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Abstract

Internet of things (IoT) has turned into an opportunity to connect millions of devices through communication
networks in digital environments. Inside IoT and mainly in the technologies of communication networks, it
is possible to find Low Power Wide Area Networks (LPWAN). Within these technologies, there are service
platforms in unlicensed frequency bands such as the LoRa Wide Area Network (LoRaWAN). It has features
such as low power consumption, long-distance operation between gateway and node, and low data transport
capacity. LPWAN networks are not commonly used to transport high data rates as in the case of agricultural
images. The main goal of this research is to present a methodology to transport images through LPWAN
networks using LoRa modulation. The methodology presented in this thesis is composed of three stages mainly.

The first one is image processing and classification process. This stage allows preparing the image in order
to give the information to the classifier and separate the normal and abnormal images; i.e. to classify the
images under the normal conditions of its representation in contrast with the images that can represent some
sick or affectation with the consequent presence of a particular pathology. For this activity. it was used some
techniques were used classifiers such as Support Vector Machine SVM, K-means clustering, neuronal networks,
deep learning and convolutional neuronal networks. The last one offered the best results in classifying the
samples of the images.

The second stage consists in a compression technique and reconstruction algorithms. In this stage, a method is
developed to process the image and entails the reduction of the high amount of information that an image has in
its normal features with the goal to transport the lowest amount of information. For this purpose, a technique
will be presented for the representation of the information of an image in a common base that improves the
reduction process of the information. For this activity, the evaluated components were Wavelet, DCT-2D and
Kronecker algorithms. The best results were obtained by Wavelet Transform. On the other hand, the compres-
sion process entails a series of iterations in the vector information, therefore, each iteration is a possibility to
reduce that vector until a value with a minimum PSNR (peak signal to noise ratio) that allows rebuilding the
original vector. In the reconstruction process, Iterative Hard Thresholding (IHT), Ortogonal MAtching Pur-
suit (OMP), Gradient Projection for Sparse Reconstruction (GPSR)and Step Iterative Shrinage/Thresholding
(Twist) algorithms were evaluated. Twist showed the best performance in the results.

Finally, in the third stage, LoRa modulation is implemented through the creation of LoRa symbols in Matlab
with the compressed information. The symbols were delivered for transmission to Software Defined Radio
(SDR). In the receptor, a SDR device receives the signal, which is converted into symbols that are in turn
converted in an information vector. Then, the reconstruction process is carried out following the description
in the last part of stage 2 - compression technique and reconstruction algorithms, which is described in more
detailed in chapter 3, section 3.2. Finally, the image reconstructed is presented. The original image and the
result image were compared in order to find the differences. This comparison used Peak Signal-to-Noise Ratio
(PSNR) feature in order to get the fidelity of the reconstructed image with respect of the original image. In
the receptor node, it is possible to observe the pathology of the leaf. The methodology is particularly applied
for monitoring abnormal leaves samples in potato crops.

This work allows finding a methodology to communicate images through LPWAN using the LoRa modulation
technique. In this work, a framework was used to classify the images, then, to process them in order to
reduce the amount of data, to establish communication between a transmitter and a receiver through a wireless
communication system and finally, in the receptor, to obtain a picture that shows the particularity of the
pathology in an agricultural crop.
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1. Introduction

1.1. Agricultural monitoring system with images in Colombia

Colombia has a broad spectrum of possibilities in agricultural crops, due to its diverse geographical zone that
allows the production of a huge number of fruits and vegetables for the human consumption [1]. The agricultural
sector needs the implementation of smart techniques, that allow improvement and efficiency in the quality of
the processes and make it possible the early prevention of pests and diseases in order to avoid losses in the chain
of production and achieve the effective marketing of the products. In Colombia, potatoes are one of the main
agricultural products, particularly in the region of Boyacá due to its tradition. Potato crops are present among
2500 and 3200 meters above sea level, which makes it difficult to undergo many process around the planting,
production and harvesting stages. In the production stage, there are different known phases: the selection,
classification and planting of the seed, and the crop growth, in which, the production is expected to strengthen
with a reduction in pest or diseases risk. An opportune and appropriate monitoring will reduce the negative
effects of pest or diseases with an acceptable level of quality [1].

The easiest way to detect abnormalities in the crops is through a visual method, that aims to distinguish between
normal crops or those with the presence of a particular pathogen [2, 3]. A pathology can be associated with
the pigmentation of the leaves of the plant. There are several types of pathology that can be represented by
brown, black or yellow colors. These colors that differ from the traditional green show some abnormalities such
as Phythophthora infestans or Alternaria Solani, mainly. Figure 1-1 shows the normal or abnormal features in
the leaves of potato crops [3, 4].

Figure 1-1.: Normal or abnormal leaves of potato

The diagnosis of diseases in plants is considered an art which involves the experience of the farmers. In
general, agriculture techniques entail monitoring with the use of variable control, such as temperature, humidity,
nutrients, light conditions, among others, in order to set up the control of these features. However, the traditional
methods used by the farmers involve the function of looking at behavioral patterns and, to a lesser degree,
technological support that could improve the early and accurate detection of abnormalities in the crops. The
digital analysis and processing of images offer an advantage in the early detection of diseases through pattern
extraction, features and attributes that allow farmers to define whether the plant belongs to a normal or
abnormal class [5,6]. In addition, different works have reported that capturing images of agricultural monitoring
with image processing in outdoor environments entails particular problems related to illumination and image
capturing [7, 8]. Therefore, in order to avoid those problems, we proposed a controlled environment for image
capturing where the main focus is to present an entire methodology framework combining image classification
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1.2 Research problem and solution strategy

and compression, wireless communication through a LPWAN network and image reconstruction. The controlled
environment allows taking every leaf sample with a white background for image processing and transmission.
The proposed methodology framework presented several challenges, for example, in the processing stage, the
reconstruction of the image at the receiver node with an acceptable resolution level after the application of the
compression techniques which reduces the information even under the Shannon-Nyquist theorem [9]. Another
challenge was to implement a complete Tx-Rx communication setup of LoRa in its physical layer in order to
adapt the image transmission over narrow-band frequency channels for the proposed methodology framework.

1.2. Research problem and solution strategy

When real time data or high amount of information need to be transported through wireless sensor networks,
some critical points should be considered such as low computational complexity, memory limitations, narrow
bandwidth and low energy consumption. The work in [10] presents how to reduce the energy consumption of a
sensor network during image transmission with an energy efficient scheme, using image compression techniques
based on the compression standard JPEG2000. In [11], the results of images and voice transmission using
LoRa are presented, image and voice compression is set to a JPEG2000 standard and the A-law method,
respectively. In [12], a platform of video sensor network architecture is presented, with a proposed solution
to deliver high quality video over IEEE 802.11 networks. The compression method used is differential JPEG.
In [13], a framework is proposed and developed for streaming video flows through wireless multimedia sensor
networks. For the above, three main blocks were designed: an encoder to compress information, a congestion
control mechanism to avoid loss of information, and a selective priority automatic request mechanism at the
MAC layer.

LPWAN technologies are gaining incredible interest due to their efficient integration inside IoT, which represents
a union of data and communication systems that allows sensor data to transport through wireless environments
with some special features such as long range coverage, low power consumption and the possibility of using
non-licensed spectrum (Industrial-Scientific-Medical, ISM bands). This feature entails an additional advantage
such as less operational cost. However, LPWAN has disadvantages such as limited bandwidth, spectrum access
duty cycling and low data payload. Capacity restriction for high data rates is a challenge for applications where
images and video should be transmitted through a LPWAN as in the case of Wireless Visual Sensor Networks
(WVSN) [14], wireless camera sensors [15,16] and image sensors [17–19].

LoRaWAN is a LPWAN solution that uses Chip Spread Spectrum (CSS) modulation, known as LoRa PHY.
The modulation system is a subcategory of the Direct Sequence Spread Spectrum (DSSS) that takes advantage
of the controlled frequency diversity in order to recover data from weak signals, even near to the noise level. It
works with a continuous phase between different symbols called “chirp”. The main technical features of LoRa
modulation are Bandwidth (BW) and the Spreading Factor (SF), commonly set from 7 to 12. The SF is the
number of bits in a LoRa symbol. It is possible to transmit from 20 to 2SF data codes, called chips, in one
symbol time, thus, the value of the coded chip will be the value of the phase change of the signal within a
symbol time. With each increase of SF, the data rate is reduced, while the transmission and the symbol time is
increased. As a result, large coverage and high energy consumption is achieved at the end device. Theoretical
references about LPWAN networks and LoRaWAN technology will be addressed in detail in follow chapters.

In order to better understand the research problem of transmitting images through a LoRaWAN network, Table
1 presents the data rate limitation of this technology. With the relation between SF, bit rate, BW, symbol time
Ts and the time on air (Ts multiply by packet number) for a packet of 255 bytes, which is the maximum payload
of LoRaWAN.
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1 Introduction

Table 1 - Main features of LoRa technology

SF BW (kHz) Ts
Bit rate
(kbit/s)

Time on Air
255 bytes

(ms)
7 125 1.024 ms 6.836 389.38
8 125 2.048 ms 3.906 686.59
9 125 4.096 ms 2.197 1,229.82
10 125 8.192 ms 1.220 2,213.89
11 125 16.384 ms 0.671 4,837.38
12 125 32.768 ms 0.366 8,855.55
7 250 512 µs 13.672 194.69
8 250 1.024 ms 7.812 343.30
9 250 2.048 ms 4.395 614.91
10 250 4.096 ms 2.441 1,106.94
11 250 8.192 ms 1.342 2,009.09
12 250 16.384 ms 0.732 3,772.42
7 500 256 µs 27.343 97.34
8 500 512 µs 15.625 171.65
9 500 1.024 ms 8.789 307.46
10 500 2.048 ms 4.882 553.47
11 500 4.096 ms 2.685 1,004.54
12 500 8.192 ms 1.464 1,886.21

In this research, we took images of 16384 (128 x 128) pixels of information, which allow detecting normal
or abnormal features of leaves with the aim to find possible diseases. With that image size, each pixel is
represented by one byte (8-bits), then, 16384 bytes must be transmitted with the wireless network. Besides
that, as mentioned above, LoRaWAN has the capacity to transport 255 bytes of information per packet. This
creates the need to use around 68 packets (including headers) to transport the complete image in the process,
which will take around 5 hours considering the spectrum access time restrictions of the ISM bands. This
duration is possible to observe in 1.2, the best performance scenario with the use of a BW=500 kHz and a
SF=7, the duration of each packet in the air will be of 97.34 ms. For this reason around 176.8 seconds are need
to transmit the image without any spectrum regulation policy. However, since ISM bands policies are used in
most of the LPWAN works, as in the case of LoRa and Sigfox [20,21], there has been a duty cycle establishment
which uses 1% (ETSI EN 300 220-1) [22] of the real time to transmit an image of that size, which will be around
5 hours. Now, with the same conditions of SF and BW, but doing frequency hopping between 915 MHz to
928 MHz. (which must be implemented between channels with no contiguity [22]), the time will be around 3
minutes without considering saturation, collisions and other problems related to the use of shared spectrum.
In both cases, image transmissions in applications of agriculture monitoring is a challenge and it is a general
problem addressed in the literature for LPWAN networks when high data rates are needed in IoT services with
low-power consumption and long communication range requirements. [14, 23].

In the literature, few works have tackled the problem of image transmission over LPWAN network because
an image has high amount of bits and consumes more energy in the transmission process. In [23], a method
was proposed for a monitoring application using an image sensor working over the LoRa physical layer. The
work in [18] presents a low cost, low power, and long range image sensor through a Teensy 3.2 board as
the micro controller host to drive the CMOS uCamII camera capable of providing a JPEG bit stream. The
sensor integrates LoRa long radio module inAir 9 from Modtronix, which is built upon Semtech SX1276 chip.
In [19], two control mechanisms are presented to enable the deployment of image sensor devices through LoRa
technology. The first mechanism is the Carrier Sense Multiple Access (CSMA) adapted to avoid packet collision.
The second one is the sharing time in order to mitigate the limit of duty cycling. Authors in [14] describes a
theoretical proposal of low power wide area network protocol, which combines LoRa modulation technique with
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1.2 Research problem and solution strategy

embedded microprocessor technology. The proposed network is composed of three LoRa modules that provide
three physical channels, thus providing a diversity gain scheme.

A SDR is a device formed by a radio communication system that uses a software for the modulation and
demodulation of radio signals. It can make transmission and reception of data from several standards of
communication protocols at a time, which provides a flexibility and limitless platform [24]. SDR has been used
in the implementation of the physical layer of LoRa technology.

In [25], a LoRa signal is decoded through gr-lora, an open source software defined as an implementation of the
LoRa PHY, which defines blocks through Python for implementing LoRa. The authors guide its investigation
according to Josh Blum [25] and a gr-lora out of a tree module written in GitHub. It implements a receiver
in Python that uses a modified FM demodulation process, however, the author has not successfully decoded
messages with it. The authors in [26] give an overview into the technologies to support LoRa, and describe the
outdoor setup with the SX127x family of Semtech and the importance of transceiver generation that arrives
with a SDR. It allows reaching significant benefits for range, robust performance and battery lifetime. In [27],
it is possible to identify a description of the LoRa PHY layer, where the document shows a methodology for
detecting and decoding LoRa frames with the use of SDR (USRP B210, HackRF and RTL-SDR). In order to
transmit, it used commercial platforms (RN2483, HopeRF RFM96 and Semtech SX1272, mainly).

The aforementioned works will be described in more detail in Chapter 3. Nevertheless, it is worth mentioning
that some of them only reached a theoretical analysis without implementation, besides, there is lack of infor-
mation about the implementation process. To the best of our knowledge, there are no proposals or studies in
the literature that involve a general framework methodology for image transmission considering compression,
classification and adaptation to an LPWAN technology through the implementation of the physical layer of
LoRaWAN on a SDR.

To increase the amount of information to transmit with LPWAN network, it is necessary to work with licensed
technology (to avoid duty cycle) or increase the capacity per node to tackle the duty cycle problem (Multiple In
multiple Out- MIMO). Nevertheless, to transport a high amount of information with one node, it is necessary
to implement a method to increase the transmission data, thus improving the use of the transmission channel
that is limited. From the above, it is necessary to find the form to exploit the use of a channel within maximum
usable time (400 ms) [22], then, hopping to other available channel until all the information is transmitted. In
theory, there are diverse techniques to improve the efficiency of the transmission and increase the amount of
information, thus some methods such as space, time or frequency diversity can be applied. The main goal of
these methods is to protect the information and avoid losses of the frame. In our context, we need to increase
the amount of information to transmit an image through a LPWAN network. To make this happen, the solution
can be divided into two scenarios: (i) implementing a form of diversity with the aim to increase the transmitted
data and attack the limit with the use of ISM bands under consideration of the duty cycling or (ii) reducing the
amount of information in order to optimize the data transmission process. Therefore, in the present research
these options were considered, to determine that with the second option it is possible to transmit images with
the use of the LPWAN network within LoRa symbols creation through a high level of compression rates to
reduce the amount of information by employing compressive sensing and source coding methods.

The solution strategy contemplates the use of image processing techniques with the aim of classifying normal or
abnormal leaves samples of a potato plant to transport only the abnormal samples through the LPWAN network.
Besides a compression form of the captured image, it is necessary to reduce the high amount of information to
transmit with the aim of reaching a reduction rate of about 95% of information. Thereby, the transmission time
will be reduced to 2,51 seconds with only one frequency channel or 0,74 seconds employing frequency hopping.
Additionally, implementation through the use of SDR in the receiver and transmitter involves the creation of
LoRa symbols and setting up the features to adapt the symbols to the LoRa transmission.
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1 Introduction

1.3. Organization of the document

The organization of the document is briefly described as follows. Chapter 2 presents the dissertation proposal
through the discussion of the research question, objectives, and hypothesis, followed by the description of the
methodology framework, which is the core of the dissertation. Finally, the contributions of this work will be
highlighted.

Chapter 3 provides an overview of the system and methodology proposed in this work. First, image processing
techniques which allowed the classification of the leave samples into normal or abnormal are described. Second,
the compression techniques that allowed the reduction of the amount of data of abnormal samples in order
to deliver it to the LPWAN network are presented with the subsequent transmission and reception process
between nodes, transmitter and receiver, respectively. Third, the main LPWAN networks references and in
particular LoRaWAN technology are described in order to justify its use in the present work. Finally, the works
that described the use of LPWAN networks for image monitoring systems will be detailed. Chapter 4, the
evaluation of the system will be outlined in order to propose agricultural monitoring systems with the use of
images through LPWAN network. Finally, in Chapter 5, the conclusions of this work will outlined.
—
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2. Dissertation proposal: Agricultural monitoring
system using images through a LPWAN
network

In this chapter, the thesis proposal will be described, therefore, we present the research question, the objectives
and the hypothesis in Sections 2.1, 2.2 and 2.3, respectively. Section 2.4 shows the framework used for devel-
oping a prototype of an agricultural monitoring system with images in a LPWAN network. In addition, the
contributions of this work are presented in Section 2.5.

2.1. Research question

The research question that guides the investigation is:

How can a method that allows to structure an agricultural monitoring system be implemented with the use of
images through a LPWAN network?

2.2. Research objectives

The general research objective is divided into six specific objectives.

General Objective:

To implement a methodology that allows structuring an agricultural monitoring system with the use of images
through LPWAN network supported by image processing, samples classification, compression-reconstruction of
information, and use of LoRa modulation implemented on SDRs to transport information between transmitter
and receiver nodes.

Specific Objectives:

- To implement an image processing and classification technique for identifying normal or diseased-affected leaf
samples in agricultural crops.

- To evaluate the implemented image processing and classification technique for identifying normal or diseased-
affected leaf samples in agricultural crops.

- To implement a compression technique for images of agricultural crops in order to reduce the amount of
information to transport on a LPWAN network.

- To implement and evaluate a reconstruction algorithm for testing the implemented compression technique
through the comparison of the reconstructed and original images.

- To evaluate a technique that allows an improvement in the data transmission in a LoRaWAN network through
LoRa modulation.

9
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- To integrate and validate the proposed system for agricultural monitoring.

2.3. Research hypothesis

The research hypothesis that guides the investigation is:

It is possible to implement a methodology in an agricultural monitoring system with the use of images through
a LPWAN network supported by image processing, compression and reconstruction, and the use of LoRa
modulation technology implemented on SDR transport information between network end-devices.

2.4. Proposal framework

First, we briefly recall the research problem. Second, the problem is considered by proposing a framework.
Finally, it matches each stage of the framework, which will be presented in this document with the aim to give
an overview of the approach of this proposal research.

LPWAN has disadvantages such as limited bandwidth, the use of duty cycle and low payload to transport
information. The capacity restriction to transport a high amount of information is a problem and a challenge
that needs solutions where necessary, to be able to use applications that transport images such as wireless visual
sensor networks (WVSN), wireless camera sensors and an image sensors, mainly.

Figure 2-1 shows the node – gateway communication in order to develop the proposal of an agricultural moni-
toring system using images on a LPWAN network. The system is composed of the process of data acquisition
implemented through a normal camera with 12MP and a sensor of f/1.8 that takes images of leaves in agricul-
tural crops of potato, which are sent to the transmitter (Tx) node. In the transmitter node, image processing
must be implemented, and the image data represented in an information matrix of its features. This matrix
will be sent, either to the classification process or to the compression process, if the sample has non-normal
features.

The classification process will generate a response indicating a normal or abnormal sample in the image, and the
response will be sent to the functional block of information grouping. If the sample is abnormal, the functional
block responsible for sending decisions allows the abnormal image vector to be delivered to the functional block
of compression, which is entrusted with reducing the amount of information and delivering a response to the
information grouping block. The classification response and the compressed information in the information
grouping functional block will be sent to the radio transmission interface.

The functional radio transmitter block is composed of a software defined radio architecture (SDR), which im-
plements the proposed technique in order to use LoRa modulation that will allow information to be transmitted
toward the radio receptor (Rx). The functional receptor block will receive the transmited signal and perform
the necessary LoRa modulation process. The functional receptor radio block will send the information to the
Rx node through the functional block responsible for visualizing the received image. The data received provide
the possibility of understanding the response of the classification and developing the reconstruction process of
the compressed samples in order to view the images with abnormal features.

Figure 2-1 shows four stages. In stage I, processing techniques will be implemented to classify samples into
normal or abnormal. Each leaf is captured in a control scenario with a white background with the aim to
facilitate the classification process. Abnormal samples will be used in stage II, during compression technique, in
order to reduce the image information, thus making data transportation easier through the LPWAN network.
During stage III, transmission process between TX and Rx will be used in order to improve the transport of
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2.4 Proposal framework

Figure 2-1.: Framework proposal

information in the LoRa modulation. Finally, in stage IV, post processing and reconstruction, the received data
will be processed and the data frame analyzed in order to inform the condition of the plant and execute the
reconstruction process of the abnormal images for their display.

