(X/Fq, ξ
i
nT ),

where ξn is a n-th root of unity.

Proof. [Lor96][Chapter VIII, Lemma 5.12] �
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3.3 Examples of the Zeta Function

Now we want to give some interesting examples of the computation of the zeta function where
the Jacobi sums are involved. Most of the cases we examined are not curves but hypersurfaces,
but the definition of the Zeta function for this set of solutions is the same.

Example 3.3.1. Let f = 0 ∈ Fq[x, y]. Hence Z f (Fqn) = A1(Fqn), and Nn = qn.

The zeta function is

Z(T ) = exp (
∞∑

n=1

qnT n

n
) = exp(− log(1 − qT )) =

1
1 − qT

.

Example 3.3.2. Consider the polynomial F = xm ∈ Fq(x0, x1, . . . , xm), the zeta function of XF(Fq)
is

Z(XF/Fq,T ) = (1 − qn−1T )−1(1 − qn−2T )−1 . . . (1 − qT )−1(1 − T )−1

To see it, notice that the zeros of F are the points (a0, . . . , am) ∈ Pm(Fqn) with am = 0, i.e., the
points at infinite. Then

Nn = |Pm−1(Fqn)| = qn(m−1) + qn(m−2) + . . . + qn + 1,

so
∞∑

n=1

NnT n

n
=

m−1∑
i=0

(
∞∑

n=1

(qiT )n

n
) = −

m−1∑
i=0

log(1 − qiu).

Finally, the zeta function of XF(Fq) is is given by

Z(T ) = exp(−
m−1∑
i=0

log(1 − qnT )) = (1 − qm−1T )−1(1 − qm−2T )−1 . . . (1 − qT )−1(1 − T )−1.

Example 3.3.3. Consider the hypersurface defined by −x20+ x21 + x22+ x23 = 0 over Fq. Using theorem
1.3.13 (assuming 2 - q) we obtain

N1 = q2 + q + 1 + χ(−1)
1
q

g(χ)2,

where χ is the character of order 2 on Fq. We know that g(χ)2 = χ(−1)q. Thus

N1 = q2 + q + 1 + χ(−1)q.

To compute Nn, notice the latter computation holds for the character of order 2 of Fqn . Then
we must just replace q by qn and χ by χn, where χn is the character of order 2 on Fqn . Then

Nn = q2n + qn + 1 + χn(−1)qn.

If −1 is a square in Fq, ie., −1 = a2 for some a ∈ F∗q, then for all n we have χn(−1) = χn(a2) =

χ2n(a), but the values of χn are 1 and −1. Thus χs(−1) = 1.
If −1 is not a square in Fq, notice

NFqn/F(−1) = (−1)(−1)q . . . (−1)qn−1
= (−1)n =

−1 if n is odd
1 if n is even
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and

χn(−1) = χ(NFqn/Fq(−1)) =

−1 if n is odd
1 if n is even

Since χn and χ have the same order, the latter equality is true.
In the first case

∞∑
n=1

NnT n

n
=

∞∑
n=1

(q2T )n

n
+ 2

∞∑
n=1

(qT )n

n
+

∞∑
n=1

T n

n
,

and so

Z(T ) = (1 − q2T )−1(1 − qT )−2(1 − T )−1.

In the second case the last term gives rise to the sum

∞∑
n=1

(−qT )n

n
= − log(1 + qT ).

Thus in this case

Z(T ) = (1 − q2T )−1(1 − qT )−1(1 + qT )−1(1 − T )−1.

In conclusion

Z(T ) =

(1 − q2T )−1(1 − qT )−2(1 − T )−1 if − 1 is square in Fq

(1 − q2T )−1(1 − qT )−1(1 + qT )−1(1 − T )−1 if − 1 is not square in Fq

Example 3.3.4. Consider the curve x30 + x31 + x32 = 0 over Fp = Z/pZ, p is a prime congruent to 1
module 3.