In order to complete stage I, the proposal uses image-processing techniques for performing the classification. The
capture of images in exterior environments entails problems, due to variables such as sunlight intensity, shadows,
angle of capture and more, which can cause problems inherent to image processing, such as high probability of
noise or un-real data. For this reason, the captures presented in this work correspond to a controlled capture,
where these problems were avoided. Figure 2-2 shows stage I, processing and classification, which represents the
image process used to classify it. Initially, the image data will be received in the Tx node, then, the extraction
process will be executed to obtain the features that will be used in the classifier. Next, the classification will be
made and the output will indicate whether the sample is normal or abnormal. This stage aims to find general
information of the plant in terms of whether its growth is normal or affected by the presence of a disease or
attacked by a pest. The response in stage I is a binary solution (normal or abnormal sample), nevertheless, the
provision of specific details or levels of abnormality with quantitative indexes are limited in the classification
process. For this reason, further stages will be implemented to allow the transportation of images that indicate
abnormal conditions toward the Rx node with the use of a LPWAN network under LoRa modulation.

A literature review on image processing and classification methods that can be applied in the context of agricul-
tural monitoring reveals that there is progress towards a process of image acquisition in order to identify normal
and abnormal samples. Then, the review and evaluation of image-processing methods allow the construction
of inbound data for the classifier. For this purpose, a review of image-processing techniques was carried out
to gather the representative samples and filter the data information that includes errors in the classification
process. The next step was to elaborate a features matrix with the output data from image processing. From
this matrix, the process of data labelling was performed to identify which images were normal and which were
abnormal, then, the matrix of data and its labels were divided into training and test sets. Those sets were used
to evaluate the chosen classification process and calculate its precision under application with images. Finally,
the evaluation process of the classifiers was performed at several different moments with different samples in
order to validate the results. The outcomes allow establishing a strong criterion to choose the best tool to
classify and justify its use in this research.

In stage II, compression technique, this proposal uses a technique that allows reduction in the amount of
information of the images with abnormal features in order to transport this information vector on the LPWAN
network. Figure 2-3 presents a scheme that allows understanding the process for reducing image size through
a compression technique. In the transmission node, compression algorithms will be applied to the output data
of the image vector (with abnormal features) obtained during capture, acquisition and processing. Then, it is
sent to the reception node through a LPWAN network, where a reconstruction algorithm will be used in order
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Figure 2-2.: Stage I, Processing and classification

to recover the image and allow its display.

A literature review of compression techniques and reconstruction algorithms with image application was per-
formed in order to evaluate this process. The images taken of a crop must be processed in order to find the
data vector that represents an image. As a predisposition to high dispersion, which exists in the vector data,
transformation methods that reduce the dispersion should be evaluated in order to find which of them provides a
better transformation base, thereby obtaining less information to be processed. Then, a compression technique
is applied for reducing the data and asses the reconstruction algorithms in order to establish the best result
through a comparison of the original vector from the reconstruction, before making the inverse transformation
to rebuild the image and compare it with the original.

Figure 2-3.: Stage II, Compression technique

Stage III is named transmission process between TX and Rx. This proposal implements changes within trans-
mission and reception SDRs in order to transmit data through the LoRa modulation with the application of
a technique that implements LoRa symbols and modulation. Figure 2-4 shows a diagram of stage III, which
represents input data, coding (Tx), decoding (Rx), modulation (Tx), and demodulation (Rx) with LoRa tech-
nology. With this proposal, it is possible to send a major amount of information through each transmitter,
thereby, it obtains efficiency in features such as energy consumption by reducing the transmission time.

A literature review in LPWAN networks is carried out to define the efficient and applicable methods to achieve
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images through communication in a wireless LPWAN network. LoRa modulation is the technology choosen to
work by due to its capacity inside LPWAN technologies. The technical features can be consulted in the next
chapter of this document. For the transmission of images, it was necessary to evaluate its implementation in
SDR platforms between transmitter and receiver, as well as evaluating techniques that allow the convertion
of data in LoRa symbols and communicating them to a receiver with LoRa modulation. The use of SDR
allows understanding the LoRa modulation features, thus obtaining a better perspective of the technology in its
operation. Another technique susceptible of evaluation was the diversity in LPWAN, which is a possible solution
to increase the number of sent packets, which means there can be another way that allows the transmission of
images with the use of LPWAN networks.

Figure 2-4.: Stage III, Tx and Rx stage

To improve the capacity of data transport and consider the possibility of working only with the system of mod-
ulation called LoRa, it has been proposed to analyze a diversity method in order to evaluate if the transmission
time is enhanced. Based on the above and consequently with the main feature such as duty cycle and others,
LoRa works with operating frequency, bandwidth and SF, mainly.

Stage IV, post-processing and reconstruction is represented in figure 2-5. In this stage, the reception node
receives the data sent by the radio transmitter. These data is processed through the decomposition of the data
frame in order to organize and deliver the classification information, as well as the reconstruction of the images.
The reception node will display the result of the classification and the reconstructed images.

Finally, the connection and evaluation of the methodology of an agricultural monitoring system with use of
images through LPWAN network is included. The processes presented at each stage were evaluated indepen-
dently in order to determine their effectiveness. Therefore, stages of classification, compression technique, image
reconstruction and use of LoRa modulation to transport data between transmitter and receiver nodes through
the creation of LoRa symbols were evaluated.
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Figure 2-5.: Stage IV, Post-processing and reconstruction

2.5. Contributions

The main contribution in this thesis is a methodology in order to transmit images of agricultural crops showing
disease features through LPWAN networks with the use of LoRa modulation. Only images with abnormal
visual features will be transmitted, which entails an optimization process that allows reducing the amount of
information to transport since to the best of our knowledge it is not necessary to load a limited resource through
the transmission of normal samples, where it has integrated features such as energy consumption and use of
spectrum, specifically. All the above is consequent with the follow stages:

First, the classification method is used in order to represent the normal or abnormal status of the sample (in
our case, in a leaf of a plant).[Chapter 3-16]

Second, the use of a compression technique is used in order to reduce information, thus saving time and
processing resources, among other features. [Chapter 3-23]

Third, the deployment of a LPWAN network with LoRa modulation is used to transport short information over
large distances with minimum energy consumption. [Chapter 3-30]

Finally, the goal to implement LoRa modulation in SDRs is to know the features of the modulation technique
and thus understand its potential to enhance it, particularly, in a method that allows improving its capacity of
data transport. [Chapter 3-55]
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Based on the above, this research has produced two papers, which are currently in submission process:

1. Coverage and Energy-Efficiency Experimental Test Performance for a Comparative Evaluation
of Unlicensed LPWAN: LoRaWAN and SigFox in IEEE Access -
https://doi.org/10.1109/ACCESS.2022.3206030 .

2. A Communication Framework for Image Transmission through LPWAN Technology in Elec-
tronics (MDPI) - https://doi.org/10.3390/electronics11111764.

Systems of agricultural monitoring use communication networks such as mobile cellular networks inside IoT
technologies. Their use may imply unattractive factors, for example access restriction in the modification of
network operations, monthly fees with capacity limitation, high-energy consumption and limitations based on
coverage availability. Other solutions involve high costs for variables such as energy consumption, installation,
operation, management and maintenance. LPWAN networks present appealing features for monitoring processes
in remote areas, as in agricultural monitoring processes. Nevertheless, current processes in which it is necessary
to transmit a high amount of information, such as images, are limited. Consequently with the above, this
proposal seeks to contribute to the implementation of a methodology for an agricultural monitoring system
with the transmission images through LoRa modulation. —
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3. Overview - Agricultural Monitoring System
using Images through LPWAN network

This chapter presents an insight into the framework and explains its concepts and state of the art of each stage
shown in Figure 2-1. For this purpose, previous works are presented, compared and analyzed regarding the
problems to transport images through LPWAN networks. In summary, this chapter gives the reader an overview
of numerous techniques that partially tackle the research problem.

3.1. Image processing and classification

In this part is presented the main features, theory of image processing and classification features, the purpose
is to make an overview of the fundamental concepts which are useful in understanding the main contributions
of this thesis.

Recognition is the scientific discipline whose goal is the classification of objects into a number of categories
or classes. Depending on the application, these objects can be images or signal wave-forms or any type of
measurements that need to be classified [28]. In some cases, the objects use the generic term patterns. Pattern
recognition is an integral part in most machine intelligence systems built for decision making. Machine vision
is an area in which pattern recognition is important to capture images via hardware as a camera and analyzing
them. To make classification, it is necessary to create feature vector of the images.This features allows training a
classifier method and then evaluating and testing the classifier. In practice, the features correspond to statistical
data (mean, mode, standard deviation and more...). The number of the features to use is very important since
a larger number of feature candidates is better. To design the classifier, it is common to use a linear or non
linear classifier and the performance is evaluated through the classification error rate. In addition, there are
supervised versus unsupervised pattern recognition. When a set of training data is available and a classifier
was designed by exploiting this a priory know information, this is known as supervised method to recognition.
Nevertheless, this is not always the case, there is another type of pattern recognition tasks for which training
data of known class labels are not available, therefore, a set of feature vector information is provided and the
goal is to find the similarities, which is known as unsupervised pattern recognition [28–30].

In a classification task of M classes, ω1, ω2, ..., ωm and an unknown pattern represented by a feature vector x,
it is possible to form the M conditional probabilities P (ωi|x), i = 1, 2, ...,M . Sometimes, these probabilities
are also refered to as subsequent probabilities, since, each of them represents the probability that the unknown
pattern belongs to the respective class ωi, given that the corresponding feature vector takes the value x [28].
Bayes decision theory could initially focus on the two class case ω1, ω2 to which pattern belongs. It is possible
to assume subsequent probabilities P (w1), P (w2), which are known. It is a reasonable assumption, because
even if they are not known, they can be estimated from the available training feature vectors. Indeed, if N is
the total number of available training patterns, and N1, N2 of them belong to ω1 and ω2, respectively, then
P (w1) ≈ N1/N and P (w2) ≈ N2/N [28].

In any classification process the goal is to minimize the risk of the error probability, which is equivalent to
partitioning the feature space into M regions, for a task with M classes. If regionsRi, Rj happen to be contiguous,
then, they are separated by a decision surface in the multidimensional feature space. For the minimum error
probability case, this is described by P (wi|x) − P (wj |x) = 0. From one side of the surface, this difference is
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3.1 Image processing and classification

positive and from the other it is negative. The approach of classification problem via Bayesian probabilistic
arguments is to minimize the classification error probability. However, not all problems are well suited to
Bayesian probabilistic arguments. In many cases, the problems are too complicated and their estimation is
not an easy task. In such cases, it may be preferable to compute decision by linear classifiers, such as Linear
Discriminant Functions and decision hyper planes, the Perceptron algorithm, Mean Square Error Estimation,
stochastic approximation, sum of error squares estimation, Support Vector Machines, among others, and non
linear classifiers, such as Multi layer Perceptron, back propagation algorithm, polynomial classifiers, Support
Vector Machines to nonlinear cases, and decision trees, among others [28–30].

A hyper plane in Rd is composed of X ∈ Rd that satisfy wTX + w0 = 0 where w ∈ Rd and w0 ∈ R. In
1-Dimension w1x1 +w0 = 0 in 2-D w1x1 +w2x2 +w0 = 0 and in 3-D w1x1 +w2x2 +w3x3 +w0 = 0. If w0 = 0,
then, the hyper plane passes through the origin. If ⟨w, x⟩ > 0 in one site of the hyper plane - one class and
⟨w, x⟩ < 0 in the other site of the hyper plane, two class.

3.1.1. Linear classifier

This subsection describes the main features and the main tools used to classify with linear method for two
classes. The classification is done through the use of a hyper plane that allows separating one class of the other.
For this purpose a lineal combination of the features is used. A hyper plane is composed of X ∈ Rd. The hyper
plane {w,w0} divides Rd into two regions, thus, if X ∈ Rd,

wTX + w0 > 0, then, x can be found it in one site of the plane.

wTX + w0 < 0, then, x can be found in the other site of the plane.

The hypothesis H of the lineal classification can be defined as:

H(x) = +/−
(
wTx+ w0

)
=

{
1 if x ∈ class A

−1 if x ∈ class B

Consequently, a set of data is linearly separable if there is a separator hyper plane that could classify it.

Some tools of linear classifiers are:

- Least mean square (LMS) algorithm is an iterative noisy gradient descent algorithm that approximates
the sample from the training example.

- Perceptron algorithm is a binary classifiers represented by a vector of numbers that belongs to some
specific class and its prediction is based on a linear function with a set of weights with the feature vector.

- Fisher linear discriminant finds the projection to a line or a plane from different classes that are well
separated.

- Support vector machine is a discriminate classifier defined by a separating hyper-plane.

In the two-dimensional space, the hyper plane is a line that divides a plane into two parts (class A or Class B).
Now, if in a conventional plane (x,y), it is not possible to separate the two classes, it is necessary to apply a
transformation that generates another dimension that allows separating the samples to classify [28–30].
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3.1.2. Non-linear classifier

When it is not possible to classify through linear methods, it is common to use Kernels that make linear models
work in nonlinear settings. To do this, it is possible to do mapping (changing the feature representation) of data
to high dimensions where it exhibits linear patterns. Then, the linear model is applied in the new input space
and thus, the data now is linearly separable in the new representation. The following are the most popular
kernels for real-value vector inputs:

- Linear (trivial) Kernel:

(x, z) = xT z (3-1)

- Quadratic Kernel

k(x, z) = (x
T
z)

2
or (1 + xT z)

2
(3-2)

- Polynomial Kernel (of degree d)

k(x, z) = (xT z)
d

or (1 + xT z)
d

(3-3)

- Radial basis function (RBF) kernel k(x, z) = exp
[
−Υ||x− z||2

]
, where Υ is a hyper-parameter also

called the kernel bandwidth - The RBF kernel corresponds to an infinite dimensional feature space.

It is worth noting that kernel hyper-parameters are chosen via cross validation. Kernels give a modular way to
learn nonlinear patterns using linear models, therefore, it is necessary to replace the inner products with the
kernel.

The cluster analysis allows finding similarities between data according to features underlying the data and
grouping similar data objects into a cluster. The method used is an unsupervised learning where there are
no predefined classes for a training data set and the goals are to identify the natural clustering number and
properly group objects into sensible clusters. The typical applications are:

- As a stand alone tool to gain an insight into data distribution, and

- As a pre-processing step of other algorithms in intelligent systems.

The distance measures used are Manhattan, Euclidean distance, Mahalanobis and Cosine measure. The major
clustering methodologies are partitioning, hierarchical, model-based and spectral clustering. [28–30].

The partitioning clustering approach has a typical clustering analysis via an iterative training dataset to learn a
partition of the given data space produce several non-empty clusters and search and optimal partition achieved
by minimizing the sum of squared distance in each cluster through a measure of distance. In K-means, each
cluster is represented by the centre of the cluster and the algorithm converges to stable centroids of clusters. K-
means algorithm is the simplest partitioning method for clustering analysis and widely used in data applications.
Given the cluster number k, then, the k-means algorithm is carried out in three steps after initialization. First,
each object is assigned to the cluster of the nearest seed point measured with a specific distance metric. Second,
new seed points are computed as the centroids of the cluster of the current partition where the centroid is the
centre as a mean point, for example, of the cluster. Third, it is necessary to return to the first point and stop
when a new assignment is not presented. It is possible to say that K-means algorithm is a simple and popular
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method for clustering analysis where its performance is determined by initialization and appropriate distance
measure.

K-Nearest Neighbor has features such as: all instances correspond to points in a n-dimensional Euclidean space,
and the classification is done through the comparison of feature vectors of the different points. For the samples,
weights are assigned to the neighbors based on their distance from the query point and the target function for
a whole space, which may be described as a combination of less complex local approximations.

Neuronal networks are a type of model for machine learning used for image recognition, natural language
processing and more. The great potential is its high speed processing that offers thanks to a massive parallel
implementation. It is also used for approximation in numerical paradigms because it has excellent properties
of self-learning, adaptive tolerance to fouls, and non-linear processes. The literature review says that neuronal
network can perform similarly to the human brain. The human brain has neurons working together to solve
specific problems on daily basis. A Neuronal network has layers that are independent of one another, and a
specific layer can have different numbers of nodes, called bias nodes. A bias value enables to move the activation
function either to the right or the left, which can be analytical for training success. When a neuronal network
is used as a classifier, the input and the output nodes will match input features and output classes [31].

Deep Learning refers to artificial neuronal networks with complex multi-layers. The distinction between deep
learning and neuronal networks like feed-forward and feed backward neuronal networks is in their features.
Besides, Deep Learning has more complex ways of connecting layers, more neurons count than previous networks
to express complex models, more computing power to train and automatic extraction of the features. In the
same way, deep learning is defined as a neuronal network with a broad of variables and layers with a single basic
network architecture of un-supervised pre-trained networks [32].

The innovation with deep learning in image identification, object detection, image classification, among other
tasks has great success. The major concept of deep learning is learning data representations by increasing the
quality of handling ideas rather than event levels [31].

3.1.3. Survey on image processing and classification

Table 2 presents a summary of the state of the art about image processing and classification methods. Some
data are not presented because they were not found in the works.

In [33] the authors present the management of a crop for early detection of diseases, the Red/Green/Blue (RGB)
components are obtained and pre-processed for color balance. The image is then transformed and clustered
to detect the cluster image of interest. After masking green pixels, the image is converted from RGB to HSV
(Hue-Saturation-Value) color space for computation of textual features. These selective features are the input
to the neuronal networks program, which can detect the disease.

In [34], high resolution multi-spectral and hyper-spectral remote sensing data has been used to detect and
analyze a fungal sugar beet disease. A high-resolution satellite image was chosen to produce the results for
the multi-spectral part of the study. To indicate the difference between healthy and unhealthy plants, image
classification was made and evaluated. The authors conclude that the red and near infra-red parts of the
reflectance spectrum are important for agricultural applications. The significant difference of the reflectance
at the red portions of the spectrum compared with the near infra-red ones can be used to predict vegetation
conditions.

The work in [35] studies a gray leaf spot disease. A component was chosen to segment disease spots and reduce
the disturbance of illumination changes and the vein. Then, disease spot regions were segmented by using Sobel
operator to examine disease spot edges. Finally, plant diseases are graded by calculating the quotient of the
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Table 2. State of the art . Image Processing and Classification

Reference
Classification

method
Image processing

method
Authors Year

Accuracy
(%)

[33] Neuronal networks
RGB components

HSV color
S. K. Pilli

Nallathambi, S.J.
2015 88

[34]

Hyperspectral and
multispectral resolution,

red / infrared
components

R. Laudien,
G. Bareth

2004

[35] Statistical

Segmentation,
total area,

sick area, RGB components,
HSI color

S. Weizheng,
W. Yachun

2008

[36] Neuronal networks Edge and values
M.S.P. Babu
B.S. Rao

2007

[6] Statistical
RGB components,

H color
I3a, I3b

A. Camargo
J.S. Smith

2009 80

[3]
K-means

Neuronal networks

RGB components,
HSV color,

texture and area

G. Athanikar
M.P. Badar

2016 92

[37] Deep Learning area
S. P. Mohanty
D.P. Hughes

2016
99-train
31-test

[8] Software Color Pro
J.K. Sainis,
R. Rastogi

1998

[38] K-means
RGB components,

texture
M.B. and S.B.

Dheeb Al Bashis
2011 93

[2] K-means
Segmentation,

green mask pixels, RGB
H. Al Hiary

S. Bani Ahmad
2011 94

[5] Neuronal networks Spectral component
X. Wang,
M. Zhang

2008

[39]

Serological, molecular,
hyperspectral data,

infra-red
fluorescence

C.D. Sindhuja
Sankaran,

Ashis Mishra
2010

[40] SVM Spectral index
U. S. Rumpf
K Mahlein

2010
97 binary solution

80 sick

[41] SVM Hyperspectral index
L.P. Jan Behmann
Jorg Steinrucken

2014 70

[42] Nearest Neighbors Gray levels
A.S. Jagadeesh D.
Pujari, Rajesh
Yakkundimath

2015 90

[42]
PCA + Mahalanobs

distance
Wavelet Discret Transform

A.S. Jagadeesh D.
Pujari, Rajesh
Yakkundimath

2015 83

[42] Neuronal network
A.S. Jagadeesh D.
Pujari, Rajesh
Yakkundimath

2015 86

[42] K-means + SVM Color, shape and texture
A.S. Jagadeesh D.
Pujari, Rajesh
Yakkundimath

2015 85
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disease spot and leaf areas. Researchers indicate that this method to grade plant leaf spot diseases is fast and
accurate.

In [36], a software model is developed for remedial measures for pest or disease management in agricultural
crops. This software can scan an infected leaf to identify its species, pest or disease incidence on it and possible
solutions for its control. The software is divided into modules, namely leaves processing, network training, leaf
recognition and expert advice. Recognition and classification were done in a feed-forward back propagation
neuronal network. The inputs for this neuronal network are the individual samples of a leaf image.

The authors in [6] describe an image processing-based method that identifies the visual symptoms of plant
diseases from an analysis of colored images. The processing algorithm developed starts by converting the RGB
image of the diseased plant or leaf into H, I3a and I3b color transformations. I3a and I3b were developed from a
modification of the original intensity of RGB components to meet the requirements of the plant disease dataset.
The transformed image is then segmented by analyzing the distribution of intensities in a histogram. The set
of local maximums is located and the threshold cut-off value is determined according to its position in the
histogram. This technique is particularly useful when the target in the image dataset has a large distribution
of intensities. Results showed that the developed algorithm was able to identify a diseased region even when it
was represented by a wide range of intensities.