Again. taking into account the theorem 1.3.13 we find that

N1 = p + 1 +
1
p

∑
χ0,χ1,χ2

χ0(1)χ1(1)χ2(1)g(χ0)g(χ1)g(χ2),

where χ3i = ε, χi , ε, and χ0χ1χ2 = ε.

N1 = p + 1 +
1
p

∑
χ0,χ1,χ2

g(χ0)g(χ1)g(χ2)

Let χ the character of order 3 of Z/pZ. Then

N1 = p + 1 +
1
p

[g(χ)3 + g(χ2)3] = p + 1 +
1
p

[g(χ)3 + g(χ−1)3] =

p + 1 +
1
p

[pπ + pπ] = p + 1 + π + π

The latter is true since g(χ)3 = pπ, where π = J(χ, χ), and ππ = p. Thus

N1 = p + 1 + π + π.
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By the corollary to Hasse-Davenport Relation we obtain that

Nn = pn + 1 − (−π)n − (−π)n.

Then

Z(T ) = exp(
∞∑

n=1

[pn + 1 − (−π)s − (−π)n]T n

n
) = exp(

∞∑
n=1

(pT )n

n
+

∞∑
n=1

T n

n
−

∞∑
n=1

(−πT )n

n
−

∞∑
n=1

(−πT )n

n
)

= exp[− log(1 − pT ) − log(1 − T ) + log(1 + πT ) + log(1 + πT )] = (1 − pT )−1(1 − T )−1(1 + πT )(1 + πT )

=
1 + (π + π)T + |π|2T 2

(1 − pT )(1 − T )
=

1 + AT + pT 2

(1 − pT )(1 − T )
where A = π + p derived from theorem 1.3.7.

The next example is an adaptation of the previous one. It provides a description about how
the zeta function changes when we replace the smallest field for another one.

Example 3.3.5. The Zeta function of XF(F4) where F = x30 + x31 + x32 is

Z(XF/F4,T ) =
(1 + 2u)2

(1 − u)(1 − 4u)
.

To obtain this result we reasoning in the same way to example 3.3.4, in fact, the computations
are the same, we just need to change p for q = 4 since we used theorem 1.3.13 there. Then

N1 = q + 1 +
1
q

g(χ)3 +
1
q

g(χ2)3 = q + 1 + π + π.

For Nn we obtain
Nn = qn + 1 − (−π)n − (−π)n

Then

Z(T ) =
1 + (π + π)T + |π|2T 2

(1 − qT )(1 − T )
From theorem 1.3.7, we obtain that A = 4, so

Z(T ) =
(1 + 4T + 4T 2)
(1 − 4T )(1 − T )

=
(1 + 2T )2

(1 − 4T )(1 − T )
.

The next theorem described the zeta function of XF(Fq) where F is the polynomial considered
in theorem 1.3.13. Due this theorem and Hasse-Davenport Relation, the proof follows directly
from computing the zeta function of the number of solutions.

Theorem 3.3.6. Let F = a0xm
0 + a1xm

1 + . . . + anxm
n , where a0, a1, . . . , an ∈ F

∗
q, and q ≡ 1(m). Then

the zeta function Z(XF/Fq,T ) is a rational function of the form

P(T )(−1)n

(1 − T )(1 − qT ) . . . (1 − qn−1T )
,

where P(T ) is the polynomial∏
χ0,χ1,...,χn

(1 − (−1)n+1 1
q
χ0(a−10 ) . . . χn(a−1n )g(χ0)g(χ1) . . . g(χn)T ),

where the (n+1)-tuples χ0, χ1, . . . , χn being subject to the condition χm
i = ε, χi , ε, and χ0χ1 . . . χn =

ε.
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The next theorem is a generalization of the example 3.3.3, it exhibits how the zeta function
changes when the number of variables is altered.