Deep Learning was used in [37] with a public dataset of images of diseased and healthy plant leaves collected
under controlled conditions. The authors trained a deep convolutional neuronal network to identify 14 crops
species and 26 diseases. The trained model achieves an accuracy of 99.35% on a held-out test set. When testing
the model on a set of images from trusted online sources under conditions different from those for training, the
model achieves an accuracy of 31.4%, then, more a diverse set of training data is needed to improve the general
accuracy.

Image processing is performed in [8] using a ColorPro software developed in computer vision. The system was
used in color image analysis for estimation of leaf area, infected leaf area and chlorophyll. Attacks on plants
result in degradation of chlorophyll pigments in leaves. The infected leaves have patches of green and yellow
color, mainly. The software can perform area measurements on green and non-green sectors of the leaf, thus the
extent of infection can be quantified without high effort. In addition, the software can be used for quantitative
estimation of chlorophyll in situ and measuring the intensity of color in the leaves.

In [38], an image processing based software was designed, implemented and evaluated for detection and classi-
fication of plant leaf diseases. Human vision observation to detect and classify diseases can be expensive, for
this reason, a methodology of the proposed solution is described with image processing based on color transfor-
mation structure for RGB leaf image. The images are segmented using k-means clustering technique, then its
texture features are calculated for the segmented infected objects and data are processed through a pre-trained
neuronal network. The results indicate that the proposal can support an accurate and automatic detection and
recognition of leaf diseases.

The authors in [2] proposed a software solution for automatic detection and classification of plant leaf diseases.
First, a phase of segmentation was implemented, then, the mostly green colored pixels was identified. These
pixels are masked based on specific threshold values that are computed using Otsu‘s method. Additionally,
the pixels with zeros, red, green and blue values and the pixels on the boundaries of the infected cluster were
removed. This process allows finding a form for detection of plant leaves diseases with a precision from 83% to
94% and can achieve 20% higher speed than approach proposed in other techniques referenced in the paper.

In [5], a development for spectral predicting of late blight infections on tomatoes was proposed based on artificial
neuronal network (ANN). It was designed as a back propagation neuronal network that used gradient descendent
learning algorithm to train the ANN to predict healthy and diseased tomato canopies with various infection
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stages for any given spectral wavelength intervals. The results provide a highly accurate classification of healthy
and diseased tomato plants.

The authors in [39] describe the currently used technologies that can be used for developing a ground based
sensor system to assist in monitoring health and diseases in plants under field conditions. The technologies
include spectroscopic and imaging based, and volatile profiling-based plant disease detection methods. Two
categories for non invasive monitoring of plant diseases are: (i) spectroscopic and imaging techniques that
include fluorescence spectroscopy, visible InfraRed spectroscopic, fluorescence and hyperspectral imaging, and
(ii) volatile organic compounds (VOC) that involve the use of nose-based metabolite analysis.

In [40], a procedure is presented for the early detection and differentiation of sugar beet diseases based on
Support Vector Machines (SVM) and spectral vegetation indices. The objectives were to discriminate diseased
from non-diseased sugar beet leaves, to differentiate between the diseases Cercospora leaf spot, leaf rust and
powdery mildew, and to identify diseases even before specific symptoms became visible. The discrimination
between healthy sugar beet leaves and diseased leaves resulted in classification accuracies up to 97%. The
multiple classification between healthy leaves and leaves with symptoms of three diseases still achieved an
accuracy higher than 86%. Depending on the type and stage of disease, the classification accuracy was from
65% to 90%.

In [41] the proposed approach combines unsupervised and supervised methods in order to identify several stages
of progressive stress development from series of hyper-spectral images. Stress of an entire plant was detected by
stress response levels at pixel scale. Unsupervised learning was used to separate hyperspectral signatures into
clusters related to different stages of stress response and progressive senescence. SVM was used to quantify and
visualize the distribution of progressive stages and to separate well-watered from drought stressed plants.

22



3.2 Compression techniques and reconstruction algorithms

3.2. Compression techniques and reconstruction algorithms

This section presents the main features of the theory of compression techniques and reconstruction process, to
give an overview of the fundamental concepts useful for understanding the main contributions of this thesis.

3.2.1. Compression technique

In order to compress data, this document emphasizes two concepts: Compressive sensing (CS) and Source
Coding (SC). CS works with high dimensional source data without loss, which allows compression into a lower
dimensional measurement data and it can be ultimately reconstructed. In contrast, SC compression technique
removes redundancy from the data sequence, and stores the data on a storage device or transmit them over a
communication channel.

An image is a rectangular array of dots, distributed into m rows and n columns. The expression m×n is called
resolution of the image and the dots are commonly called pixels. The term resolution is sometimes also used
to indicate the number of pixels per unit length of the image. There are some types of images, for example: a
monochromatic image (also called bi-level) has pixels with one out of two values 0, 1 that correspond to black
or white colors and it is considered the simplest type of image. In a gray scale image, a pixel can have one out
of the n values 0 through n-1 indicating one of 2n, where n could be 4, 8, 12, 16, .... A continuous-tone image can
have many similar colors (or gray-scales) and it is hard for the eye to distinguish their colors. A discrete tone
image is normally an artificial image that may have a few or a many colors, but it does not have the noise and
blurring of a natural image. A cartoon image has a color image that consists of uniform areas, where each area
has a uniform color but adjacent areas may have very different colors. It is clear that each type of image may
has feature redundancy, but they are redundant in different ways. This is why any given compression method
may not perform well for all images and different methods are needed to compress the different image types [43].

Modern hardware can display many colors, which is why it is common to have a pixel represented as a 24-
bit number (R-G-B components, where each one occupies 8 bits), Therefore, a 24-bit pixel can specify 1 to
224 million colors, thus an image of a resolution of 512 x 512 pixels occupies 786432 bytes (262144 in each
component), and resolution of 1024 x 1024 occupies 3145728 bytes. Then, image compression is highly
important. In general, the information can be compressed if it is redundant, however, there is a concept called
“remove irrelevancy” where an image can be compressed with loss through the removal of irrelevant information
even if the image has no redundancy [43]. The principle of image compression uses spatial redundancy; for this
reason, if we select a random pixel in an image, then it is possible that its neighbors have the same or similar
colors, thus the neighboring pixels are highly correlated. With this information, it is possible to rebuild the
original data with high values of efficiency.

Within compression methods, it is possible to find CS that performs acquisition and compression simultane-
ously. CS offers a framework for simultaneous signal acquisition and compression, which is based on linear
dimensionality reduction. It guarantees accurate source reconstruction from far fewer number of measurements
(rather than high dimensional raw measurements), under the condition that the source signals can be illus-
trated in spars forms. Nevertheless, the information of an image needs to be digitized and coded when it must
be transported through a communication network, thus it uses quantizers for compression, transmission and
storage, for example, in order to satisfy the delay constraints of modern network services. The prototype of
classical coding and communication techniques needs to be reconsidered. Therefore, it is important to re-design
quantization and coding techniques to meet performance features of recent network data systems. For this
purpose, it is important to design and analyze source and channel coding schemes, based on quantization and
real time transmission under CS [9].

CS has gained attention in the last years, since it is a technique to create and retrieve sparse signals with low
noise in a known basis, with far fewer samples those needed through the Shannon-Nyquist sampling theorem.
CS allows working with a high dimensional signal to be accurately retrieved from relatively fewer measurements
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through a non-linear optimization procedure. For the above, the documents present in [44] [45] used a program
that represents the original signal in a sparse signal through an adequate sparse representation. The original
signal can be represented in a vector with an Nx1 size, where N is equal to:

n× n [rows]× [columns]

which belongs to the matrix of original information or signal.

In the literature, some papers have implemented CS as a tool for several applications, for example, the work
in [46] describes a framework location accuracy of sparse transmitters in a wireless environment. Authors
in [47] introduce a algorithm to solve CS problems. The works in [48] [49] use CS in spectrum cartography to
discover spectrum holes in the space. CS for multi-target sparse localization algorithm is used in [50] with cross
correlation of the signal readings at several access points. In [51], CS stands out as digital image processing,
wireless channel estimation, radar imaging and cognitive radio (CR) communications. The paper is a survey that
focused on CR, which is used in radio spectrum allocation and occupancy measurements through sparse signal
in multiple domains such as time, frequency and space, because these are mechanisms that allow improving the
future generation on wireless networks where CS is highlighted as a theory that help to retrieve any signal from
fewer samples with a wide margin than traditional methods.

CS is a method for building a sparse signal, since it is a vector with a few samples of the original signal that
allow the reconstruction algorithms methods to rebuild the original signal with higher precision and fewer losses.
For improving CS, the original signal is transformed into a representation base as Wavelet Transform, Discrete
Cosine Transform, Fourier Transform and Kronecker Transform, mainly. This allows the samples to be in a
common domain and reduce the variability of the original data.

CS techniques helps to reduce a information signal with a samples lower than Shannon-Nyquist theorem [45,52],
all the above with sparsity technique and original signal processing, mainly. Sparsity uses information signal
as ”s”, which is equal in discretely form as a vector S ∈ Rn. The term s has a spreading factor k and s
elements different from zero of the original signal (the most representative). The signals with low dispersion
(high k factor) can to convert to a signal with a greater dispersion through lineal transformation f by f = s and
f ∈ Rnxn, which represents data of Wavelet Transform, DCT Transform or Kronecker Transform, mainly.

A k-disperse signal f ∈ Rn is sampled with CS to obtain a g ∈ Rm signal, where m << n. The sampling
can be represented in matrix form as g = f y ∈ Rmxn, called system sampling matrix. If f is un-
known, it is possible to find an indeterminate system of linear equations (infinite solutions). This problem
can be solved with an optimization problem converted to a complex mathematical problem that is not convex.
Another solution is to employ g and the sense matrix with algorithms such as “IterativeHardThresholding”
(IHT), “OrthogonalMatchingPursuit” (OMP), “GradientP rojectionforSparseReconstruction” (GPSR) o “Two
− stepIterativeShrinkage/Thresholding” (Twist). [45, 53–55].

CS allows representing a signal with a few samples of the original signal. If a signal or its transformation
basis can be represented as a sparse signal, then, it is possible to use these techniques to represent a vector of
information with fewer samples and recover with high values of the original signal. This provides advantages in
wireless communications, particularly in energy consumption and bandwidth.

For the aforementioned reasons, the process of CS help to reduce data payload, process time and energy
consumption, mainly. Particularly, an image can be represented by a vector. For example, some components
RGB or Gray components of image have components or spectral bands R, G, B, gray. Spectral bands have a
large number of pixels, but why is it important to work with a high number of data? It is important because
this entails more precision, quality and reliability of process information, nevertheless, this mean a problem for
the computational process such as high energy consumption, delays in process and more. Consequently, it is
necessary to reduce the data numbers to represent a image. In recent years, methods have appeared to acquire
least data through CS that reduces the data redundancy and manage the data with minor dispersion through
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base transforms. The main bases were listed above, and are well suited for the compression methods used in
JPEG 2000, MPEG and MP3 standards, mainly.

On the other hand, Source Coding (SC) is a compression technique that removes redundancy from the data
sequence, SC works in order to store the data on a storage device or transmit it over a communication channel.
The source or the measurements have to be mapped in a good digital format. For the above, SC techniques are
typically classified into two categories: lossless and lossy SC.

The aim of lossless SC is to digitally represent the source, so that it can be perfectly reconstructed. On the other
hand, the objective of lossy source coding is to reconstruct the source from arbitrary source coded information
within a small amount of distortion. In applications where there is not much concern about a small amount
of source information such as compressing multimedia, audio, image and CS measurements, lossy SC provides
more flexibility compared with lossless coding, where the source coding rate is not restricted. Some examples
of lossy SC are MP2, MP3 and JPEG [9,56].

Peak Signal To Noise Ratio - PSNR

PSNR is a parameter that is typically used to assess the quality of an image transmitted over a network. As
image quality is assessed quantitatively, it is based on the difference between the pixels of the image reconstructed
following transmission and the original image [23]. The PSNR of a transmitted image can be calculated as 3-4:

PSNR = 10log

(
S2

MSE

)
(3-4)

For an image of 8-bits, s is 255 and MSE is the mean squared error, which is the average of the squared
difference in the intensity pixels in the original and the output images. MSE is calculated as in 3-5

MSE =
1

mn

m−1∑
i=0

n−1∑
j=1

[I(i, j)−K(i, j)]2 (3-5)

where m and n are the respective length and width of the image in pixels, and I(i, j) and K(i, j) are functions
describing the intensity of individual pixels in the transmitted and received image, respectively [23,43].
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3.2.2. Reconstruction Algorithms

Reconstruction techniques are tools that allow the signal to be constructed using few samples of its original
signal. These samples are a resultant vector of the compression technique process. Several tools are available
from the scientific literature, such as Iterative Hard Thresholding (IHT), Orthogonal Matching Pursuit (OMP),
Gradient Projection for Sparse Reconstruction (GPSR) or Two Step Iterative Shrinkage/Thresholding (Twist).
These tools were evaluated and compared with the aim to find the best solution. Their main features are
presented bellow:

- IHT: If we have y[0]=0 and use the iteration:

y[n+1] = Hs ∗ [yn + ϕT ∗ (X − ϕ ∗ yn)] (3-6)

where Hs(a) is a non-linear operator that configures the values of s-smaller in magnitude than a vector in zero.
The convergence of this algorithm was described under condition ∥ ϕ ∥2 < 1. In this case, the algorithm
converges to a local minimum in the optimization problem. IHT involves the operation of ϕ and ϕT once in each
iteration, as well as the addition of two vectors. The Hs involves a partial order of the elements in magnitude
and requires a storage of X and the storage of a vector with length N [57–59].

a[n] = (y[n] + ϕT ∗ (X − ϕ ∗ y[n])) (3-7)

The IHT algorithm is referred to as:

Input: measurement vector y ∈ RM

sample matrix ϕ ∈ RMxN

K dispersion, regularization parameter µ and maxiter (maximum number of iterations)
Output: disperse vector XΛ ∈ RN

1: vector start XΛ0=0

2: for i=0 to maxiter do
3: y∧(i+1) = Hs(y

∧i + µ ∗ (ϕT ∗ (X − ϕ ∗ y∧i)) → Hs(.) thresholding operator

end for

OMP: If s is an arbitrary m-sparse signal in Rd and X1, ..., XN is a representation of measurements vectors N
where a matrix ϕ on N × d is formed, whose lines are the measurement vectors, N is the measurements of the
signal grouped into a N-dimensional data vector v = ϕ ∗ s which is a combination of the m columns of ϕ. In
terms of sparse approximation, v has a representation of term m on the ϕ dictionary. The sparse representation
algorithm can be used for sparse signal recovery. To identify the ideal s signal, the column of ϕ that participates
in the measurement of vector v is determined. The goal of the OMP algorithm is to choose the column of ϕ
where data belongs. In each iteration, the column of ϕ with the highest correlation with v is chosen, afterward,
the contribution is extracted an the next iteration is carried out with the residuet. After m-iterations, it is
expected that the algorithm can correctly identify the original vector-column with a minimum error [17,57–60].
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The OMP algorithm is referred as:

Input: measurement vector y ∈ RM

sample matrix ϕ ∈ RMxN

K dispersion
Output: disperse vector XΛ ∈ RN

1: Initialize vectors XΛ0=0

XΛ0=0,r0, and Λ0 = 0
2: for i=1 to K do
3: proj = ϕT ri−1

4: λi=λi−1 U supp(H1(proj))
5: Xλi

λi=ϕ+
λi and, X

λi
λi = 0

6: ri = y − ϕXλi

end for

Algorithms of GPSR and Twist correspond to developments where they have a limit in the capacity to structure a
working logic. Nevertheless, with prior implementation of IHT and OMP algorithms, it is possible to understand
the configuration to adapt the implementation and run them based on literature features [57,61].

3.2.3. Survey on compression techniques and reconstruction algorithms

The following lines present works in compression technique and reconstruction algorithms. This information is
presented with the aim to reduce information for agricultural crop images. The image information is compressed
in order to transmit it through a LPWAN wireless infrastructure and the remote server recovers the images
with the use of reconstruction algorithms almost equal to the original. The following works show compression
techniques to use and reconstruction algorithms techniques.

Table 3 presents a summary of the state of art in compression techniques and reconstruction algorithms, mainly.
Some data are not presented, because they were not submitted in the papers.

The work in [57] shows CS method to reduce information below Shannon-Nyquist theorem and also describes CS
to energy preserve, efficiency in data transmission and optimal reconstruction of the signals. Analytic method
is presented in [62] in order to implement CS with a signal (digital image). If a result x is a unknown vector
in Rm, a linear function “n” is used for rebuilding the original signal. If x is known, then, a code is used for
rebuilding the signal; in both cases m << n. An adaptative group sparse representation is proposed in [63]
for image CS recovery. A framework based on alternating direction method of multipliers is presented, where
the adaptative singular value thresholding is introduced to solve the group sparse representation problem. The
threshold adaptively decreases during iterations, in contrast to the traditional methods where it is independent
of the iteration number. The results reveal a good convergence performance and improve the CS recovery.

Authors in [58] describe a method for monostatic ultra wideband microwave imaging of breast cancer using CS.
Instead of using all of the conventional radar returned signals, a few received signals, by randomly choosing the
antenna, are sufficient for obtaining reliable images even at high noise levels. The simulations show that sparse
images are obtained comparing the delay and sum beam forming technique and using only a few received signals.
The work in [59] describes the features and advantages of CS for images (CSI) and develops a mechanism to
carry information of images in an unsure channel. It uses only a few data given by CSI. By using only a few
samples, security is improved.

Compression and reconstruction techniques for images with CS are described in [64] and several tools are eval-
uated with Gaussian model and sensing matrix for reconstruction. In [60] the authors obtained information
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Table 3. State of the art . Compression techniques and reconstruction algorithms

Reference
Compression
technique
application

Reconstruction
algorithm

Authors Year

[57]
Efficiency in data

transmission
IHT R. G. Baraniuk 2007

[62]
Image

compression
Basis pursuit

OMP
D. L. Donoho 2006

[63]
Image

compression
DWT, CT, TV, MH,
CoS, sgsr, AGSR

T.Geng, G. Sun
Y. Xu, B. Zheng

2018

[58]
Medicine Image
compression

N.Z. Naghsh,
A. Ghorbani
H. Amindavar

2018

[59]
Channel security
through image
compression

C. Ruland 2018

[64]
Image

compression

Gaussian,
abolghasemi and

sense matrix method

M. K. B. Suhani
Salan

2008

[60]
Spectral image
compression

AG-JSM1
FG-JSM-1
S-s-CS
JSM2

L. Deng, Y. Zheng
P. Jia, S. Lu,

J. Yang
2017

[17]
Image

encryption
DCRE
DPRE

Q. Wang, J. Wang
Q. Wang

2018

[61]
Image compression

for radar
application

IHT
PKS

W. Zei, L. Yang
Z. Wang, B. Zhang, Y.

Lin, Y. Wu
2018

[65]
Image compression

for magnetic resonance
Basis Pursuit

OMP
S. Ramdani 2018

[17]
Medical image
compression

Basis Pursuit
OMP

L. Wang, L. Li, J. Li
B. Gupta, X. Liu

2018

[66]
Test GPRS

reconstruction
algorithm

GPRS
M. figuiredo, R. Nowak,

S.J. Wright
2007

[67]
Test reconstruction

algorithm

Quadratic problem L1
Lagrange, multiplier,

Twist, Lasso

J.N. Tehrani, C. Jin
A. McEwan

A. Van Schaik
2010

[68]
Test IHT

reconstruction
algorithm

IHT
N. Koep
R. Mathar

2017

[69]
Test OMP

reconstruction
algorithm

Basis pursuit
OMP

X. Cai, Z. Zhou
Y. Yang, Y. Wang

2018
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about hyper-spectral images and evaluated the data information through sparsity models and adaptative clus-
tering techniques AG-JSM1, FG-JSM-1, S-s-CS and JSM2. A encryption method of images is developed in [17]
with the use of CS techniques called DCRE and DPRE. CS for compression of images in magnetic resonance is
described in [61] using a reconstruction technique called Basis Pursuit OMP. In [65] and [17], the authors use
CS in images compression for magnetic resonance and a reconstruction technique called OMP. In the following
references, it is possible to find the evaluation of algorithms reconstruction to use in CS: GPRS [66], L1 norm,
lagrange multiplier, Twist and Lasso [67] IHT [68] and OMP [69].
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3.3. IoT-LPWAN networks

This part of the document introduces the main and most important features of LPWAN networks, its uses
and main technologies in licensed and non-licensed frequency bands. The purpose is to give an overview of the
fundamental concepts useful for understanding the main contributions of this thesis.

IoT wireless networks designates a new digital time to facilitate data transport information. It is considered to
be the third wave of information technology after the Internet and mobile communications. IoT concept was
formally proposed in 2005 by ITU [70,71]. The technologies inside IoT are used in wireless networks sensors for
service control in telemetry applications, smart cities, health or precision agriculture. Nevertheless, it can be
used in other scenarios where the main objective is data transport with low amount of information. [21,72–75].

IoT grows with the relation of Internet in 5 stages: (1.) one to one communications, known as the stage of pre-
Internet; (2.) “www” communications or content Internet; (3.) the WEB 2.0 services-Internet; (4.) the Social
WEB, people-Internet and (5.) stage M2M (Machine to Machine) Internet of Things [20,76–82]. IoT facilitates
the local and remote process control with connectivity of information networks, especially in Internet [83]. IoT is
a concept that allows gathering technologies for specific uses, for example, low consumption battery, large range
or low data transport [84–87]. In [88], it is possible to observe IoT elements for understanding it. Categories
have an identification: sensing, communication, computation, service, and semantics, that serve to deliver the
functionality of IoT. One of the objectives of IoT is to collect wireless communication technologies with common
goals for connecting heterogeneous objects to deliver specific smart services. Typically, the IoT nodes should
operate with low power lossy and noisy communication links.

The main IoT tools from range and coverage are: Wireless Personal Area Network (WPAN), where it is possible
to find technologies such as Bluetooth, Zig-bee and Wireless Hart with coverage among 10 - 100 meters; Wireless
Local Area Network (WLAN), where it is possible to find technologies within IEEE 802.11a/b/g/n/ac/ah with
coverage among 100 - 1000 meters, Wireless Neighborhood Area Network (WNAN) with technologies such
as Wireless Smart Utility Network (WI-SUN), a precursor of WPAN networks with IPV6, whose coverage is
among 3 - 10 kilometers; Wireless Wide Area Network (WWAN), including technologies such as mobile networks
(2G/3G/4G) and LPWAN (Low Power Wide Area Networks) where it is possible to find technologies such as
4G mobile, particularly, the Release 12 and 13 of Third Generation Partnership Project (3GPP) with Long
Term Evolution for Machines (LTE-M) and Narrow Band IoT (NB-IoT) in the private spectrum, and Sigfox,
LoRaWAN, Weightless, Ingenu and others in the free spectrum. Private and free spectrum technologies have
medium coverage among 10 - 50 kilometers, approximately [21,89–91].

Many companies develop new applications and services under IoT with low power consumption, high coverage
and low data transport and are interesting for standardization bodies like 3GPP or IEEE Standard Commit-
tee [92]. For example, NB-IoT and IEEE 802.11 try to develop common technologies that can be used in a
vast range of scenarios. On the other hand, there are technologies like Sigfox, LoRa and Ingenu that are pro-
prietary technologies. Here, it is important to highlight Semtech (developer of LoRa), which published a LoRa
Specification for opening the door to independent performance evaluation [91,93,94].

3.3.1. LPWAN communication technologies

This part shows the general access techniques employed in wireless networks, particularly in LPWAN, as well
as presents the main features of IoT and LPWAN wireless networks such as specifications, protocols, and main
technologies.
The next lines present the main features of IoT and LPWAN wireless networks such as specifications, protocols,
and technologies. Wireless networks technologies give a support of development of the IoT environment. Some
references are (i) devices working in a small range of coverage, for example, Near Field Communication (NFC);
(ii) Radio Frequency Identification (RFID); (iii) Technologies such as 6LowPAN and Zig-bee, under IEEE
802.15.4; (iv) systems such as Bluetooth and Bluetooth Low Energy (BLE); (v) private technologies such
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as Z-WaveTM, CSRMeshTM, Nwave (Weightless -N), M2COMM (Weightless –P), Acellus, Telensa, Dart,
Wavelot, Qowisio, Wifi Halow (IEEE 802.11ah) and Ingenu (On-Ramp), and (vi) systems in IEEE 802.11/WIFI-
TM [91,91,95–110].

In the ERC 70-03 recommendation of the Electronic Communication Committee (ECC), it is possible to find
information about Short Range Devices (SRD-devices). The main goal is to do radio transmissions in uni-
directional or bidirectional ways with low interference capacity to others devices. In the recommendation, it
is possible to find the relation and coexistence of frequency bands, power maximum levels, channel spacing,
modulation, wide of band and duty cycle. With that recommendation, the developers in the IoT industry give
the parameters for frequencies use.

In wireless systems, modulation techniques have been developed for supporting communications where multiple
users are present among other advantages. There are some techniques that facilitate the communication process,
such as Code Division Multiple Access (CDMA) and spread spectrum (SS) that employ pseudo-random number
sequences to modulate a signal. Multiple transmitters use the same signal with orthogonal codes (called Walsh
codes), to separate communication channels [111, 112]. Frequency Division Multiple Access (FDMA) allows
different users with various carrier frequencies [113] and, Time Division Multiple Access (TDMA ) uses time
slots to coordinate multiple transmitters. The users transmit in fast sequence, one after the other, and each
one uses its own time slot. It allows multiple stations to share the same transmission medium while they are
using the available bandwidth. [114–116].

LPWAN networks used in IoT communications have special features, such as limited packet size (for example
127 bytes for IEEE 802.15.4), length address variable and low bandwidth [88, 117]. The Internet Engineering
Task Force (IETF) and Six Low Wide Wide Pan Access Networks (6LoWPAN) groups were working on the
development of the standard since 2007, where the mapping of services is required for Internet Protocol version 6
(IPv6) over LPWAN networks for maintaining the IPv6 protocol. The standard provides header compression to
reduce the transmission overhead, fragmentation to set the IPv6 Maximum Transmission Unit (MTU) [83,117].

Figure 3-1 presents the relation between information transport capacity and coverage of wireless technologies.
LPWAN gathers broad coverage, lower capacity information and low battery consumption, mainly [118].

Figure 3-1.: Data rate vs. Reach. Characteristic wireless of information transport capacity (Mbps) and coverage
(meters).
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Some applications of LPWAN networks are automation process, events control, smart illumination, smart
parking, pets tracing, garbage collection, precision agriculture, monitoring in the mountains (fire, seismology),
health, and others. LPWAN opens a broad possibility for development in the social environment inside Internet
Communications Technologies (ICT‘s) projects [85,95].

LPWAN works inside IEEE 802.15.4 for unlicensed frequency bands with Instrumental, Scientific, and Medical
(ISM) free bands such as 2.4GHz, 868/915/433/169 MHz, in agreement with the operation area and in LTE-M
/ NB-IoT works in LTE bands for licensed bands. The main settings are tracing, control, capacity, payload,
coverage, range and operation frequency. [90, 119–121]. Figure 3-2 presents the relation between IoT scenarios
connectivity among licensed and unlicensed frequency bands.

Figure 3-2.: Scenarios for LPWAN networks with licensed and unlicensed bands frequency operation.

3.3.2. LPWAN technologies

This subsection describes the main technologies that work inside IoT LPWAN technologies. Developers of
solutions LPWAN for Europe and America affirm that their devices work with a nominal sensitivity in Rx of
approximately -150dBm- It is a feature that allows data transport with a broad reach. This aim contrasts with
the low capacity data transport, delays and information losses. [21, 73, 122]. A section of this research presents
the main licensed and non-licensed bands technologies by LPWAN services. The aim is to show a global vision
of some technologies. Usually, academic papers are focused on the needs of special solutions, therefore, it is
worth mentioning that in the references, no technology solution is more than other; therefore, the discussion is
open.

LPWAN works in star topology among gateway and end-devices(motes). The network is used in many applica-
tions where it is possible to concentrate in communicating peripherals, machines, and devices with communica-
tion Machine to Machine (M2M). The main advantages are: data transport information with a high coverage,
long time life of battery, low cost and free-spectrum use in some technologies. The disadvantages are a low duty
cycle of co-existence in shared spectrum to reduce the functionally of the spectrum for regulation, low data rate
and licensed spectrum for technologies around 3GPP group (LTE), mainly [86,123].
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Licensed Technologies

In technologies that use licensed frequency, it is possible to find 2G, 3G and 4G generations of mobile phone
networks, with Quality of Service (QoS), low latency, and licensed frequency operation (high cost).

At the beginning, for LPWAN the goal is to adapt 2G and 3G for the developments in IoT; nevertheless,
multiple medium access problems were found when sharing the system radio resources (time, frequency and
space), among users in the same cell (intra-cell), and interference with other cells with same features that entails
inter/co-cell interference.

2G generation phone network has technical limitations by the granularity offered that can not serve high values
of devices. The system is not energetically efficient and the signaling is over-sized for small packets. In 2G,
each cell uses a single frequency channel that was not used by its neighbors. This ensures low interference but
miss a frequency re/use that complicates the growth of nodes number [73,124].

3G uses all bandwidths and uses CDMA. For each transmitter, a single code is assigned the receptor takes
all signals and only process those of interest. 3G uses Direct Sequence Spread Spectrum (DSSS) for carrier
modulation, which increases the bandwidth and reduces the spectral efficiency. The output is similar, such as
noise, therefore, it will only be processed by the interested source. 3G has disadvantages for IoT such as power
control that needs high signalling values (overhead), its down-link interference from neighbor sources which
reduce transmission capacity. The main problem of 3G for IoT is energy consumption, management overhead,
power control and energy consumption, which involve disadvantages for IoT devices [73].

4G obtains the best of 2G and 3G: it keeps the transmissions orthogonality in each cell and allows frequency re-
use. It uses Orthogonal Frequency Division Multiple Access (OFDMA), which allows reducing the Inter Symbol
Interference (ISI) and Inter Channel Interference (ICI). The carriers are allocated among users of the same
cell separated for diversity, thus reducing intra-cell interference and carrier change every OFDM symbol. Some
topics should change, such as energy consumption and coverage; nevertheless, the most important challenge
was to adapt the medium access protocol by massive access. Specifically, the Random Access Channel (RACH)
would be overloaded by massive devices (nodes) that could affect the efficiency for e-nodes and mobile users.
Finally, among different proposal solutions in the literature, the most convincing one is to give separate channels
for IoT devices [125–128].

Third Generation Partnership Project (3GPP) presents LTE Rel-12 for low cost devices and in Rel-13-15.
The features enhanced Machine Type Communication (eMTC) and Narrow Band (NB) - IoT were presented.
eMTC introduces coverage enhancement, which was extended to NB-IoT. It can be used in three modes: (i).
stand-alone, such as a dedicated carrier; (ii) in band with occupied bandwidth of a wideband LTE carrier, and
(iii). with a guard band of an existing LTE carrier. NB-IoT has the same goals of LPWAN networks. It uses
narrow band (similar to Sigfox) designed for IoT applications. It uses a 200 kHz in one channel GSM, while for
in-band and guard band modes, it will use one physical resource block (PRB) LTE of 180 kHz [129]. NB-IoT
includes low cost devices, high coverage (20 dB) [129–131], long battery life and massive capacity services. The
bandwidth in LTE/GSM with licensed bands has similar values of spectral efficiency, latency and throughput
to LPWAN in unlicensed bands (LoRa, Sigfox...). In the next versions, it intends to reduce latency, develop
vehicular communications systems and reach the goals of 5G generation [132,133]. NB-IoT was designed in LTE
infrastructure, re-using the same hardware and share spectrum without issues. For most LTE radio stations,
NB-IoT can be supported via software upgrade, however, in some cases a hardware upgrade is necessary. Some
of the main features of NB-IoT are:

- Improved indoor coverage for achieving extended coverage compared with GPRS devices. It corresponds
to achieving around 164dB of link budget.

- Support of massive number of nodes: it supports around 52000 devices within a cell site sector.
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- Reduced complexity devices to support IoT applications.

- Latency on 10 seconds or less for maximum number of devices.

- Improved power efficiency to provide around ten years of autonomy.

NB-IoT is part of 5G generation mobile networks where companies such as Nokia and Huawei have spent efforts
in it standardization. Nevertheless, NB-IoT systems need to be performed in two dimensions: the modulation
and coding scheme (MCS), with a selection level as in traditional LTE systems, and the repetition number
determination. The reasons are: different MCS levels influence throughput of the system directly, and low MCS
and high power will improve transmit reliability and enhance coverage, but it reduces the system throughput
and repeat transmission and control data signals that have been selected as a promising approach to enhance
coverage of NB-IoT systems, wherein more repetition number will enhance the reliability, but cause spectral
efficiency loss [133]. More information on technical data of NB-IoT can be found on [132,134]

In summary, 4G-LTE to NB-IoT has been adapted and it is in constant evolution. 2G and 3G can be modified
but the solutions are not completely good in values of scalability, coverage and energy consumption.
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Non-Licensed Technologies

This subsection describes the main technologies that work in unlicensed frequency bands for IoT LPWAN
applications.

i. Sigfox

Sigfox is a method of information transport with LPWAN wireless characteristics: In 2004, Hal R. Walker
proposes for the first time the use of Very Minimum Shift Keying (VMSK) for compressing data transmission
in a narrow band frequency. In practice, this modulation technique gives steps for advancing in LPWAN
networks, but did not reach the expected results for occupying the name of the ultra narrow band. The
French company, called Sigfox, successfully reached the development and patent of Ultra Narrow Band (UNB)
technology [21,84,135].

Modulation, Bandwidth and Frequency Bands

Sigfox works with a broadcast of binary data with BPSK modulation and low data rate “Rb”, approximately
100 bps. Its transmitted signal has a frequency band “B” of 100 Hz. The novelty of Sigfox consists in multiple
transmissions with bandwidth “B” in a bigger band and uses approximately 192 kHz in ISM bands (868/915)
MHz. These bands could suffer a flat fading or frequency hopping, inside band of operation “B”, which supports
diversity and hence improvement of the reliability [118].
An important factor in the Sigfox system is the precision of the oscillator, which induces an offset between the
average frequency at the exact time and operation frequency. A low signal of bandwidth in UNB needs a high
sensitivity of oscillator precision [75].

Access Method

The associated MAC to UNB is Random Frequency and Time Division Multiple Access (RFTDMA). The
end-device access is random in the wireless environment in the time-frequency domain. This corresponds to
Aloha access protocol without previously reviewing the channel occupancy. In contrast with classics Aloha
transmissions, the carrier frequency was chosen inside “B” with a continuous interval in contrast to a discrete
configuration pre-defined [77,118].

The work in [21] shows an example where signals of 100 end-devices are generated and results of receiver
monitoring appears in features as time and frequency. The benefits of using RFTDMA are:

- There is no energy consumption for channel review

- No network synchronization is needed. The message posting package could be eliminated.

- here is no restriction in oscillator precision. Any frequency can be chosen inside every operation band
and any oscillator can be used without service degradation. It is important to consider that a medium
access without control produces interference or packages collision.

An optimum demodulation process carries an efficient algorithm Software Design Radio (SDR), where the
process allows analyzing the frequency band, transmitted signals detection and information recovery [90]. In
Sigfox, we can find a signal processing that relates a Fourier Fast Transform (FFT), which is applied to the
received signal and then used in an adaptive detector that allows identifying the transmitted signal in the
spectrum [84]. For each detected transmission, the frequency band was filtered through Binary Phase Shift
Keying(BPSK) demodulator.
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Payload

To improve reliability, each message can be sent up to 3 times in different frequencies. Each station responds in
the same frequency, thus allowing to maintain the reception in the end-device and avoiding the frequency band
analysis. In the transmitted package, we can find 12 bytes that change to around 25 bytes when it is necessary to
add network management information and the data payload has full information. With the information found
about Sigfox literature, a frame of Sigfox technology was constructed and will be presented in figure 3-3.”

Preamble- A header of 4 bytes.

Synchronization frame (Syn) of 2 bytes.

Device identification (D.I.) of 4 bytes.

Duty payload of 12 bytes.

Code Hash (C.H.) of authentication in Sigfox network with variable length.

Cycling redundancy check (CRC) of 2 bytes for error detection and security.

Figure 3-3.: Sigfox Packet, The structure of a frame of Sigfox wireless technology.

Capacity

Sigfox offers capacity based on devices number and transmitted messages numbers per day [71]. Its capacities
are shown in Table 3-1.

Table 3-1.: Models Sigfox

Name Messages number Downlink number
Platinum 101 - 140 4
Gold 51 - 100 2
Siver 3 - 50 1
One 1 - 2 0

A typical frame duration is around 2 seconds [136].
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Coverage

When we have a data link with line of sight (LoS) and without interference, it is important to consider the
coverage and the noise level in 3-8

NdBm = −174 +NF + 10 ∗ log10(BW ) (3-8)

where:

NF is the noise figure of the receiver.

BW is the bandwidth.

For UNB systems, the noise floor is (-154+NF) dBm.

On free space conditions and if antenna gain has a balance with noise factor losses, the signal to noise relation
(SNR) is shown in 3-9.

SNR = Pr −N = PTx + 132− 20 ∗ log(r/λ) (3-9)

where:

Pr is the receiver power.

PTx is the transmitter power.

r is the range.

λ is the wavelength.

With an SNR limit equal to 9 dB and a link margin of 5 dB, the reception power required in the receptor must
be Pr ≥ −142 dBm with maximum power among [14 - 27 dBm] according to regulations (Europe and Americas,
respectively). The above ensures coverage in LPWAN networks [21].

The sensitivity to interference is important when transmission happens simultaneously. The interference situ-
ation is characterized by peaks on the average. When we have two transmitters in a multiple access channel,
the signal in the receptor is shown in 3-10.

r(t) =

2∑
i=1

Si(t).g(fi, t)⊗ hi(t) + n(t) (3-10)

where:

Si(t),∀i ∈ 1, 2 are the BPSK symbols sent by active user.

i; g(fi, t) is the impulse response of the emission Finite Impulse Response (FIR) filter in fi (tensor products
of the vectors).

hi(t) is the path loss of the link, and
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n(t) is the Additive Gaussian White Noise (AGWN) with zero mean and variance.

Energy Consumption

The energy consumption in a normal emission varies between 20 mA - 70 mA. This feature depends on the
message size. It is worth mentioning that energy consumption can be kept very low for extending battery in
IoT applications.

Unfortunately, the public information about Sigfox technology is very limited because it is a private development.
The information presented in this document was extracted from [21], mainly.

ii. Ingenu

Ingenu is a method of information transport with LPWAN wireless features that uses On-Ramp (RPMA) access
method.

Modulation and Access Method

In some texts it is also known as Random Phase Multiple Access (RPMA) based on DSSS or On-Ramp Wireless.
The transmissions are made in 2.4 GHz ISM band and the signal is Differential Binary Phase Shift Keying (D-
BPSK), modulated before spreading by a “Gold Code”. Additional blocks (encoded, modulate, Gold Code,
randomly delay before transmission) ensure time and frequency synchronization between the gateway and the
end-devices.

RPMA Scenarios

In the literature, there is scarce information available about Ingenu technology. For this reason, we conducted
a search of RPMA Access, which allows understanding Access Method that employs Ingenu for its operation.
In the search, scenarios were found for the use of RPMA Access [137]. Also, document [21] was a useful to
understand this technology.

The interface can connect with systems and devices using SS methods. The random selection of a chirp (or
timing) offsets as a multiple access scheme and allows non-coordinated data transmission without the need to
be assigned a unique code. All users transmitted use the same Pseudo Noise (PN) code such that a PN array
de-spreader at the access point can be used. If two (2) signals are received at the access point at the same
PN offset, then collision could occur and it would not be possible to demodulate these signals. The random
of timing offsets in each time avoid more collisions that could happen during that frame. A re-transmission
scheme and a new value of random offset is used to get through in the next attempt [137].

A scenario includes a transmitter at the end-device with a gateway. Each end-device includes its own transmitter
which transmits information in frames. A frame can be formed from information provided on a channel with a
fixed data rate. Data can be spread using the same PN (Pseudo-Noise) code and can have a randomly selected
chip offset. The transmitter also applies frequency rotation and sample clock correction to match the reference
oscillator of the access point. Any end-device is associated with a single gateway to form the network and each
end-device transmits information using the same PN code with a randomly selected chip offset. The phase is
randomly selected in each frame over a large number of chips [137].

A scenario includes a transmitter (end-device), a gateway and a method for transmitting signals from the
gateway to end-devices. However, when transmitted the gateway uses a unique PN code for each end-device,
which is communicated. Different PN codes for each end-device give warranty of security and allows ignoring
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unwished signals. The frames transmitted by the gateway also include a preamble of approximately 9 symbols
to allow a fast connection with end-devices [137].

A scenario includes a demodulator at the end-device and a method for demodulating a received signal by the
end-device. An automatic frequency control (AFC) de-rotator is employed. Multiplication is applied to signals
received at the end-device. The AFC de-rotator multiplication is a 1-bit complex operation with a 1-bit complex
output such that gate count is improved. The end-device uses a PN array de-spreader that takes advantage of
big computational saving in the 1-bit data path [137].

Another scenario includes a demodulator at the gateway and a method for demodulating signals received at the
gateway. The gateway demodulator has capacity to simultaneously demodulate several thousands or more links
received from end-devices. To demodulate such a large number of links, the gateway demodulator includes a
PN array despreader [137] .

In the case of a scenario that includes synchronization of the end-device with a master timing of the gateway,
the gateway can transmit in some moments a broadcast frame. During the free time acquisition, the end-device
uses a PN de-spreader to analyze the broadcast frames and identify the master timing of the gateway. A free
time acquisition is expected to occur one time when the end-device is first introduced into the system. After
the free initial acquisition, the end-device can perform a “warm” timing acquisition each time the end-device
wakes up to transmit or receive a signal. The warm timing acquisition uses less power than the free time
acquisition. Each end-device separately generates a PN code. A gold code is an example of a PN code that is
parameterizable such that each user has it is own. Therefore, only data sent to a particular user is visible to it:
when using unique PN codes, an end-device does not process data that are not it is own [137].