Example 3.3.7. Consider the polynomial F = a0x20 + a1x21 + . . . anx2n over Fp.
If n is even, by theorem 3.3.6 we obtain that

Z(XF/Fp,T ) =
1

(1 − T )(1 − pT ) . . . (1 − pn−1T )

since there is only one character of order 2, say χ, and χn+1 = χ , ε so P(u) = 1.
If n is odd, again by theorem 3.3.6

Z(XF/Fp,T ) =
P(T )(−1)n

(1 − T )(1 − pT ) . . . (1 − pn−1T )
,

and
P(T ) = 1 −

1
p
χ(a−10 ) . . . χ(a−1n )g(χ)n+1T = 1 −

1
p
χ(a−10 . . . a−1n )g(χ)n+1u,

where χ is the character of order 2, in fact, it is the Legendre symbol. Using the fact that
g(χ)2 = χ(−1)p we obtain

P(T ) = 1 − p(n−1)/2(χ(−1))(n+1)/2χ(a−10 . . . a−1n )T,

If p ≡ 1 (4), the Legendre symbol gives us that χ(−1) = 1, and

P1(T ) = 1 − p(n−1)/2χ(a−10 . . . a−1n )T,

If p ≡ 3 (4), the Jacobi symbol gives us that χ(−1) = −1, and

P3(T ) = 1 − (−1)(n+1)/2p(n−1)/2χ(a−10 . . . a−1n )T.

In conclusion, the zeta function is

Z(XF/Fq,T ) =


(1 − T )−1(1 − pT )−1 . . . (1 − pn−1T )−1 if n is even
(1 − T )−1(1 − pT )−1 . . . (1 − pn−1T )−1P1(T )−1 if n is odd and p ≡ 1 (4)
(1 − T )−1(1 − pT )−1 . . . (1 − pn−1T )−1P3(T )−1 if n is odd and p ≡ 3 (4)

Example 3.3.8. In this example we compare the zeta function of the curve y2 = x3 + x2 over Fp

considering it as a affine curve and a projective curve.
We need to find Nn. For any n (0,0) belongs to Z f (Fp). For n = 1, suppose x , 0 and let t =

y
x .

Consider f (x, t) = x3 + x2 − x2t2, so

f (x, t) = 0 ⇔ x + 1 − t2 = 0 ⇔ x = t2 − 1 ⇔ f (t2 − 1, t) = 0.

Notice that the zeros depends on t which varies over all Fp omitting 1 and −1 since for t = ±1 we
have x = 0, so there are p − 2 zeros, hence N1 = p − 1. This computation didn’t depend on n, so
Nn = pn − 1.

For the affine case, the zeta function is

Z(Z f /(Fp,T ) = exp(
∞∑
n

(pn − 1)
T n

n
) = exp(

∞∑
n

(pT )n

n
−

∞∑
n=1

T n

n
) = exp(− log(1 − pT ) − log(1 − T )) =
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(1 − pT )−1(1 − T )−1

To obtain the projective case, we just need to add the point at infinity of f . Let F = x3+x2z−y2z,
the unique infinity point is [0, 1, 0] for all n, so Nn = q and the zeta function is equal to

Z(XF/Fp,T ) = (1 − p)−1.

3.4 Weil Conjectures for Nonsingular Curves.

First of all, we recall the tools we need to use to prove two of the Weil Conjectures, these are
consequences of the Riemann-Roch theorem, and we have talked about them in the previous
chapter.
There exists an integer g and, for each L ∈ Pic(X/Fq), there is a non-negative integer h0(L), such
that

1. |EL| = qh0(L)−1
q−1 (I).

2. If deg(L) ≥ 2g − 1, then h0(L) = deg(L) + 1 − g (II).

3. There exists an element K ∈ Pic2g−2(X/Fq), such that, for all L ∈ Pic(X/Fq) we have h0(L) =

deg(L) + 1 − g + h0(K − L) (III).

All the examples above exhibit an important property of the zeta function that every nonsingular
curve satisfies: it is a rational function. This is the first Weil conjecture.