A method for communicating through a multiple access communication interface includes receiving a first signal
from a first end-device, where the first signal is spread using a predetermined PN code and where the first signal
includes first payload data, a second signal is received. From a second end-device, the second signal is spread
using the predetermined PN code and includes second payload data. The first payload data from the first signal
is identified in part by a PN array despreader. The same situation happens with a second payload from the
second signal [137].

The SF of the Gold Codes is 2k with k among (2 - 13) each time the SF doubles process gain, which is +3dB. This
allows adapting the data rate to the propagation conditions. For the uplink or downlink broadcast transmission,
the Gold Code is unique and used for Unicast downlink transmission, the Gold code is built with each end-
device. With this, any other end-device is able to decode the data. Uplink/Downlink are in a half-duplex
way, with a downlink interval of two seconds followed by an uplink interval of two seconds too. This allows
dynamically adapting the SF to the channel conditions in function of the received power. Smaller SF can be
used in downlink compared with uplink, as the gateway is not energy constrained and can transmit at a higher
power level [21].

When an end-device is included at a transmitter with a method for transmitting signals to a gateway, each
end-device includes its own transmitter, which transmits information in the form of frames. A frame can be
formed by information provided in a channel, then, the data can be spread [21].

RPMA is performed by delaying the signal to transmit at each end-device. The slot is first divided into Ns

subslots, so that Ns =
8192
2k

with 2k the used SF. The transmitter selects one subslot called access slot for k ≤ 13.

Within the sub-slot, a transmission is delayed by a random number d ∈ [0; 2k − 1]. Ingenu estimates that up to
1000 uplink users can be served in each slot [21]. The approximate communication range corresponds in theory
to 200 Km in free space with minimal received power in -145 dBm, but in practice the range estimated is 10 Km
with Okumura-Hata model [21]. For interference characteristic sensitivity, the random delay allows changing
the time of arrival of the different signals and gold codes have low auto-correlation, therefore, the probability
of interference is reduced. [21].
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A gateway for use in a multiple access communication system includes a processor in the receiver and the
transmitter. The receiver (gateway) can be configured to receive a first signal from a first end-device, wherein
the first signal includes first payload data spread with a predetermined PN code. The receiver is also configured
to receive a second signal from a second end-device, where the second signal includes second payload data
spread with predetermined PN code for different signals from different end-devices when changing a signal of
one end-device that previously used the PN code change [21].

iii. LoRaWAN

This subsection presents LoRaWAN LPWAN technology. LoRa is a modulation technique for a broad coverage,
low energy consumption, and low data rate. The technology LoRa was developed in North America by Semtech,
IBM, Actility and Microchip. LoRaWAN network uses a star topology between e-nodes or motes and the
gateway, which connects the messages of the end-devices with an information server through IP standard
connection.

Modulation, Classes and Coverage

The Shannon-hartley theorem states that an increase of the transmission channel bandwidth is a way to overcome
a poor Signal to Noise Ratio (SNR). This theorem support different spread spectrum techniques such as Direct-
sequence spread spectrum (DSSS), which multiplies the wanted data signal by a spreading code at a much faster
rate than the data signal with the spreading of original data bandwidth over a larger resulting bandwidth [136].
LoRa uses a concept of Chip Spread Spectrum (CSS) modulation, which is a subcategory of DSSS that takes
advantage of the controlled frequency diversity to recover data from weak signals, even near the noise level. CSS
modulation was used in military communications due to the relatively low transmission power requirements,
robustness to channel degradation, multi-path, fading, doppler effect and jamming interference [21].

LoRaWAN is a solution of LPWAN networks, since it has a robust physic layer for medium access “CSS”, it
works with a continuous phase between different symbols “chirp”, which allows knowing different nodes in the
preamble of the package to physics layer level and contributes to frequencies synchronization in the gateway
LoRa. [21, 77, 123]. In [26], authors describe spread spectrum techniques that lead to an increased link budget
and better immunity to interference. LoRa works in three forms known as A, B and C [138,138,139,139].

Class A allows bidirectional communications, since every end-device enables uplink transmission and then
opens two (2) windows of reception. The transmission time is pre-programmed with the need to communicate
with a short variation based on a random time for avoiding collisions (ALOHA Protocol). Class A is for
systems with low consumption power, small down-link data and efficient uplink operation. For more downlink
communications, it has to wait for the next programmed time slots.
Class B works with bidirectional communication, and it allows programming reception times. The device can
be programmed with extra times to receive across synchronization of beacons in the gateway, which allows the
server to know when the end-device is present in the reception window.
Class C works with continuous reception window, except when the device is in transmission mode. In this
class, the device uses more energy and gives low latency in the communication process.

Spreading Factor (SF)

SF is a number of transmitted bits in a symbol, when we take the references of the number of symbols in chips
of 2SF and SF=12, then 212 = 4096 chips/symbol. Each increase of SF reduces data rate of payload and it is
necessary to increase the transmission time. This increase grows the energy consumption and process delays;
however, LoRa is flexible with the use of spectrum through the same frequency with different SFs that allow to
implement the orthogonality frequency for the transport of multiple links at the same time. A channel can be
divided into sub-channels, which gives concurrence and avoids errors in the transmissions.
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SF is compared with CDMA. It uses chip code DSSS, and the code is known between transmitter and receptor.
Each chip is a rectangular pulse with amplitude (+1, -1). These pulses are multiplied with the data sequence
and the answer takes the form of the wave to be transmitted. In the coding process, it takes a captured signal
and multiplied it with spreading code. The chip rate (code SF) is translated into a number of pulses by time
unit. The information symbol is represented by multiple chips [140]. The SF is showed in 3-11

SF =
chirp rate

symbol rate
(3-11)

In [21], LoRa defines the SF in 3-12

2SF =
B

Rs
= B.T (3-12)

Where:

B is the spread bandwidth.

Rs is the symbol rate, and

T = 1
Rs

is the chirp duration.

The basic element of CSS modulation is the chirp and its waveform is written in 3-13.

c(t) =

{
ejϕ(t), if −T

2 ≤ t ≤ T
2

0, otherwise
(3-13)

where, ϕ(t) is a chirp phase

In [21], the instantaneous frequency 3-14 is presented and the linear chirps are described as used by LoRa in
3-15

f(t) =
1

2π
.
d(ϕ(t)

dt
(3-14)

f1c(t) = fc + µ.
B

T
.t (3-15)

Where fc is the carrier frequency, and, µ is the level of the chirp (+1,−1) = (up, down).

The authors in [21] showed a representation of a chirp, a frequency form in the chirp, the instantaneous phase,
the period varying in phase and quadrature and the output of the filter. In the receiver, we can find the
multiplication of an up-chirp with an up-chirp and a down-chirp with down-chirp, which leads to an up-chirp
or down-chirp, respectively. Then, instantaneous frequencies are added. The multiplication of an up-chirp with
a down-chirp, also called conjugate chirp, leads to a narrow peak at twice the carrier frequency [21]. It is worth
mentioning that the basis of CSS modulation allows sending one bit per chirp.
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CSS used in LoRa is an evolution, and it was a development for LPWAN services. The chirp may code up to
SF = 12 bits, during a chirp period. A specific frequency is defined by each 2SF symbols and achieved by a
frequency shifting ramp based on the symbol value. As a result, each chirp code is obtained by a cyclic shift of
the chirp reference [21].

For LoRa, the instantaneous frequency is 3-16:

fcc(t) =

{
fc + µ.BT .(t− k

B +B), if −T
2 ≤ t ≤ k

B

fc + µ.BT .(t− k
B ), if k

B ≤ t ≤ T
2

(3-16)

where k is the number of shifted chips. The images that help to understand the concepts are in [21] and some of
them will be shown in Chapter 4 inside the results. At the receiver, the multiplication of the received signal with
the raw conjugate-chirp allows finding a carrier frequency fd and a instantaneous frequency through 3-17 [21].

fp(t) =

{
fc + fd − µ. kT +B, if −T

2 ≤ t ≤ k
B

fc + fd − µ. kT , if k
B ≤ t ≤ T

2

(3-17)

In equation 3-17,it is possible to find two periods, where each one has a constant frequency and the transition
occurs at a given time at a chirp code. These features can be observed in [21]. It is important to consider
that the phase of the transmitted signal must be continuous from the beginning until the end of the symbol.
Also fc + fd allows obtaining the base-band signal. The shown scenario has an ideal time and synchronization
frequency between transmitter and receiver.

In the modulation process of LoRa, a preamble is sent for the offset estimation intrinsic and the information
(bits) is divided into words of SF bits, where there are 2SF code words. There are free spaces for reducing the
Bit Error Rate (BER) and it is possible to set bandwidth values, frequency bands and SF. The chirp duration
can be modified with SF values among[7-12]. A high SF corresponds to a long chirp, where the raw data rate
can be calculated in 3-18.

Rb = SF.
BW

2SF
(3-18)

A high SF value is for far devices from the gateway and a low SF value for devices that are near to the gateway.
Usually, a high amount of data for transmitting works with frequency hopping patterns are known by the
Transmitter (Tx) and Receiver (Rx).

An end-device LoRa, known as slave, is guided by a master if the Adaptative Data Rate (ADR) is enabled. In
this case, the Medium Access Control (MAC) has the ability to control the SF, the bandwidth and the radio
frequency (RF) for controlling the output power of each node and maximizing battery life in the node and the
network capacity. This helps in the flexibility of the data rate, which reduce times [Tx-Rx] and switching nodes
with a high data rate in the cell. When a node wants to transmit, it chooses an available channel. Afterward,
it uses a Listen Before Talk (LBT) protocol for finding a free channel. When it can use a channel, it transmits
with SF by default and BW values. If a node needs to check its connection on the network, a short frame is
sent first at SF=8, then to SF=10 and SF= 12. With this, the end-device obtains a feedback of the received
frame.

Industrial Scientifical and Medical bands (ISM-bands) have a limitation by duty cycle or channel occupation.
For this reason, we can express in 3-19 [141] that:
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Ts = Ta ∗
(
1

d
− 1

)
(3-19)

Where:

Ts = Time period in which the channel is not available for the device.

Ta = Transmission time, also called Time on air (ToA), is a time of link adaptation between transmitter
and receiver, and depends on the coupling loss.

d = Duty Cycle.

If d= 1%, the maximum transmission time is 36sec/h for each channel sub-band in each device. The duty
cycle limitations are translated into delays between the successive frames sent by one device. With a 1%
of duty cycle, the device will have to wait 100 times before sending again in the same channel. For this
case, the maximum package number is shown in 3-20.

M =

(
3600

Ta+ Ts

)
[package ∗ hour ∗ node] (3-20)

The receiver package number by second is derivated from the expression 3-21.

s =
∑
i∈F

iλie
−2piNTaiλi

n ) (3-21)

where:

N = Devices number.

n = Channels number.

SF= Spreading factor.

Pi = Probability that a node uses an specific SFi.

λi = Package rate of user with SFi.

Ta = Transmission time on the air, a function of SF.

The time of transmission is expressed as [139,142]:

ToA = Ta = Tpreamble + Tpacket = Tsymbol(Lpreamble + LPHDR + LPHDR CRC + LPHY payload + LPHY CRC)

=

{
2SF

BW

[
NP + 4.25 +

[
SW +max

(
ceil

[
8PL− 4SF + 28 + 16CRC − 20IH

4(SF − 2DE)

]
(CR+ 4)

)]]}
(3-22)

where:

Tpreamble is the time of the symbols of the header to synchronize.
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Tpacket is the time of the symbols of information.

Tsymbol is the symbol time.

Lpreamble is the load of preamble.

LPHDR is the load of the physical header.

LPHDR CRC is the load of the physical header to cyclic redundancy check.

LPHY payload is the load of the physical payload.

LPHY CRC is the load of the physical payload with cyclic redundancy check.

NP , is the number of preamble symbols. It is common to use 10 of preamble and 2 of synchronization.

SW is the length of synchronization word.

PL is the number of PHY payload bytes (1-255).

IH specifiesthe presence of PHY (IH=0 when PHY header is enabled and IH=1 when no header is present).

DE indicates the use of data rate optimization, which adds a small overhead to increase robustness to
reference frequency variations over the timescale of the LoRa frame. It is enabled when the symbol time
is larger than 16mS.

Frequency bands, bandwidth and data rate

In America, LoRa uses frequency bands of 169/433/915 MHz, while in Europe it uses 868 MHz, all under 1GHz
and ISM free bands. [73].

The BW has repercussions in the quantity of information that can carry a communication channel [141]. A
higher BW represents a low time of transmission and a low energy consumption, otherwise a low BW obtains
higher energy consumption and low data rate. LoRa has flexibility with BW of (500, 250 and 125) kHz in high
frequencies and ISM bands (868 y 915 MHz). In low frequencies, it works in (7.8, 10.4, 15.6, 20.8, 31.2, 41.7 y
62.5) kHz for (160 and 480 MHz) [141]. LoRa has data rate consistent with SF and the BW of 0.3Kbps (BW =
7.8kHz y SF = 12) to 27 Kbps(BW = 500 kHz y SF = 7). The hopping frequency is used in each transmission
for mitigating the extern interference [21,141].

For maximizing the battery life and the network capacity in each end-device, the network administrator can
configure the data rate and RF output to each end-device under Adaptive Data Rate (ADR) schematic. The
end-device can transmit in any available channel at any time. For this purpose, it uses the data rate available
with restriction to implement a pseudo-random hop channel for each transmitter and accomplish the maximum
transmission of a duty cycle. The management in the gateway supports 104 end-devices, with a gain of >
20dBm. LoRa implements Forward Error Correction (FEC) to fix errors. The data rate is a factor between
coverage and message duration ToA. The sensitivity of a radio receiver [143] is given in 3-23.

S = −174dBm+ 10log10(BW ) +NF + SNR (3-23)
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Table 4. Relation among features in LoRa technology

SF BW (kHz) Symbol Time
Bit rate
(kbit/s)

Time on Air
255 bytes

(ms)

Receiver
sensitivity
(dBm)

7 125 1.024 ms 6.836 389.38 -126.5
8 125 2.048 ms 3.906 686.59 -127.25
9 125 4.096 ms 2.197 1,229.82 -131.25
10 125 8.192 ms 1.220 2,213.89 -132.75
11 125 16.384 ms 0.671 4,837.38 -134.5
12 125 32.768 ms 0.366 8,855.55 -133.25
7 250 512 µs 13.672 194.69 -124.5
8 250 1.024 ms 7.812 343.30 -126.75
9 250 2.048 ms 4.395 614.91 -128.25
10 250 4.096 ms 2.441 1,106.94 -130.25
11 250 8.192 ms 1.342 2,009.09 -132.75
12 250 16.384 ms 0.732 3,772.42 -132.25
7 500 256 µs 27.343 97.34 -120.75
8 500 512 µs 15.625 171.65 -124
9 500 1.024 ms 8.789 307.46 -127.5
10 500 2.048 ms 4.882 553.47 -128.75
11 500 4.096 ms 2.685 1,004.54 -128.75
12 500 8.192 ms 1.464 1,886.21 -132.25

In Table 4, it is possible to find the relation between a bit rate, sensitivity, SF, symbol time and BW values
according to the values presented in [94,143].

Packet structure: LoRa packet structure is presented in figure 3-4. It has some features of control and real
data (payload). The packet structure is composed of:

Preamble: It synchronizes the receptor with input data and typically has 8 symbols, but it is programmable
from 6 to 65535 symbols.

Header: It is optional, it describes a length and FEC rate of the payload. It indicates the presence of
optional 16-bit CRC for the payload. It is always be transmitted with a 4/8 FEC rate. In operation, it
has two (2) work modes:

1. Explicit operation (default): The header field gives information about bytes number and the encoding
rate FEC.

2. Implicit operation: It is used when payload and rate code are fixed. In this mode, the header is removed
from the package, for this reason, it has a reduction in transmission time.

Payload: Transmitter data among (51-222) bytes according to SF.

Payload CRC: It is present at the end of the payload and it has 16 bit of CRC that may be included [21].
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Figure 3-4.: LoRa packet, The structure of a frame of LoRaWAN wireless technology

Other parameters: Code Rate, Duty Cycle, SNR and Energy Consumption.

The work in [89]shows a comparison between LoRa and Zig-bee. Zig-bee has a reach of 20 meters with 84.5µJ of
energy consumption and LoRa has a reach of 150 meters with 86.5µJ. The first conclusion might be that a higher
reach follows a higher energy consumption, but, it is worth mentioning that it is not the unique parameter to
evaluate a technology. LoRa uses a battery that can reach 20 years in some operation modes. Settings such as
carrier frequency, SF, modulation, BW, and code rate establish the energy consumption, transmission coverage,
and noise. When SF, SNR array and reception sensitivity increase, the coverage area and transmission time
increase too.

The code rate (CR) called FEC is used to protect against interference. Higher values of CR carry higher in-
formation protection but also increment the data transmission time on the air (ToA). It is important to know
that inside features of the LoRa flexibility, the possibility to transmit information can be found with equal
parameters of a carrier frequency, SF, BW and different CR.

The work in [141] states that the performance of LoRa network depends on duty cycle. According to the
regulations, it can use a channel where the intrinsic collisions could appear by the use of Aloha Access method.
Another important variable is ToA, which depends on the SF. A high time of transmission could carry overlaps
on multiple transmissions and it shows a test with a uniform distribution of nodes in an area where a network
gateway is found. The path loss is estimated with Okumura-Hata model for urban cells and the probability of
using a node with specific SF p12 = 0.28, p11 = 0.20, p10 = 0.14, p9 = 0.10, p8 = 0.08 y p7 = 0.19. This test is
for estimating if the sensitivity should be variable for different SFs.
If the transmitter node uses the high data rate and considers the duty cycle, then, the number of successfully
received packages decreases with a high number of nodes. This is done by the probability of collisions in the
Aloha Access method. The work in [141] shows a scenario of three channels 0 ≤ N ≤ 10000, where N is the
number of nodes of the network. The work describes three packages to transmit with three payloads (10, 30
and 50 bytes), a CR of 4/5 and a BW of 125 kHz. The document states that for low transmission rate values,
the efficiency of the system is limited by collisions, and for high values, the duty cycle avoids the increase of
the data rate and the system stability. The background shows for low quantity of nodes in a network that the
probability of transmission is successful, but if it is increased in a number of nodes-carriers, the probability
of successful transmission decreases. The capacity of the network LoRa is reduced in the transmission frame
acknowledgment (ACK), in order to optimize the reliability and the dead time of these packages in ToA.

It is recommendable in the design of the network, and when the applications run, to reduce the frame numbers
ACK for avoiding problems in the network capacity. After these appreciations, it is important to question if
LoRa is viable under service condition with high reliability in dense networks.

The work in [141] affirms that in the future the development of LoRa networks could be inefficient. Specifically
the model of LoRa network has been developed as a cellular network, where operators provide a network service
and the gateways are base stations that cover large areas. When LoRa network grows, the operator coverage
zone where applications or services that share the same infrastructure coexist, it will need new methods to
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coordinate them and avoid collisions. Some network operators require technology for ensuring a balance when
the spectrum is shared among different applications.

Wireless networks entail technical limitations such as latency, shadowing, multi-path, Fresnel zones. These and
others negative factors need appropriate designs to avoid problems in the throughput of the network.
The noise level is 3-24:

NdBm = −174 +NF + 10log10(B) (3-24)

where

NF = Noise Figure in the receptor.

For 125kHz ≤ B ≤ 500kHz in 900 MHz band and link budget in free-space,

SNR = PT x + 132− 20log(
r

λ
) + CG (3-25)

where:

r = distance(Tx-Rx),

λ = wave-lenght, and

CG is a coding gain due to the spreading, estimated by 2.5SF

The theoretical maximum range was evaluated in a coverage of 22 Km. [21,122]

In terms of interference, we can mention two sources: (i) no LoRa signals where a single signal less than 5 dB is
not a problem and (ii) LoRa signals, where we could work with end-devices with different SF because the Fast
Fourier Transform (FFT) would cause two unwanted peaks and receiver would not identify which end-device is
talking. In [21] there is a report table with co-channel rejection when couples are presented with the same SF.
An end-device can transmit without problems with different SFs, but the rejection coefficient increases with the
SFs. The energy consumption is around 20 mA, however, it depends on the end-device state [21,122].
LoRa uses two layers of security: (i) network and (ii) application. The network layer (i) ensures the authenticity
of the node in the network. The application layer (ii) ensures that the network operator has no access to the
end-user data. AES encryption is used with IEEE EUI64 identifier [123]. This security scheme is sufficient for
most IoT applications.

Comparison among LPWAN main technologies

The following lines compare the LPWAN technologies that were detailed in this section, especially LoRa and
Sigfox technologies, because it was possible to find more information on these tools. A table is presented where
it is possible to find a perspective of these technologies and NB-IoT in technical values.