Theorem 3.4.1 (Rationality of the Zeta Function). Let X/Fq be a nonsingular curve of genus g.
Then

Z(X/Fq,T ) =
f (T )

(1 − T )(1 − qT )
,

with f (T ) ∈ Z[T ] a polynomial of degree at most 2g.

Proof.

Z(X/Fq,T ) :=
∏
P∈X

(1 − T deg(P))−1 =
∏
P∈X

(
∞∑

nP=0
T anPdeg(P)) =

∑
D∈Eff(X/Fq)

T deg(P) =

∑
L∈Pic(X/Fq)
deg(L)≥0

(
∑

D∈Eff(X/Fq)
cl(D)=L

T deg(D)) =
∑

L∈Pic(X/Fq)
deg(L)≥0

|EL|T deg(L)

Assume that g = 0. Using the fact that |EL| = qdeg(L)+1−1
q−1 if deg(L) ≥ 0, we find that

h
(1 − T )(1 − qT )

=

 ∞∑
i=0

T i


 ∞∑

j=0
(qT ) j

 = h
∞∑

i=0

∞∑
j=0

q jT i+ j.

Let n = i + j and n − i = j, then

h
∞∑

i=0

∞∑
j=0

q jT i+ j = h
∞∑

n=0

n∑
j=0

q jT n = h
∞∑

n=0

qn+1 − 1
q − 1

T n =
∑

L∈Pic(X/Fq)
deg(L)≥0

qdeg(L)+1 − 1
q − 1

T deg(L) = Z(X/Fq,T ).

51



Let g ≥ 1, then

Z(X/Fq,T ) =
∑

L∈Pic(X/Fq)
0≤deg(L)≤2g−2

|EL|T deg(L) +
∑

L∈Pic(X/Fq)
deg(L)≥2g−1

|EL|T deg(L).

Set
α(T ) =

∑
L∈Pic(X/Fq)

0≤deg(L)≤2g−2

|EL|T deg(L)

and
β(T ) =

∑
L∈Pic(X/Fq)
deg(L)≥2g−1

|EL|T deg(L).

By theorem 2.2.27, we know Pic0(X/Fq) has order h. Therefore, for all d ∈ N, the set Picd(X/Fq)
is either empty, or has order h. Let e ∈ N be the unique integer such that deg(Pic(X/Fq)) = eZ. It
follows that

v(T ) =
∑

L∈Pic(X/Fq)
deg(L)≤2g−2

|EL|T
deg(L)

e

is a polynomial in T with integer coefficients, of degree at most 2g − 2. Then v(T e) = α(T ).
From the formula of |EL|, and the fact that |Pic0(X/Fq)| = h we imply that

∑
L∈Pic(X/Fq)
deg(L)≥2g−1

|EL|T deg(L) = h
∑

d
de≥2g−1

qde+1 − 1
q − 1

T de.

Let d0 denote the smallest integer such that d0e ≥ 2g − 1. Then

h
q − 1

(
∑

de≥2g−1
(qde+1−g − 1)T de) =

h
q − 1

(qd0e+1−gT d0e(
∞∑

d=0
(qT )de) − T d0e(

∞∑
d=0

T de)) =

h
q − 1

(
qd0e+1−gT d0e

1 − qeT e −
T d0e

1 − T e

)
=

h
q − 1

(qd0e+1−g − 1)(T e)d0 + (qe − qd0e+1−g)(T e)d0+1

(1 − qeT e)(1 − T e)

= h
u(T e)

(1 − qeT e)(1 − T e)
,

where

u(T ) =
(qd0e+1−g − 1)T d0 + (qe − qd0e+1−g)T d0+1

q − 1
.

Notice u(T ) ∈ Z[T ] is a polynomial of degree at most 2g. Otherwise d0 is not the smallest integer
such that d0e ≥ 2g − 1. Then β(T ) = h u(T e)

(1−qeT e)(1−T e) .