In unlicensed spectrum, IoT applications and its devices use more uplink than downlink transmissions, end-
devices transmit data at intervals, while actuators are controlled irregulary. Uplink studies show that UNB sites
with 10000 users (short messages) in a day need around 200 non-adjacent channels of 100 Hz. In this scenario,
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a frequency band of 40 kHz would be enough [21]. In a study performed by real wireless environment, UNB
LPWAN technology estimates that a 200 kHz channel should be able to provide an uplink throughput of 50 kb/s,
for 500 simultaneous users using channels of 100 Hz at 100 bits/s. On the other hand with LoRa technology,
the trade-off takes the form of different modulation types. It should ideally transmit at the modulation level,
which includes the least error correction, but it can still get the message across. The most efficient modulation
level is known as SF = 7 and the level with the highest level of error has SF = 12.

LoRa modulation improves practical sensitivity by around (6-10)dB versus FSK for the same bit rate. When
a larger SF is used, the bit rate decreases, while sensitivity becomes equivalent or even better than UNB when
using D-BPSK. Approximately, LoRa uses -137dBm with 300bps, while UNB uses -136dBm with 100bps [136].

LoRa uses more bandwidth than Sigfox (UNB) for transmitting low data rate. In LoRa, it is possible to
transmit simultaneously 64 transmissions with various SFs and with optimum ADR. LoRa does not need a
good alignment between Tx and Rx, it has a tolerable deviation, while UNB needs a crystal to do it. For
LoRa, this lowers the cost and power consumption of the end point. CSS modulation exhibits good immunity
to multipath fading and Doppler effect [136].

In licensed spectrum, LTE-M is primarily an evolutionary addition to the LTE techonology stack currently
deployed by operators. An operator can modify the attributes of application with a software update to their
base stations. LTE-M can be deployed in any LTE band under legal conditions of each region/country and
devices capability. The first version LTE-M 1 worked with 1.4 MHZ of spectrum band, while the subsequent
works with 200 kHz(NB-IoT), similar to UNB technologies. Licensed technologies estimates provide connection
among 200.000 and 100.000 devices per cell. Simulations by ZTE technology manages to give support to 50.000
devices with 50.000 messages per hour in a 200 kHz channel without degradation (average message, among 100
- 280 bytes). These values are similar to the throughput in LoRa, since it has an effective uplink throughput
around 21.1kbps in both cases. LTE is able to exert better power control, suffers less interference, and has
permanent availability of use spectrum versus a 1% of the time for the unlicensed bands (duty cycle). Licensed
technologies provide more capacity for acknowledgements and reduces the need to send the same message many
times to increase the efficient reception [144]. Table 5 shows a comparison among the main LPWAN technologies
used in this document.

The multiple medium access refers to multiple transmitters of a single application that want to use the same
portion of spectrum. In order to prevent interference a form of access control is implemented. In licensed
spectrum (as NB-IoT), only a single operator is allowed to use specific resources and it enables to allocate
efficiently spectrum resources between users and avoid interference. In unlicensed spectrum (as Sigfox, LoRa...),
multiple access for users is an issue. Different applications do not coordinate multiple access with each other, for
this reason, regulations demand that transmitters use relatively low transmit power and limit their duty cycle.
In some cases, even additional requirements are implemented such as Listen Before Talking. Each LPWAN
technology deals with different requirements in order to facilitate multiple access for their own users and its
coexistence with other services [144].

In order to reduce the effects of a collision, Sigfox transmits each message four times in a different channel,
therefore, it decreases the efficiency of the spectrum usage but increases the possibility of reading the message
in the receptor. In [144], the simulated performance of Sigfox is presented: it is resilient to errors resulting
from collision, and when the number of collisions increases, the number of messages that are not received stays
low. Real wireless networks find that the number of simultaneous users in a spread spectrum (such as LoRa) is
around 70 per base station. Above this number of users, the base station noise rises quickly above usable levels,
it assumes perfect power control in order to avoid losses. In multiple access, Sigfox is better technology under
static conditions, UNB distributes their traffic over all channels equally and reduces the chance of a collision.
The downside of this is that a message takes a long time to be transmited and if the signal fluctuates while
transmitting, it decreases the chance of appropriate reception. LoRa can modify its parameters and the device
may choose to increase the transmit power or use a better modulation-SF. Otherwise, the duty cycle regulations
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Table 5. A comparative among the main LPWAN technologies

Feature LoRaWAN Sigfox NB-IoT

Modulation CSS/FSK
UNB/GFSK(downlinl)

BPSK(uplink)
QPSK(downlink)/BPSK(uplink)

OFDMA SC-FDMA
Bandwidth 500Hz - 500 kHz 400 x 100 Hz 200 kHz
Capacity - 140 mss/day Undefined

Data Rate 290bps - 50Kbps
100bit/sec(uplink)

500bit/sec(downlink)
226.7kbps uplink

20 kbps downlink\end{tabular}
Link Budget 154dB 151dB 164 dB
Messages/day - 140 Undefined
Payload/size 2-255 bytes 12 bytes 4 x (128 - 256) bytes

Protocol Overhead 12 bytes 26 bytes 29 bytes
End-devices x´ Gateway 1000/Gateway 1 ∗ 106 -

Coverage
(15-22)km rural and

(3-8)km urban
(30-50)Km rural and

(3-10)Km urban
15 Km rural and 4 Km urban

Sensitivity -137 dBm -129 dBm ∼ -120 dBm
Transmission Power {4:1:20}dBm 14dBm 20 / 23 dBm
Rx consumption 10.5mA 10mA 46 mA
Tx consumption 28mA 45 mA 74 - 220 mA

Carrier frequency [137-1020]MHz [868/915]MHz
LTE in-band

LTE guardband standalone
Coding rate 4/5 4/6 4/7 4/8 N/A -

Uplink Data Data Data + ACK
Downlink Data + ACK ACK Data + ACK
Encryption AES-128 AES-128 LTE protocol

Open Standard Yes No No
Duty cycle 1% N/A N/A

Spreading Factor 7-12 N/A N/A
Frequency 868/920 MHz 868/920 MHz 800 MHz

apply to LoRaWAN gateways (base stations), therefore, the time that these base stations have to regulate the
parameters is very limited and may be a limit for power control.

In [118], the authors establish technical differences between LoRa and Sigfox in the physical layer. Simulation
results show that UNB has a larger coverage, while CSS is less sensitive to interference. In the document, it
is possible to observe that it depends on the network load, size and distance. A LoRa network can send until
six times more packets to the base station. In conclusion, it is possible to understand that the choice between
LoRa or Sigfox depends mainly on the application.Thus, UNB has better long range communications where the
amount of data is small and the number of devices is high. LoRa network is well-suited for applications for
higher data transport.

The work in [102] makes a review between NB-IoT and LoRa LPWAN. The authors give an advantage to LoRa
(Unlicensed) in terms of battery lifetime, capacity and cost, while NB-IoT (licensed - version light of LTE 5G)
offers benefits as QoS (Quality of service), latency and reliability. Each application has its specific requirements,
that allows choosing the best and both have their place in the IoT market. LoRa is a low-cost application, while
NB-IoT is used in applications that require a high QoS and low latency.

Interference

If multiple access fails or different service providers do not coordinate spectrum usage, the presence of inter-
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ference is possible situation where radio transmitters try a communication, but either or all transmissions may
fail due to spectrum usage overlaps in time, space and frequency, which can affect quality of services. In [144],
the authors showed a study of different scenarios of interference for LPWAN networks, in unlicensed spectrum
where it is more possible that interference occurs. They show the results of interference analysis between UNB
and CSS systems and they found four different scenarios: (i) own network UNB, (ii) another network UNB,
(iii) own network CSS, and (iv) another network CSS. The results suggest that CSS systems are more likely
to be a bad neighbour to other users of unlicensed spectrum. In the document, it is possible to found more
information about interference between LPWAN IoT networks and existing users. The document gives some
technical features such as measurements of power level signals, cyclic signals, duty cycle, interference from some
source signals such as cordless microphones and telephones and interference from RFID, mainly.
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Diversity

Communication channels present problems caused by multi-path and fading, mainly. Its effects could affect the
throughput of the system. For the above, diversity techniques could be the way to avoid these problems. These
techniques could be implemented in different ways in transmission and reception. In wireless networks, it is
possible to find constructive and destructive interference. The signal power can be significantly diminished and
the performance on a system in terms of probability of error can be severely degraded. Diversity techniques can
also be used to improve system performance. Instead of transmitting or receiving the desired signal through one
channel, it is possible to use different channels with the goal to avoid losses and obtain enough energy, which
allows choosing the correct decision on the transmitted symbol. There are different systems of diversity that
depend on the feature of interest, as follows:

- Depending on the place where it is implemented, it can be transmission or reception diversity.

- Depending on the physical medium with the goal to reach replica of the signal, it is possible to find in
space or also called of antenna, in frequency, in time or in polarization.

- Depending on the use of the different signal replicas, it is possible to find: by selection, by feedback, by
combination and by gain.

For the purpose of this thesis, space, frequency and time classes of diversity will be described with the goal to
optimize the use of a channel in a communication system; it is clear that diversity techniques are used to avoid
mistakes and interference effects that are made by multiple replicas of the signal, but in the present document
they will be used with the goal to increase data transmission.

Frequency diversity: The aim is to modulate the information signal through multiple carriers where each
carrier should be separated from the others by at least the coherence bandwith, the amount of frequency band
that is taken by a channel to change significantly, therefore, it is possible to avoid fading. The coherence
bandwith is necessary to multiple channels that have no relation among them.

Time diversity: The aim is to transmit the desired signal in different periods of time, thus, each symbol is
transmitted multiples times. The intervals between the same symbol should be at least the coherence time, i.e.
time taken by the channel to change significantly; it is common to take among 10 to 100 symbols time. Different
copies of the same symbol will have independent fading.

Space diversity: The aim is to use multiple antennas to receive multiple copies of the transmitted signal.
The antenna should be spaced far enough with the goal that the different received copies of the signal have
independent fading. The space among antenna depends of local dispersion of the environment and the carrier
frequency. The space diversity can be in the transmitter known as multiple input single output (MISO), in the
receptor called single input multiple output (SIMO) and both, in the receiver and in the transmitter, known as
multiple input multiple output (MIMO).
The information taken to present diversity techniques was taken mainly from [124,145–147].
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3.3.3. Survey on IoT-LPWAN networks

In the following lines, some works are presented about IoT applications and about the use of LPWAN commu-
nications technologies. First, this section presents works with general features about these technologies, second,
it summarizes works with particular scenarios of its use; third, the selected works had as main objective the
transport of a considerable amount of information through the use of LPWAN networks, and finally, there are
some scenarios in order to transport images with the use of LPWAN networks.

In [10], authors simulate how to reduce the energy consumption of the sensor network during image transmission
with an energy efficient image compression scheme . The compression scheme works with compression standard
JPEG2000. The features were achieved using Discrete Wavelet Transform (DWT), and Embedded Block Coding
with Optimized Truncation (EBCOT). The image compression scheme is studied with image quality and energy
consumption.

In [72], the use of IoT hubs is presented to aggregate things using web protocols and suggest a staged approach
to interoperability in the context of a UK government project that involve 8 IoT sub-projects to address cross-
domain IoT interoperability. It introduces the Hypercat IoT catalogue specification, then, describes the tools
and techniques to adapt an existing data portal and an IoT platform to this specification and provides an IoT
hub focused on the highways industry, called Smart Streets. The main contribution of the paper is the effort in
order to create an inter operable global IoT ecosystem.

The authors in [26] give an overview into the technologies to support LoRa, and describes the outdoor setup with
the SX127x family of Semtech and the importance of transceiver generation that arrives with SDRs promising
significant benefits for range, robust performance and battery lifetime.

In [121], a proposal is described in order to tune IEEE 802.15.4 MAC parameters and the sampling frequency
of deployed sensor nodes with information about temperature, humidity and salinity for the control, due to the
variability in crops. Data acquisition and transmission are generally achieved with wireless sensor networks,
however, sensor nodes have limited resources, thus it is necessary to adapt the increase in sampling frequency
for different crops, under application constrains such as reliability, packet delay and lifetime duration. The
paper presents an analytical model of the network used to tune these trade-off parameters.

In [148], a solution is proposed for long range communications technologies through a tool that combines easily
of use of the peripheral system with the long range LoRa network to develop the first true plug and play
solution for a long range up to 3.5 kilometers in ad-hoc suburban deployments and multi-year battery lifetime.
A similar work is presented in [149], where the main objective was to create a scenario in order to test LoRaWAN
technology.

The work in [150] gives a perspective about the problem of energy consumption in mobile networks and proposes
a new and original wake-up mechanism for base stations based on LPWAN networks. The proposal aims to carry
out a complete shutdown of base stations during low traffic periods in order to reduce the radio access network
energy consumption. The wake-up process is managed by the core network through LPWAN for Internet of
Things applications.

In [25], a LoRa signal is decoded through the introduction of gr-lora, an open source software for the defined
implementation of the LoRa PHY, which establishes blocks through Python for implementing LoRa. The
authors guide their investigation thanks to Josh Blum [25] and a gr-lora out of tree module written in github
user rpp0 [27]. It implements a receiver in Python that uses a modified FM demodulation process, however,
the author has not been able to succesfully decode messages with it.
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In [151], a methodology is presented in order to transport images with Zigbee tecnhnology. It is composed of
4 stages. The first is the Zigbee data transmission, then, it goes to the ARM data transmission stage where
the configuration and communication of the information by serial port and its processing are carried out to
guarantee the integrity and security of data as well as precision in the transmission of information. The third
stage is data processing and, in the last stage, the image is saved and displayed. The image to be transmitted
is in standard jpg format, since it has a high compression ratio and high quality. During the image compression
process, the image is initially segmented into 8x8 pixel segments, then, the discrete cosine transform is applied, a
two-dimensionality AC and DC is produced and finally the AC is encoded with a code modulation of differential
pulse and length encoding is used to encode DC.

Authors in [152] study LoRa technology for IoT, providing an overview of LoRa and an analysis of its functional
components. The physical and data link layer performance is evaluated by field test and simulations. The study
in [153] focuses on transmission performance of LoRa technology and attempts to apply LoRa technology to
a sailing monitoring system. The experiments involve spreading factor and bandwidth parameters, mainly to
establish its influences on data transmission time and coverage. The measurements were conducted to analyze
the performance of coverage and packet loss rate in sea area. The results show that the system based on
LoRa technology can achieve the intended purpose of system design and meet the basic requirements of system
application.

IoT technologies are described in [87] including its relation to wireless sensor networks and its inter-operation
with LPWAN networks technologies, mainly through LoRaWAN solution. The paper proposes a congestion
classifier using logistic regression and modified adaptative data rate control. The proposed scheme controls the
data rate according to the congestion estimation.

Narrowband Internet of Things (NB-IoT) is presented in [129] as a new radio access technology standardized
by 3GPP for supporting IoT devices. It offers a range of flexible deployment options and provides improved
coverage and support for a massive number of devices within a cell. The paper provides a detailed evaluation of
the coverage performance of NB-IoT and shows that it achieves a coverage enhancement compared with other
LTE technologies.

work in [154] presents a comparison of the expected lifetime for IoT devices operating in several wireless
networks. IEEE 802.15.4, Bluetooth Low Energy (BLE), IEEE 802.11 power saving mode, IEEE 802.11ah,
LoRaWAN, and Sigfox technologies were used. In order to compare all technologies on an equal basis, the
authors developed an analyzer that computes the energy consumption for a given protocol based on the power
required in a given state: sleep, idle, Tx and Rx. The comparison shows that BLE offers the best lifetime for
all traffic intensities in its capacity range. LoRaWAN achieves long lifetimes behind 802.15.4 while Sigfox only
matches LoRaWAN for very small data sizes. In [27], it is possible to find a description of the LoRa PHY
layer and presents a methodology for detecting and decoding LoRa frames with the use of SDRs (USRP B210,
HackRF and RTL-SDR). For transmissions, commercial platforms were used (RN2483, HopeRF RFM96 and
Semtech SX1272).

System features are shown in [155] in a Raspberry Pi embedded system, a camera, and a motion sensor.
The operation consists in the recording of frames captured by the camera in real time of activity that the
motion sensor detects. Later, the information is processed in a Matlab and Simulink toolbox. The images are
transmitted to another host computer using a Wi-Fi transmission that operates at a frequency of 2.4 GHz.
When motion is detected, the image is captured with the camera and stored in the SD memory of a Raspberry
Pi board, and then the data is sent via Wi-Fi using the FTP transfer protocol. To access the images, the host
PC must be in the same IP protocol address range as the Raspberry Pi board i.e. the same local network.
The data transfer is performed with a SAMBA server, which allows file sharing between Linux and Windows
systems. This method uploads the images on this server and any device connected to this network can access
the images captured by the prototype. MATLAB is used to view the information and process the image on
the Host PC. With this system, images of 160x120 size are obtained at 3m distance without delay, while for a
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distance of 6 m there is a delay of 5 s to reach an image of size 340x240 and for a 640x480 image at 8 m a delay
of 39 seconds.

A wireless compressed image transmission system is shown in [156]. By performing image compression, it ensures
that the processing, transmission, and storage system is efficient compared with the system that performs
no image compression. The prototype hardware uses NI myRIO and the software for the system used is
Labview 2017. The wireless image transmission system uses Wi-Fi and the image compression method is the
discrete cosine transform implemented in an FPGA, managing to compress up to 44% and thus minimize data
transmission time and energy consumption. With this system it is possible to obtain 160x120 resolution images
with an original file size of 7.7 kb. When performing the compression algorithm, it is reduced to 4.47 kb. With
the 320x240 resolution image, the original image size is 38.6 kb and the size after compressing the image is
20.8 kb. Finally, the 640x480 resolution image had an original size of 127 kb and when compressing the image,
it shifts to a size of 69.2 kb. Authors in [157] provide a comprehensive survey on LoRa networks, including
technical challenges such as link coordination, resource allocation, reliable transmission and security. The paper
also includes recent solutions about these challenges. In [158], a remote image capture system was developed
for an application in lettuce crops. The system consists of several capture nodes and a local processing base
station, which includes image processing algorithms to obtain key features for decision-making in irrigation
and harvesting strategies. Placing multiple image capture nodes allows obtaining different observation zones
that are representative of the entire crop. The nodes were designed to have autonomous power supply and
wireless connection with the base station. The wireless connection was made using the ZigBee communication
architecture, supported by XBee hardware. The two main benefits of this choice are its low energy consumption
and the long range of the connection.

In [159], two coding methods are compared and the image transmission efficiency is measured using the LoRa
protocol. The prototype transmitter and receiver have Raspberry Pi 3B + cards equipped with Semtech sx1276
modules with a range of 1.5 km. Tests were carried out using an image with a resolution of 200x150 pixels, by
applying the two compression methods that resulted in the jpg and webp + base64 formats. In the results, it is
possible to observe that the LoRa image transmission with Webp plus Base64 encoding requires 25.7 s, which
is acceptable for practical application. This method apparently improves the transmission time, therefore, it is
feasible to develop a picture transfer using LoRa technology.

The work in [160] was performed in Colombia, where the transmission of wireless images in the municipality
of Covarach́ıa Colombia is proposed. The difficulties encountered in carrying out this transmission are distance
and obstacles between the crop and the nearest town. A review of technologies is carried out to identify the
most appropriate one in terms of cost, scope and ease of implementation, however, the authors only describe
some steps of its simulation and not its implementation in a real scenario.

Other works show different features of LPWAN, for example [93] and [161] describe a survey and analyze
LoRaWAN technology operation, focusing on performance evaluation of its channel access as the most crucial
component for massive machine type communication. Some other works provide applications, evaluations and
scenarios for the use for LPWAN and IoT technologies. The evaluations for LPWAN technologies are presented
in [26]. Particular evaluations for each technology (LoRaWAN and Sigfox, mainly) are presented in [135,138,141],
platforms over IPV6 in [139], applications of locations in [85], and networks planning services in [137]. In [162], a
novel chaining encryption method is proposed that can be used in any narrowband and lossy network including
LPWAN. The proposed method introduces a module named appropriate key [U+FB01]nder (AKF), which
assigns a dedicated key to each message using hash functions, Finally, tests of interference measurements in 868
MHz band with LoRa and Sigfox platforms are developed in [88]

Some other works in the literature describe techniques, methodologies or communication systems in order to
transport a high amount of information. It is possible to find optical communication systems such as [163–166],
and deep learning techniques in order to do more efficient a communications networks [167, 168]. Moreover,
there are documents that refer to spectral efficiency [169], multiple in multiple output MIMO [170], modulation
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scheme systems [171], Orthogonal Frequency-Division Multiple Access-OFDM systems [172], Wireless sensor
network WSN [173], Narrow Band IoT [174] and mechanisms to improve a high data rate [169,175]. All of the
above aim to enhance or increase the data rate in wireless systems, particularly some of them in applications
with LPWAN communications systems such as LoRa technology. Now, the next lines present methodologies in
order to transport images with the use of LPWAN networks.