It follows that

Z(X/Fq,T ) = v(T e) + h
u(T e)

(1 − qeT e)(1 − T e)
=

v(T e)(1 − qeT e)(1 − T e) + hu(T e)
(1 − qeT e)(1 − T e)

=
f (T e)

(1 − qeT e)(1 − T e)
, (3.1)
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where
f (T ) = v(T )(1 − qeT )(1 − T ) + hu(T ) ∈ Z[T ]

is a polynomial of degree at most 2g. Moreover, the zeta function has a simple pole at T = 1, and

lim
T→1

(T − 1)Z(X/Fq,T ) = lim
T→1

(T − 1)v(T e) + (T − 1)h
u(T e)

(1 − qeT e)(1 − T e)
=

h
(q − 1)e.

(3.2)

Now we need to show that e = 1, that is, deg : Pic(X/Fq) → Z is surjective. Consider the curve
XFqe /Fqe obtained from X/Fq by base change. Let ξe be a primitive e-th root of unity. Theorem
3.2.8 shows that

Z(XFqe /Fqe ,T e) =

e∏
i=1

Z(X/Fq, ξ
i
eT ) (3.3)

Formula 3.2 applied to the zeta function Z(XFqe /Fqe ,T e) shows that this function has a simple pole
at T = 1. The description of Z(X/Fq,T ) given in the equation 3.1 shows that

e∏
i=1

Z(X/Fq, ξ
i
eT ) =

(
f (T e)

(1 − qeT e)(1 − T e)

)e

.

This product has a pole of order e at T = 1. By comparison of the order of the pole at T = 1 on
each side of the equation 3.3, we find that e = 1. In conclusion

Z(X/Fq,T ) =
f (T )

(1 − qT )(1 − T )
,

and the first conjecture is proved. �

Remark 3.4.2. By definition of the zeta function, Z(X/Fq, 0) = 1 and f (0) = 1, so we can factorize
f as

f (T ) =

2g∏
i=1

(1 − ωiT ) ∈ Q[T ].

Example 3.4.3. If X/Fq is an elliptic curve. Then

Z(X/Fq,T ) =
1 − aT + qT 2

(1 − T )(1 − qT )
,

where a = ω1 + ω2.

At the beginning of this chapter, we stated that the Riemann ζ-function and the Dedekind
ζ-function of number fields all satisfy a functional equation relating ζ(s) and ζ(1 − s). The zeta
function Z(X/Fq,T ) also satisfies a functional equation. That is the second conjecture.

Theorem 3.4.4 (Functional equation of the zeta-function). Let X/Fq be a nonsingular complete
curve of genus g. Let Z(T ) := Z(X/Fq,T ) =

f (T )
(1−qT )(1−T ) . Then

Z(
1

qT
) = (qT 2)1−gZ(T ).
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Proof. Let Z′(T ) := (q − 1)Z(T ). Then

Z
′

(T ) = (q − 1)
∑

L∈Pic(X/Fq)
deg(L)≥0

|EL|T deg(L).

Using (I), we can rewrite Z′(T ) as a sum of two terms α(T ) + β(T ), where

α(T ) :=
∑

0≤deg(L)≤2g−2
qh0(L)T deg(L),

and
β(T ) :=

∑
deg(L)≥2g−1

qh0(L)T deg(L) −
∑

deg(L)≥0
T deg(L).

Using statement (II) above, we find that

β(T ) = h
∑

d≥2g−1
qd+1−gT d − h

∑
d≥0

T d = hq1−g(qT )2g−1

∑
f≥0

(qT ) f

 − h
1 − T

= h
(
qgT 2g−1

1 − qT

)
− h

(
1

1 − T

)
.

β(1/qT ) = q1−gT 2−2gβ(T ) since

q1−gT 2−2gβ(T ) = q1−gT 2−2gh
(
qgT 2g−1

1 − qT
−

1
1 − T

)
= h

(
qT

1 − qT
−

q1−gT 2−2g

1 − T

)
,

and

β(
1

qT
) = h

qg
(

1
qT

)2g−1

1 − q
(

1
qT

) − 1
1 − 1

qT

 = h
(
qgq1−2gT 2−2g

T − 1
−

qT
qT − 1

)
= h

(
qT

1 − qT
−

q1−gT 2−2g

1 − T

)
.