3.4. Survey on LPWAN-based monitoring systems for images

Authors in [18] present a low-cost, low-power and long-range image sensor. The author uses Teensy 3.2 board
as the host micro-controller to drive the CMOS uCamII camera capable of providing JPEG bit stream. The
authors retrieve raw 128x128 (8 bits per pixel) grey scale images, then, image compression is operated on the
board. The author uses an encoding scheme proposed in [16] with the following features: (i) image compression
must be carried out by independent block coding in order to ensure that data packets correctly received at
the sink are always decodable and (ii) de-correlation of neighboring blocks must be performed prior to packet
transmission by appropriate interleaving methods in order to ensure that error concealment algorithms can
be efficiently processed on the received data. The proposal presented in [16] uses Discrete Cosine Transform
for image compression. The result of this compression scheme is a JPEG-like coder and operates on 8x8
pixel blocks with advanced optimizations on data computation to keep the computational overhead low. An
optimized block interleaving method is presented in [15], which proposes a pixel interleaving scheme based on
Torus Automorphisms. Data are transmitted in different packets and some of them can get lost, then, the
interleaving scheme has a high probability of retrieving enough information to obtain an approximation of the
original value without affecting the energy consumption, time of use or complexity of the process. It is worth
mentioning that the reconstruction image quality is acceptable until 80%. For transport, the data connects
with LoRa module (inAir9 from Modtronix) built upon Semtech’s LoRa SX1276 chip. In the transmission test,
an image needs between 8 and 10 packets. The system operates in a range of 1800 meters without packet loss.
Data presented in the paper leave some considerations, at least 50% of the original information is necessary
to recover the information without considerable losses, DCT transform gives entire, decimal and in some cases
with negative values, in this way, the paper provides no scheme of code implemented for the information in
LoRa symbols.

The results of images and voice transmission by LoRa are depicted in [11] through the use of image compression
with JPEG/JPEG2000. For voice compression, the A-law method was used. In the setup configuration about
transmission, it is possible to find around 700 packets in order to be sent per each image, which needs around
576 mS. In other words, one image needs around 6.72 minutes in order to be sent without duty cycle politics.
A method is proposed in [23] for monitoring with the use of image sensor data over LoRa physical layer. The
authors have proposed a scheme for overcoming the bandwidth limitation on LoRa. The images are encrypted
as hexadecimal data and then split into packets to transfer. The transmission node consists of a LoRa Arduino
shield that comprises of an RN2903 transceiver stacked on an Arduino mega microprocessor. An Adafruit TTL
serial JPEG camera was used for capturing images connected to the Arduino board. The receiver node is similarl
as it consists of a LoRa RN2903 module. The experimental setup is the following: the TTL camera captures
a JPEG image, then, the Arduino MEGA microprocessor saves the data into the SD memory and converts
these data into a hexadecimal format. The hexadecimal data are transfered to the receiver node via LoRa. The
data are split into packets to enable transmission. Once all these packets are received, they are sent by the
Arduino processor to a personal computer, where they are reassembled and displayed using Matlab code. Also
the document describes LoRa physical layer settings and the metrics of evaluation such as PSNR. Within the
results, it is possible to find the features with different SFs and at different distances. In summary, with SF=7
is possible to use a minor time in the processes of transmission and reception, thus the number of transmitted
packets was 314 and the elapsed time was 67 seconds. On the other hand, the number of transmitted images
was 21 out of which 12 were successful and 9 were unsuccessful. Nevertheless, the data presented leave some
questions: Which was the images size? Was the duty cycle considered at the submitted shipping times? How
was the convertion among hexadecimal values and SF values (7-12) to generate LoRa symbols ?
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Authors in [19] present two control mechanisms to enable the deployment of image sensor devices through LoRa
technology. In i mechanism, an adapted CSMA avoids costly packet collision and packet losses, while in ii an
activity time sharing mitigates the issue of duty-cycle. In the document, a quality factor of 10 is used as it
offers a high trade off between image size and visual quality. If it uses a quality factor of 10, an image size
of 900-1200 bytes is obtained and can be packed in 5 LoRa packets. The application transmits images when
significant changes occur in the image (event detection scenario). The data presented in the paper leave some
considerations: CSMA avoids packet losses but it does not increase the capacity to transmit more data; activity
time sharing allows transporting more information for relieving the effect of consequent regulations with duty
cycle. Nevertheless it is a mechanism that needs the register of the other devices. Its implementation needs
a scenario where the devices are deployed by a single organization, which increases in devices that entail high
expenses in resources.

The work in [14] describes a proposal of low power wide area network protocol, which combines LoRa modu-
lation technique with embedded microprocessor technology. The proposal network is composed of three LoRa
modules that provide three physical channels. Camera node allows bidirectional communications. Each uplink
transmission is followed by two short downlink receiving windows. When the camera node needs to upload
the data, it randomly selects a channel to execute channel activity detection. If the channel is occupied, the
node randomly withdraws and remains off for a period of time for the next data deliver. If the channel is not
occupied, the node can transmit to the gateway by LoRa modulation. In conclusion, the proposal gives only a
theoretical analysis for the wireless visual sensor with the use of Lora modulation technology but this was not
tested in real implementation.

Authors in [176] propose a new reliable delivery protocol, Multi-Packet LoRa (MPLR), for transmission of large
messages, such as images, in LoRa networks. The proposed protocol is implemented and evaluated using a
LoRa testbed network. In point-to-point experiments with a single sender/receiver pair, MPLR reduced image
transmission time by an average of 24% in scenarios with no packet loss, and by averages of 30%, 42%, and
49% in scenarios with 2%, 5%, and 10% loss rate, respectively. When multiple LoRa nodes send images to a
single gateway, high channel utilization and an unacceptable collision probability can be experienced with the
standard LoRa MAC ALOHA protocol. In experiments with between 5 and 20 nodes, MPLR in conjunction
with a channel reservation protocol can successfully send more images and reduce the maximum successful image
transmission time between 2 and 7 times, compared with stop-and-wait packet transmission with ALOHA.

A novel system is introduced in [177] to transmit continuous images taken from a camera on a static environment
through LoRa. The key challenge is to reduce the amount of transmitted data, while preserving the image
quality and the quality of service delivered to the application. We developed a technique that splits image
into grid patches, and transmits only the modified area of an image based on their dissimilarity measure. We
implemented and evaluated our scheme on a real LoRa device to show its performance and image quality. The
node is implemented by connecting Raspberry Pi, data comprises a Pi Camera 2 and Arduino Uno with LoRa
shield. The node captures an image, divides the image into patches, and then applies the change detection
algorithm between the patches from the previously taken image. It detects the distinct patches and finally
sends patches by using LoRa modulation.

In [159], a system of LoRa based time division multiplexing (TDM) was proposed for transmission images
between sensor nodes and gateway. The LoRa image transmission system is divided into three parts: the three
image capturing sensor nodes, gateway and server. The three image sensor nodes use the Raspberry Pi as the
platform and are responsible for capturing images as well as transmitting the JPEG compression images to the
gateway, which also used the Raspberry Pi as the platform to decode the image pixel data transmitted from
the sensor nodes and combined the image pixel values to restore the image. Finally, the restored image was
transmitted to the server by Internet. In addition, broadcasting the timing from gateway to the three sensor
nodes achieves the synchronization mechanism of the time division multiplexing. The experimental results
showed that the single image of 200×150 pixels can be transmitted by LoRa in about 1 minute for a distance
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of 2 km. By the times of division multiplexing technology, we can simultaneously transmit three images and
monitor three environmental states in the experiment. The transmitted image was divided into 85 packets. The
experimental hardware uses Semtech sx1276 single channel chip as the transceiver module and a Raspberry Pi
3 as the processing platform for transmission and reception. In conclusion, the fastest transmitting time was
54 seconds (SF=7 and BW = 500kHz).

In [178] is presented a study on the potential use of the Lora Ra-02 Module for low-speed image transfer
applications was conducted. Transfer Time for RGB Image 480 x 640. It can be concluded that the maximum
range setting will result in the fastest transmission time of 858 minutes for one image. This time value is
not appropriate for image submission except for special applications that only need to send one image per
day. The implementation consists of a node and a gateway. The node consists of a camera, Raspberry Pi
as a data processor, ATMEGA328 as power management and supervisory devices, LoRa Ra-02 as a wireless
communication device and RTC as a determinant of data retrieval and delivery time according to schedule. The
gateway consists of the LoRa Ra-02 module, raspberry pi as a data processor, and a display as a data viewer.

The work in [179] aims to review the available methods applied to transfer images via LoRa infrastructure,
for the first time in the literature. The limitations of each method are pointed out and the challenges that
need to be managed in the future are also defined toward establishing a reliable image transfer over a LoRa
network. A review of the LoRa approaches towards transmitting visual data was presented. Some of them use
new protocols in order to alleviate the low data rate that LoRa has, while others use the physical layer in order
to overcome the packet collision problem and few methods deal with the compact image representation. In the
Table 6 presents a summary of the methods in order to transport a high amount of information (mainly images)
in LPWAN networks. .

Table 6. Image transmission with LPWAN networks

Reference Method
Transmission time

(one image)
(min)

Packets
number

Image Compression
method

Pham, 2016
Image compression

Discrete Cosine Transform
- 8-10 JPEG

Kirichek et al., 2017 Fragmentation data 6 700 JPEG/JPEG2000
Jebril et al. , 2018 Data encrypted hexadecimal 1.1 314 JPEG
Pham, 2018 CSMA (avoid collisions) - 5 JPEG
Fan & Ding, 2018 Multiple out single in - - -
Chen et al. , 2019 MPLR protocol Tx/Rx 0.3 - -

Ji et al. , 2019
Image processing

(Only transmits data with change)
- - -

Wei et al. , 2020 Time Division Multiplexing 1 85 JPEG
Juliando et al. , 2021 858
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using Images through LPWAN network

To transport an image through LPWAN network, it is necessary to reduce the amount of information, and
implement a classification method of the images to find abnormal samples. When an abnormal sample is
presented, it is compressed and then, it is adapted for transmission. For the purpose of this work, the method
aims to reduce the information not to transmit the normal samples, which allows reducing the amount of
information in the wireless communication network. The compressed data are transformed into LoRa symbols,
then, they are delivered to a SDR platform to transmit them. In the receiver, another SDR platform receives
the signal and it is delivered to decode the LoRa symbols, to perform the process of reconstruction and display
of the image.

4.1. Image processing and classification

It is important to remember that the use of images correspond to a controlled capture. The problems of
capturing images directly from crop were incidences of the sun, the shadow, the angle of capture and more are
consequent and inherent to image processing. Therefore, each leaf was captured with a white background with
the aim to facilitate classification process.

In this subsection, processing and classification techniques were supported on this document. Features and
attributes extraction process in images were performed with reviewed methods such as: vector extraction of
RGB components, L-a-b, hue, brightness and intensity components. With these features, K-means clustering
classification was built as shown in figure 4-1. A neuronal network was implemented as shown in figure 4-2.
The results achieved were close to 75% with clustering K-means and Neuronal network tools. In appendix A
is possible to find the codes of K-means and neuronal network tools that were used. Appendix A contains the
codes of K-means and neuronal network tools that were used.
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Figure 4-1.: K-means grouping
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Figure 4-2.: Neuronal network

On the other hand, Deep Learning was used to detect the samples. In the first moment, the samples were
applied in already trained networks such as ResNet or GoogLeNet without obtaining good results in the classi-
fication process. In the second moment, the option of transferring learning to a previously trained network was
explored, but the processing and the amount of information increased. Finally, a structure of a convolutional
neural network without data was used, and the training was performed with normal and abnormal leaf samples,
therefore, the samples were labeled in two classes:

1 = presence of abnormal sample (sick).

0 = presence of normal sample.

The methodology to solution is presented in the followed lines. First, the images were captured in a controlled
environment. The samples are divided and a label is given to them with normal and abnormal features. Then,
they are delivered through Matlab to train the convolutional neuronal network until reaching good values
of training and validation. When acceptable values are reached in the training process, then, the trained
network is saved. Second, it is done classification test with different samples with the goal to obtain an optimal
classification. The evaluation of the performance of the trained network is evaluated by comparing the previous
label of the samples and the labels delivered by the network. In the future, it is important to increase the
number of the samples for training a network with a higher level of precision.

The framework of classification employed in this work is shown in 4-3.
The information data of the training process can be observed in figure 4-4
Deep Learning codes are presented in appendix A. The results show that the precision is near to 90%, however,
it is necessary to increase the number of samples in order to improve the classification process.
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Figure 4-3.: Framework of classification

Figure 4-4.: CNN training process
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4.2. Compression technique and reconstruction algorithms

The present section describes the compression technique used.

An image in gray scale has the goal of achieve a high compression of its information. The model uses the
information of a matrix n × n of the image, then, the matrix is converted in a vector of N × 1; that allows
adapting the information to exploit its features in compression and recovery of information.

The vector is processed until reaching a sparse signal, which represents a signal with components that has
samples equals to zero. For example, when considering a signal that has n samples and m samples different
from zero (where m << n), the signal is m-sparse and it is considered a signal with high sparsity because a
high number of samples are zero.

The sparsity in images helps to reduce the amount of information to transport, its processing time, bandwidth
uses, energy consumption and benefits the use of spectrum. If we have a signal with 2048 samples and 80
of them are different from zero, the signal is 80-sparse equal to a signal with high sparsity. If it is taken
from 2048 original samples, only 512 through the use of compression technique, this represents a compression
factor equal to 4. With this data, compression can recover the original data with low losses through recov-
ery algorithms such as “IterativeHardThresholding (IHT), “OrthogonalMatchingPursuit” (OMP), “GradientP
rojectionforSparseReconstruction” (GPSR) or “Two − stepIterativeShrinkage/Thresholding” (Twist).

When more samples of the original data are used (a low compression), more precision and quality are reachable
in the reconstruction process, however, more resources are necessary to processing. The goal was to design a
system that can be adjusted for our needs and to possibility of transfer images through LPWAN network.
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Figure 4-5.: PSNR values vs sparsity percentage

In the processing of images, the sparsity was evaluated with the Wavelet, Kronecker and Discrete Cosine
transforms with the aim to find a common base that allows improving the reduction of information. Figure
4-5 shows the Peak Signal-to-Noise Ratio (PSNR) values versus sparsity percentage. When the sparcification
percentage increases, the wavelet transform achieves the best results of PSNR. Now, 4-6 shows the coefficients
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of the transforms among DCT transform, Wavelet Transform and Kronecker Transform. Wavelet transform
is the best because the values have a minimum variance, which entails that a high number of samples will be
sparse and better results can be obtained in the compression technique.

Figure 4-6.: Coefficients distribution

4.2.1. Performance Comparison of Reconstruction Algorithms

This part of the document describes the reconstruction algorithms for sparse signals considered in the research.
Reconstruction techniques are tools to build the signal with a few samples of its original signal. These few
samples are at a resultant vector of the compression technique process. Reconstruction techniques are specialized
mathematical algorithms. The tools considered were evaluated and compared to find the best solution in the
data of images.

For the reconstruction process, each algorithm to be implemented was taken. The inputs were the sparse vector
signals and the sample matrix. Other factors were implemented in particular for each algorithm. The outputs
were a relation between the rebuilt signal and the original signal given by PSNR and the number of rebuilt
samples (M). The outcome is depicted in the figure 4-7. The outcome of the evaluation shows that the Twist
algorithm reaches the best reconstruction index regarding M. The codes of this subsection are presented in
appendix A.
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Figure 4-7.: Reconstruction algorithms evaluation
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4.3. LoRa modulation to transport data

The present section describes the method implemented to transport information between transmitter and re-
ceiver with the use of LoRa modulation and SDR cards.

4.3.1. LoRa symbols creation

Matlab software was used to make LoRa symbols. For this purpose, it is necessary to synchronize and know
the beginning and end of the synchronization signal. For this reason, 10 symbols (up-chirps) of preamble were
created and 2 of synchronization (down-chirps), here in after referred to as, start data symbols. It is important
to remember that any symbol (preamble, synchronization or data) has the same symbol time consequent with
the value of SF. Then, information data (preamble, synchronization or raw data) is converted to a LoRa symbol
through a mathematical model.

To create a chirp with features of real data (SF, BW, symbol time, among others) in LoRa PHY modulation,
it is necessary to setup real values. LoRa symbols of an up-chirp, a down-chirp and a data symbol are shown
in figure 4-8 created with SF = 8 BW = 500kHz. Similarly, Tx spectrogram of a LoRa packet is shown in
figure 4-9, where 10 up-chirp symbols are used as the preamble packet, 2 down-chirps symbols are used for
synchronization purposes and the last is a sample of data symbols.
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Figure 4-8.: Transmitted signals: (a) up-chirp, (b) down-chirp and (c) data.
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Figure 4-9.: Tx spectogram

In the following lines, a pseudo code of LoRa symbols creation is explained.

Input: SDR connected, Matlab Software
Output: Data synchronization

Initialisation :
1: first statement

LOOP Process
2: if (synchronization) then
3: To create LoRa symbols
4: else

to check communication between SDR and laptop
5: end if
6: if (synchronization then
7: Create 10 symbols of up-chirp and 2 symbols of down-chirp
8: Set up comm.SDRuTransmitter and comm.SDRuReceiver objects from Matlab
9: To setup SF, BW and Ts

10: end if
11: return
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4.3.2. Transmission and Reception of LoRa symbols

For transmission and reception of LoRa signals, Matlab software was used and a USRP’s - NI 2920. In the
transmission process, a SDR was set up knowing the frequency and master clock rate of its operation. With this
information, it is necessary to verify that the card is recognized by the software. For this reason, it is important
to connect SDR with a laptop through fast Ethernet interface, then, it is configured with an IP address protocol.

IP Address = 192.168.10.10

Mask = 255.255.255.0

Gateway = 192.168.10.2

Afterward, it is verified in Matlab that SDR is recognized through ′findsdru′ command. When the card is
’success’ status, then, it is available to use.

Now, it is important to setup values such as Frequency, Bandwidth, Gain and interpolation factor, mainly to
use the card through ′comm.SDRuTransmitter′ object. In our case, we set values to transport data to 500kHz
of bandwidth operation consequent with the value of master clock rate through feature of interpolation factor.
To synchronize values of transmission and reception, it is necessary to perform several tests with the goal to
find a synchronization time between SDRs. When features of communication are set between transmitter and
receiver, it is possible to find two laptops independent of processing (figure 4-10). These independent process
needs to find a fixed time to know the moment when the transmission begins and the exact moment to begin the
reception. In each implementation, the features of the devices must be known and the test must be performed
with the goal to find time synchronization between devices.

Figure 4-10.: Network infrastructure

With the ′comm.SDRuTransmitter′ object, it is possible to set a column vector or matrix input signal from
MATLAB and transmit the signal and control data to a USRP board using the Universal Hardware Driver
(UHD). In the receiver, it is necessary to find the SDR that it is connected to the receiver laptop. Figure 4-10,
shows the network infrastructure of the test-bed. To find the SDR in the receiver, it is necessary to follow
the same process as in the transmitter (IP address 192.168.10.30 and ′findsdru′ command). Then, in the
receiver radio, it is necessary to adjust some specific features through Matlab interface, such as center frequency
operation, gain, number of samples and decimation factor value. These values are necessary for the spectrum
range to work. In our case, it was necessary to use a decimation factor that allows taking 2MHz of spectrum
about central operation frequency with the aim to sweep the BW that was used in the transmitter (500kHz).
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After setting up the values in the receiver, it is necessary to use comm.SDRuReceiverobject with the features
described. This object receives signal and control data from a USRP board using UHD, and its outputs as a
column vector or matrix signal of a fixed number of rows. The first call to this object might contain transient
values, which can result in packets containing undefined data. The object allows using the step command to
receive the signal. The received signal is stored with the goal to analyze it and decode it later. Then, it is
necessary to restart the radio features with a releasecommand for future receptions. In the following lines,
transmission and reception of LoRa symbols are explained.

Input: SDR connected, Matlab Software
Output: LoRa symbols Tx-Rx

initialization :
1: first statement

LOOP Process
2: if (Are Matlab and SDR connected ?) then
3: Set up frequency and master clock rate consequent with BW to use
4: else

Check connection between PC and SDR
5: end if
6: if Are Matlab and SDR connected ? then
7: Set up Gain and interpolation factor features
8: Set up synchronization time between SDR’s of transmission and reception
9: Set up comm.SDRuTransmitter and comm.SDRuReceiver objects from Matlab ThenTo restart the radio

10: end if
11: return

The received chirps are presented in figure 4-11 and the received spectrogram is presented in figure 4-12.
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Figure 4-11.: Received signal: (a) up-chirp, (b) down-chirp and (c) data.

Figure 4-12.: Spectrogram Rx
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4.3.3. Signal processing and decoding

The aim is to show the methodological process to find the data in the stored vector that was received. In this
case, it is worth considering that there is a ratio between sampling frequency in the receiver and in the LoRa
bandwidth that was transmitted, which has a value of 4

2 MHz

500 kHz
= 4

Therefore, a sweep is made from the beginning of the received vector until the end. Here, the first symbols are
considered, i.e. 10 of preamble and 2 of synchronization. These first symbols are necessary to find the LoRa
information in the signal that was received from the spectrum.

To decoding the data, it is necessary to create conjugate symbols in the receiver LoRa PHY with the same
features as in the transmitter, therefore, the same values of SF and BW must be kept. Then, the received signal
is multiplied with the conjugate symbols and the result is operated using FFT. The high peak in the signal
must be found, thus next 2 LoRa symbols time of the high peak, the signal is multiplied with the reverse LoRa
signal. In our case, the transmitter data signal was created with up-chirp LoRa PHY symbols, therefore, our
reverse LoRa PHY signal in the receiver was a down-chirp LoRa symbol. the next step used FFT transform
with the result receivedLoRasymbols×reversesignal. Then, the high value peak in the FFT inside 1Ts can be
found and corresponds to the data received. It is necessary to know how much data were transmitted, thus, the
process is repeated the number of times needed. It is important to have in mind the number of Lora symbols
with data, so that, the process is repeated only the necessary times.