Then β( 1
qT ) = q1−gT 2−2gβ(T ). Now, let’s proceed similarly for α(T ). Let K ∈ Picd0(X/Fq) be any

divisor class of degree d0. The map⋃
0≤d≤d0

Picd(X/Fq)→
⋃

0≤d≤d0

Picd(X/Fq)

L 7→ K − L

is a bijection. Indeed, if 0 ≤ deg(L) ≤ d0, then

0 ≤ deg(K − L) = deg(K) − deg(L) ≤ d0,

the inverse is the same application.
Choosing K to be the canonical class of degree 2g − 2 allows us to write

α(T ) =
∑

0≤deg(L)≤2g−2
qh0(K−L)T deg(K−L).

By statement (III), we obtain

α(T ) =
∑

0≤deg(L)≤2g−2
qh0(L)−deg(L)−1+gT deg(K)−deg(L) =
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qg−1T deg(K)
∑

0≤deg(L)≤2g−2
qh0(L) 1

(qT )deg(L) = qg−1T 2g−2α(
1

qT
).

In conclusion

Z
′

(T ) = α(T ) + β(T ) = qg−1T 2g−2α(
1

qT
) + qg−1T 2g−2β(

1
qT

) = qg−1T 2g−2Z
′

(
1

qT
)

Z(T ) = qg−1T 2g−2Z(
1

qT
)

�

Corolary 3.4.1. The degree of f (T ) is equal 2g.

Proof. Replacing Z(T ) =
f (T )

(1−T )(1−qT ) in the previous result gives us f (T ) = qgT 2g f ( 1
qT ). This implies

that

f (T ) =

2g∏
i=1

(1 − ωiT ) = qgT 2g
2g∏
i=1

(1 − ωi
1

qT
) = qgT 2g

2g∏
i=1

qT − ωi

qT
= q−g

2g∏
i=1

(qT − ωi).

Hence f (T ) is a polynomial of degree 2g. �

Remark 3.4.5. ωi are algebraic integers. To prove this, let h(s) := s2g f (1/s) = s2g ∏2g
i=1(1 −

ωi
s ) =∏2g

i=1(s − ωi) ∈ Z[s]. Then h(ωi) = 0.

Corolary 3.4.2.
∏2g

i=1 ωi = qg, and the map ωi 7→ q/ωi, from the set {ω1, . . . , ω2g} to itself, is
well-defined and bijective.

Proof. From the proof of the previous theorem we have

f (T ) = q−g
2g∏
i=1

(qT − ωi).

Take T = 0, then

1 = f (0) = q−g
2g∏
i=1

ωi ⇒

2g∏
i=1

ωi = qg.

Notice {ωi}
2g
i=1 are the inverses of the zeros of Z(T ). An element of this set may appear multiple

times depending on the multiplicity of each root. Apply T = ωi/q in the functional equation
Z( 1

qT ) = (qT 2)1−gZ(T ). The result is

0 = Z(
1
ωi

) = (q(
ωi

q
)2)1−gZ(ωi/q) ⇒ Z(ωi/q) = 0,

and q/ωi ∈ {ωi}
2g
i=1.

Let ωi, ω j such that ωi = ω j, i.e, they are the same root, then ωi/q = ω j/q, and the map is
well-defined. Now assume that ωi , ω j, then ωi/q , ω j/q, so the map is injective. Hence it is
also bijective. �

Remark 3.4.6. Corollary 3.4.2 allows us, upon a possible renumbering of the indices, to write the
set {ω1, . . . , ω2g} as {ω1, . . . , ωg, q/ω1, . . . , q/ωq}
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There is a formula that expresses the value of Nn in terms of ωi. To obtain it, observe that

log(Z(T )) = log( f (T )) − log((1 − T )(1 − qT )) =

2g∑
i=1

log((1 − ωiT )) − log((1 − T )) − log((1 − qT ))

=

∞∑
n=0

qn + 1 −
2g∑
i=1

ωn
i

 T n

n
.

Then Nn = qn + 1 −
2g∑
i=1
ωn

i .

The main goal of our study of curves over finite fields is to obtain explicit bounds for the
integers Nn. The third conjecture, called the Riemann hypothesis for curves provides this bounds.
Recall that the Riemann hypothesis of the Riemann ζ-function says that

If 0 ≤ Re(s) ≤ 1, and ζ(s) = 0, then Re(s) = 1/2.

By analogy, the statement for the zeta function says

If 0 ≤ Re(s) ≤ 1, and Z(q−s) = 0, then Re(s) = 1/2. (3.4)

Since Z(T ) is a rational function, the algebraic integers 1/ωi are the only zeros of Z(T ). If
1/ωi = q−s, then |ωi| = qRe(s). The statement 3.4, if true, would imply that |ωi| = q1/2.

Theorem 3.4.7 (Riemann Hypothesis for curves over finite fields).

|ωi| = q1/2, ∀i = 1, . . . 2g.

From the Riemann Hypothesis for curves and the formula for Nn we obtain that

|Nn − (qn + 1)| ≤ 2gqn/2. (3.5)

Unfortunately, we do not prove this theorem, although we prove that the Riemann hypothesis
follows from a statement seemingly weaker than 3.5.

Theorem 3.4.8. Assume that there exist two constants, C0 and C1, and an integer d ≥ 1 such
that for all n ∈ N,

|Ndn − (qdn + 1)| = |
2g∑
i=1

ωn
i | ≤ C0 + C1qdn/2.

Then the Riemann hypothesis holds.

Proof. Assume that |ω1| ≤ |ω2| ≤ . . . ≤ |ω2g|.

|Ndn − (qdn + 1)| ≤ |C0 + C1qdn/2| ≤ |C0| + |C1qdn/2| ≤ qdn/2|C0| + |C1|qdn/2 = (|C0| + |C1|)qdn/2 = Cqdn/2,

where C := (|C0| + |C1|).

Claim: Let λ1, . . . , ωs ∈ C be such that |λ1| = . . . = |λs| = 1. Then, ∀ε > 0, there exist arbitrarily
large integers n such that |λn

1 + . . . + λn
s | ≥ s − ε.
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Proof. The proof is omitted. �

Claim: Let ω1, . . . , ωs ∈ C with |ω1| ≤ . . . ≤ |ωs|. Then, for all ε > 0, there exist arbitrarily large
integers n such that |ωn

1 + . . . + ωn
s | ≥ (1 − 2ε)|ωs|

n.

Proof. Let l < s be such that |ωs| = . . . = |ωl+1| > |ωl|. Then there exist arbitrarily large integers n
such that

|
ωn

s

|ωs|
n + . . .

ωn
l+1

|ωl+1|n
| ≥ (s − l − ε) ⇒ |ωn

s + . . . ωn
l+1| ≥ |ωs|

n(s − l − ε),

and
|ωn

s + . . . ωn
1 | ≥ |ω

n
s + . . . ωn

l+1| − |ω
n
l + . . . ωn

1 |

≥ |ωs|
n(s − l − ε) − l · |ωl|

n ≥ |ωs|
n(1 − ε) − |ωl|

n(s − 1).

If n is large enough, then |ωl|
n(s − 1) < ε|ωs|

n. Therefore

|ωn
s + . . . ωn

1 | ≥ |ωs|
n(1 − ε) − |ωl|

n(s − 1) ≥ |ωs|
n(1 − ε) − ε|ωs|

n = (1 − 2ε)|ωs|
n.

�

The inequality of the previous claim imply that, for arbitrarily large n,

Cqdn/2 ≥ |ωdn
2g + . . . + ωdn

1 | ≥ (1 − 2ε)|ωd
2g|

n.

Hence |ωd
2g|/(q)d/2 ≤ |C/(1 − 2ε)|1/n. Since |C/(1 − 2ε)|1/n tends to 1 as n tends to ∞, then

|ω2g| ≤ q1/2. Since ω1 = q/ω2g and |ω1| ≤ |ω2g|, we conclude that |ωi| = q1/2 for all i = 1, . . . , 2g. �

The hypothesis of theorem 3.4.8 is always true, however, we omit it. The proof is in [Lor96]
which is based on the proof given in [Bom74].

To conclude, we want to summarize the conjectures stated above but for a variety, including
the fourth conjecture. Also, a historical overview of the work will be given.

Conjecture 3.4.1 (Weil Conjectures). Let X be a smooth projective variety of dimension n over
Fq. We define its zeta function by

Z(X,T ) := exp(
∞∑

n=1
Nn

T n

n
),

where Nn is the number of closed points of X where considered over Fqn .
The Weil conjectures are:

1. (Rationality) Z(X,T ) is a rational function of T .

2. (Functional equation) Let E be the Euler characteristic of X considered over C. Then

Z(
1

qnT
) = ±qnE/2T EZ(T ).
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3. (Riemann hypothesis) We can write

Z(T ) =
P1(T ) . . . P2n−1(T )
P0(T ) . . . P2n(T )

,

where P0(T ) = 1 − T, P2n(T ) = 1 − qnT and all the Pi(T ) are integer polynomials that can be
written as

Pi(T ) =
∏

j

(1 − αi jT ).

Finally, |αi j| = qi/2.

4. (Betti numbers) The degree of the polynomials Pi are the Betti numbers of X considered
over C.

In [Har77][Appendix C], there is a short historical review about the effort to prove these
conjectures. We just mention the most remarkable discoveries, so we invite the reader to consul
the reference for more information. One of Weil’s major pieces of work is in his book [Wei48a],
the proof that Weil conjectures hold for curves. The rationality and the functional equation follow
from the Riemann-Roch theorem on the curve. He deduces the analogue of Riemann hypothesis
from an inequality of Castelnuovo and Severy about correspondences on a curve. In [Wei48b],
Weil gave another proof using l-adic representation of Frobenius on abelian varieties, which
inspired the later cohomological approaches.

For higher-dimensional varieties, the rationality of the zeta function and the functional equa-
tion were first proved by Dwork in [Dwo60]. He used methods of p-adic analysis. Most other work
on the Weil conjectures has centered aroung the search for a good cohomology theory for varieties
defined over fields of characteristic p, which would give the right Betti numbers. Furthermore,
the cohomology theory should have its coefficients in a field of characteristic zero, so that one can
count the fixed points of a morphism as a sum of traces on cohomology groups.
The first cohomology introduced into abstract algebraic geometry was that of Serre using coherent
sheaves. Although it could not satisfy the present need, because of its coefficients being in the
field over which the varieties is defined, it served as a basis for the development of later cohomol-
ogy theories. Grothendieck inspired by some of Serre’s ideas, saw that one could obtain a good
theory by considering the variety together with all its unramified covers. This was the beginning
of his theory of étale topology, developed jointly with M. Artin, which he used to define the l-adic
cohomology, and thus to obtain another proof of the rationality and functionality equation of the
Zeta function which can be found in [Gro95].
The analogue of the Riemann hypothesis has proved more difficult to handle. Lang and Weil
established an inequality for n-dimensional varieties, which is equivalent to the analogue of the
Riemann hypothesis if n = 1, but falls short of it if n ≥ 2. It was until seventies that Deligne in
[Del74] proved the general analogue of the Riemann hypothesis.

To conclude, we invite the reader to consult the following references: [FK88] and [KW01]
to read about étale cohomology and the proof of the Weil conjectures. [Gro73] to consult the
foundations of étale chomology by Grothendieck et. al.
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