Figure 4-13 shows a real component of signal with 10 preambles symbols, then, 2 synchronization symbols, and
at the end, the first samples of the data. The high peak allows finding the end of the preamble and the beginning
of the synchronization symbols. After 2 synchronization symbols (2Ts), it is possible to find the beginning of
the data.
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Figure 4-13.: Real component of the received signal

4.3.4. Transmission and Reception of images through LoRa symbols

The first step is to follow the methodology that was proposed in this document, then, a classification process
is performed with the aim to choose only the abnormal samples, which will be transmitted. Then, after
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classification process and taking the images with abnormal samples, the images are compressed with the aim
to reduce the amount of information and use it in the wireless LPWAN network.

With the results of the compression technique over information, it is possible to obtain a sparse vector with
decimal and negative numbers. For the above, it is necessary to analyze and find a way to adapt the information
because LoRa technology only allows transporting integer values within a range according to a spreading factor
(SF). To use LoRa modulation technique, the sparse vector information must be converted to data supported
in LoRa symbols. For this reason, the sparse vector is encoded. With the goal to find an easy way to encode
the information, in this work an encoding and decoding process was implemented with a structure of 8 bits (1
byte) as a base.

To transmit and receive LoRa symbols, SDRs of National Instruments - reference 2920 was used through Matlab.
The main technical features configured are: SF equal to 8, bandwith (BW) of 500 kHz and sampling frequency
in the transmitter with interpolation factor value to reach BW and with decimation factor in the receiver to
reach enough BW to sweep the value that was setup in the transmitter. Some features to consider:

To do LoRa symbols from the encoding of the data, Matlab software was used.

In the transmission process, a SDR was configured knowing the frequency and the value of the master
clock rate of it operation.

Values of the SDR card are configured to be used with ′comm.SDRuTransmitter′ object in Matlab
through the Universal Hardware Driver (UHD).

In the receiver radio, some specific features have to be adjusted through Matlab interface, such as center
frequency operation, gain, number of samples and decimation factor value. These value must be used with the
spectrum range to work. In our case, a decimation factor was needed to allow taking 2 MHz of spectrum about
central operation frequency with the aim to sweep the BW that was used in the transmitter (500 kHz). After to
setting the values in the receiver, comm.SDRuReceiver object is used through Matlab and UHD. This object
allows applying the step command to receive the signal. The received signal is stored with the goal to analyze
it and decode it later, then, the radio features are restarted with release for future receptions.

To transport images through LoRa PHY modulation, the framework presented in figure 4-14 was implemented.
It is important to remember that in order to process the image, first, its matrix is considered:

nxn [rows]x[columns]

and it s converted to a vector, which has a Nx1 size, where N is equal to nxn .
To use the best solution of compression, Wavelet Transform is applied in the vector to have its samples in a
common domain and reduce the deviation of the data values. A k-disperse signal f ∈ RN is sampled with
compression to obtain a g ∈ RM signal, where M << N . The sampling can be represented in matrix form as
g = f y ∈ RMxN , it is called system sampling matrix and, in this document, it was called sparse signal.

The values of the sparse signal have integer, decimal and some negative components. It is important to obtain
the value of the position of these values with the objective of to transmit only those different to zero inside the
sparse vector. The method implemented consisted in converting every component (integer, decimal, negative
values and positions), to a byte representation, then, in the reception, decode every byte and rebuild the
original data. Every byte representation created with an encode process has a size of 8 (bits). This value allows
implementing a LoRa symbol with a spreading factor of the same length (SF=8).

In order to create a LoRa symbol, data was encoded into a structure of 8 bits (1 byte), which allows using LoRa
modulation with SF=8. Each encode data has a value from 0 to 255 and these values represent the components
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4.3 LoRa modulation to transport data

Figure 4-14.: Framework implemented to transmit and receive LoRa symbols

of the integer, decimal and negative values of the sparse signal. Every symbol was created in Matlab through
a mathematical model presented in [180] and in 4-1.

Scss(t) = e(j2π
t2

2
BW
Ts

) (4-1)

To transmission and reception of LoRa symbols, the process described in 4.3.2 was followed.

Additionally, in order to decode the information and find its original values (Wavelet Transform representation),
a program was created that converts the received data (LoRa symbols) to its base representation again.

Now, image recovery has to be made to rebuild it, therefore, data decoding allows finding a vector with a
similar length to that of the transmitted data. These data contain information about values of output of
Wavelet Transform, positions and negative values. Once rebuilt the vector with their features, the reconstruction
algorithm is used with the sparse signal representation to recover the samples of the original signal and, with this
output, Wavelet Inverse Transform is applied to recover the original vector of information. Now, it is necessary
to adjust the original size of matrix M ×N and screen the image. To test the original image transmitted with
the one received, it is possible to use in Matlab the command PSNR, which calculates the peak signal to noise
ratio for the image reconstructed and the image in array of reference (original image).
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PSNR is usually expressed in logarithmic scale, thus the typical values of PSNR with non-significative loss are
among 30 and 50 dB [181,182] , where a high value is better. However, in wireless communication systems, the
acceptable quality loss is considered from 20 to 25 dB [153,183]. If the image under analysis is the same as the
reference, the PSNR is infinite [43].

Inside results, the experiments were setup to find the difference among the change of the sparse signal. On the
one hand, figure 4-15 shows a sample of the original and reconstructed images with a sparsity of 90%, where
the PSNR value is 30.02 dB. On the other hand, figure 4-16 presents a sample of the original and reconstructed
images with a sparsity of 95%, where the PSNR value is 26.81 dB.

Figure 4-15.: (a) Original image, and (b) reconstructed image with 90% of sparsity
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Figure 4-16.: (a) Original image, and (b) reconstructed image with 95% of sparsity

The results proposes a potential solution to transmit images through LPWAN networks. Applications where
the high quality of the reconstructed image is necessary can be easy and functionally adapted. For example,
in our case, we applied the solution in a image that allows understanding if a leaf of potato has or not some
disease or if it is attacked by any plague. This case is shown in figures 4-15 and 4-16 where a change in its
representation is observed. This feature allows identifying the presence of a disease in the plant. The codes
developed can be found in appendix A.
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4.4. Study of Diversity in order to improve the data transmission in a
LoRaWAN network

In order to observe the behavior between SISO or MIMO systems and to improve the data transmission, this
work entails the follow considerations:

i. With the compression technique, it is possible to reduce an image in 4 packets: 3 of 1450 and 1 of 564,
all of them in bytes (4914 bytes by one image).

ii. For one image and consequent with table 1.2, the best scenario in data transmission is when LoRa
modulation system works with SF=7 and BW = 500 kHz, thus the bit rate is equal to 27.343 Kbit/s.
Nevertheless, by coding process, it has worked with SF=8, then, the data rate is 15.625 Kbit/s, hence
equation 3-12 expresses the symbol time equal to 512 µS. If it is necessary to transmit 4914 symbols per
image with SF=8 and BW= 500 kHz, then, the data transmission time is 2.51 seconds. In this scenario,
it is necessary to transmit 4 packets in the same SF=8.

iii. Now, in the second moment, the use of different SF value was calculated to work with SF equal to
SF8, SF9, SF10 and SF11. As 4 packets were transported, it was necessary to analyze the behavior using
4 SF values in order to work with a diversity method, where a system was constructed with 4 transmitters
and 4 receivers. Table 1.2 and equation 3-12 show that SF8 take 512µS by each packet, SF9 takes 1024µS,
SF10 takes 2048µS, SF11 takes 4096µS. As in the data transmission packet, then, the image has 4 packets,
3 of 1450 and 1 of 564 bytes. This information is listed in Table 7.

Table 7.

Spreading Factor
(SF)

Symbol Time
(Ts in µS)

Packets number
Total time
(Seconds)

8 512 1450 0.7424
9 1024 1450 1.4848
10 2048 1450 2.9696
11 4096 564 2.31

Consequently, the packet with a high value in transmission time is the one in SF=10, as the transmission packets
in SF8, SF9, SF10 and SF11 are transmitted at the same time. Then, the maximum time is when the last packet
arrives to the receiver, and the image is transmitted in 2.96 seconds.
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iv. If we analyze the last points (ii, iii), two scenarios can be compared:

First, 1 transmitter and 1 receiver use 4 packets in order to transmit 1 image inside a SF8 and take 2.51 seconds.

Second, 4 transmitters and 1 receiver transmit the same image inside SF8, SF9, SF10 and SF11 and take 2.96
seconds.

As a result, it is better to use the first scenario, because it takes less time (2.51 seconds vs. 2.96 seconds) and
less resources use such as energy consumption, devices, cost, infrastructure, frequency use, among others.

On the other hand, it was necessary to analyze the potential interference when the same frequencies are used
with different SFs in the same time, thus, in the literature the review of orthogonality in this case can be
found in the literature [89, 118, 184–187]. After a literature review, we use “LoRa phy simulator”; which is a
simulator tool for testing the performance of a LoRa link in case of collision within a LoRa packet modulated
with different SFs. The output is the packet, symbol and bit error rate (PER, SER and BER, respectively). It
also shows the interference of a particular SF with another possible SFs [184].

In 4-17 the values of the relation of SF = 8 can be identified with the others SFs(7,9,10,11,12). The bit error
rate decreases when the SIR (Signal Interference Ratio)is near to 0 dB, while the other SFs is near to -15 dB,
which shows a high relation value between a signal power with signal interference power. Nevertheless, for our
purpose, to tune a particular SF between transmitter and receiver, the power signal of the others SFs is not
relevant even when all of them use the same bandwith and the same frequencies range. All of the above is
supported on the literature [89,118,184–187].
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Figure 4-17.: Interference on spreading factor equal to 8
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4 Evaluation of Agricultural Monitoring System using Images through LPWAN network

In order to understand the relation between the signal interference ratio present in figure 4-17, it is important
to observe the relation between the signal of the particular SF and the interference of the other SFs. Therefore,
in equation 4-2 expresses this relation.

SIR = 10log10
Ps

(
∑N

n=1 Pi)
(4-2)

where Ps is the signal power of the SF of our interest and Pi is the total interference of the other sources, in
particular of the other signals with different SFs. Now, in general terms the relation among packet, symbol and
bit error rate (PER, SER and BER, respectively), can be found in 4-18.
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Figure 4-18.: Relation among packet, symbol and bit error rate

The relation of packet, symbol and bit error rate in terms of interference is similar to the SIR. Nevertheless,
for this relation, there is an additional feature, i.e. a noise feature. Therefore, a SINR factor can be found with
relation to the Signal Interference Noise Ratio, where additional interference sources of the others signals can
be found too. Equation 4-3 expresses this relation.

SINR =
SignalPower

Noise+ InterferencePower
(4-3)

In relation to the information present in 4-18, when the signal power is high with respect to signal power
interference, the values of Packet, Symbol and Bit error decrease considerably. It is important to design systems
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4.4 Study of Diversity in order to improve the data transmission in a LoRaWAN network

with consideration of the lower interference and, in the case of LoRaWAN, there is a minimum probability of
finding interference, when our designs have the different SFs in the same BW and in the same frequencies.
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5. Conclusions

This final chapter presents the main conclusions of our work. Internet of things allows connecting physical
devices with digital environments, and within IoT it is possible to find LPWAN networks that are used to send
or receive short messages in short moments. Providers with licensed spectrum can allocate spectrum resources to
IoT without restrictions. On the other hand, for LPWAN networks in unlicensed bands, the efficiency decreases
and the noise floor increases, which can be mitigated by adding more gateways. Critical applications should not
use unlicensed technologies, in fact the service should be provided by a network operator in licensed spectrum
with the goal to reach trust in its operation. LPWAN networks in unlicensed spectrum frequency need to
implement efficiency measures of use and interference reduction politicies. In this way, LPWAN networks have
low power consumption, long-distance coverage and a low capacity to transport information, which is a problem
when high amount of information needs to be transported. Hence, we addressed the proposal of a methodology
to transport agricultural images under a LPWAN network, mainly through LoRa modulation technology. For
this purpose, within the proposal methodology we present a framework with three main components. The
first one is the classification of an image with the goal to separate normal or abnormal samples, thus, it
is not necessary to transport all images, only, those with abnormal features that allow identifying that the
plant has a high probability of having a disease. This allows optimizing the use of a communication channel
through LPWAN network. The second component is compression of abnormal samples whose main goal is
to reduce the amount of information, so that it is more efficient with the use of resources of channel, energy
consumption and the time to transport a sample. The third one is the LPWAN network with the goal to know
the technology and hence be able to replicate it in a SDRs that allow finding improvements and transporting
images with it. We found in the state of the art some works that search how to transport real time data or high
amounts of information through wireless sensor networks, then, some critical points should be considered such as
restricted computational power, memory limitations, narrow bandwidth and energy consumption, mainly. Some
works proposed image transmission over LPWAN networks, nevertheless, some of them only reach a theoretical
analysis without implementation. In the other case, information is scarce about implementation process and to
the best of our knowledge, there is no a study for testing the implementation of a LPWAN network through
implementation of LoRa modulation technology with SDRs and Matlab in the transmitter and in the receiver.

We describe the contributions of the proposal method. We found in the state of the art some methods to
transport images with LoRa modulation technology, nevertheless, information about this works is scarce and
to the best of our knowledge there is no implementation of LoRa modulation technology with open platforms
and Matlab in the transmitter and the receiver. We present a method to transport images with a LPWAN
network, and an implementation in SDRs that allows considering and testing in the future improvements in the
technology. Our principal contribution is the proposal of a framework, which creates a method to transport
images through the use of a LPWAN network.

In summary, the main contributions are:

A methodology to transmit images of agricultural crops showing disease features through LPWAN net-
works with the use of LoRa modulation technology. Only images with abnormal visual features will
be transmitted, which entails an optimization process that allows reducing the amount of information
to transport, because it is not necessary to load a limited resource through the transmission of normal
samples where there are integrated features as energy consumption and use of spectrum, mainly.
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5.1 Future work

Implementation of the LoRa modulation system in SDRs transmitter and receiver to know the features
of the modulation technique and thus understand its potential for improvement, particularly in a method
that allows increasing its capacity of data transport.

A method was evaluated to identify the considerations to use a method for evaluating a SISO or MIMO system
to improve the time in transport images with LoRa modulation. In the test, it was possible to observe that one
transmitter and with one receiver are enough to transport an image that was considered in this research.

This research has proposed a method to transport images through LPWAN networks using LoRa modulation.
The proposal is composed of classification process, compressive sensing technique, LoRa symbols creation,
transmission and reception of symbols through SDRs with Matlab and image reconstruction in the receiver.
With the use of frequency hopping, the time necessary could reach 400ms to transmit an image of 128 x 128
size. Also, the implementation was possible through the use of SDRs in the receiver and the transmitter, which
involves the creation of the LoRa symbols and setup the features to deliver it to the SDR.

5.1. Future work

In order to improve the method that was presented in this research, we recommended:

- Actually, in the literature there are many methods in order to classify samples and in particular with
application in agricultural crops; therefore, it is necessary to evaluate more methods of classification of
the samples. Particularly, with applications in capturing a sample or an image in the crop.

- To evaluate methods in order to improve the reduction of amount of information in an image and the
consequent reconstruction process.

- To perform tests with implementation of LoRa modulation in order to know features that allow improving
this modulation.

- To implement in free platforms, as SDRs and Matlab, the LoRaWAN technology. This work replicated
the LoRa modulation. It is important to add features such as coding, duty cycle, among others.

- It is convenient to take into account various metrics in addition to PSNR when evaluating the recon-
structed image, as this enables the integration of statistical findings in the proposal research.

Finally, it is necessary to integrate all stages that were presented in this research. Here a general framework
and a methodology were presented, nevertheless, each stage was evaluated separately.
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A. Appendix A

Clustering K-means classification

clear all; close all; clc;

cd (’C:JAverianaIV - 2018-1de Patrones’);

X=projectdata
′;

cluster = 2;

opts = statset(’Display’,’final’);
idx,C
= kmeans(X,cluster,’Distance’,’cityblock’,... ’Replicates’,10,’Options’,opts);

figure;
plot(X(idx==1,1),X(idx==1,2),’r.’,’MarkerSize’,12)
hold on
plot(X(idx==2,1),X(idx==2,2),’g.’,’MarkerSize’,12)
plot(C(:,1),C(:,2),’kx’,... ’MarkerSize’,15,’LineWidth’,3)
legend(’Cluster 1’,’Cluster 2’,’Centros’,... ’Location’,’NW’)
hold off

Neuronal network classification

clear all; close all; clc;
datanormal = xlsread(′leaf ′,′ leafok2′);
Imgsno = datanormal;

datasick = xlsread(′leaf ′,′ leafsick2′);
Imgssi = datasick;
indexsi = randperm(11, 11);
indexno = randperm(11, 11);
Ntrain = 9;
Ntest = 11−Ntrain;
Imgssitrain = Imgssi(:, indexsi(1 : Ntrain));
Imgssitest = Imgssi(:, indexsi(Ntrain+ 1 : end));
Imgsnotrain = Imgsno(:, indexno(1 : Ntrain));
Imgsnotest = Imgsno(:, indexno(Ntrain+ 1 : end));
Imgstrain = mean([ImgssitrainImgsnotrain]);
Imgstest = mean([ImgssitestImgsnotest]);

labeltrain = zeros(18, 1);
labeltrain(1 : 9, 1) = 1;
labeltrain(10 : end, 1) = −1;
labeltrain = labeltrain

′;
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labeltest = zeros(4, 1);
labeltest(1 : 2, 1) = 1;
labeltest(3 : end, 1) = −1;
labeltest = labeltest

′;

net = newff(Imgstrain, labeltrain, [328]);
view(net);
net.trainParam.epochs = 10;
net = train(net, Imgstrain, labeltrain);

outputtest = net(Imgstest);
outputtrain = net(Imgstrain);

Etest = sum(double(sign(outputtest) = labeltest))/4
Etrain = sum(double(sign(outputtrain) = labeltrain))/18

Deep Learning train code

clear all; clc; close all;

digitDatasetPath=(’imágenes′1)imds = imageDatastore(digitDatasetPath, ...′IncludeSubfolders′, true,′ LabelSource′,′ foldernames′);

figure;
perm = randperm(22,6);
for i = 1:6
subplot(4,5,i);
imshow(imds.Filesperm(i));
end

labelCount = countEachLabel(imds)

img = readimage(imds,22);
size(img)

numTrainFiles = 9;
imdsTrain,imdsValidation
= splitEachLabel(imds,numTrainFiles,’randomize’);

layers = [ imageInputLayer([1512 2016 3])

convolution2dLayer(3,8,’Padding’,’same’)
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,’Stride’,2)

convolution2dLayer(3,16,’Padding’,’same’)
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,’Stride’,2)
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convolution2dLayer(3,32,’Padding’,’same’)
batchNormalizationLayer
reluLayer

fullyConnectedLayer(2)
softmaxLayer
classificationLayer];

options = trainingOptions(’sgdm’, ...
’InitialLearnRate’,0.01, ...
’MaxEpochs’,10, ...
’Shuffle’,’every-epoch’, ...
’ValidationData’,imdsValidation, ...
’ValidationFrequency’,30, ...
’Verbose’,false, ...
’Plots’,’training-progress’);

net = trainNetwork(imdsTrain,layers,options);

YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;

accuracy = sum(YPred == YValidation)/numel(YValidation)

Leaves classify network
clear all; clc; close all;

net=load (’netproject2.mat′);

digitDatasetPath = (′C : JAverianaV−2018−2DEIMÁGENESY V IDEOánChaparroBecerraentregaánChaparroBecerra′)
imds = imageDatastore(digitDatasetPath, ...′IncludeSubfolders′, true,′ LabelSource′,′ foldernames′);

labelCount = countEachLabel(imds)

img = readimage(imds,11);
size(img)

YPred = classify(net.net,imds);
YPrednum=double(YPred);

Compression technique - sparse signal and coefficients values
close all
clear all
clc

Loadmatrix = input(′Carguelamatrizaevaluar′);
M,N,L
= size(spectralimage);
longitudvector = size(spectralimage);
sizematrix = longitudvector(1) ∗ longitudvector(2) ∗ longitudvector(3);

for j=1:1:L
dct(:,:,j)=zeros(M);
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if j ¡= L
dct(:,:,j) =
dct2(spectralimage(:,:,j));
else
end
end

for m=1:1:L;
linealmatrixdct = zeros(sizematrix, 1);
ifm <= L;
linealmatrixdct = reshape(dct, [sizematrix, 1]);
else
end
end

coefdct = sort(linealmatrixdct);

negativevalues = zeros(sizematrix, 1);
fori = 1 : size(linealmatrixdct, 1);
if linealmatrixdct(i) < 0;
negativevalues(i) = −1;
end
iflinealmatrixdct(i) >= 0;
negativevalues(i) = 1;
end
end

absolutvaluedct = abs(linealmatrixdct);

PSNRdct = zeros(100, 1);
fori = [1 : 1 : 100];
porcentajes = i;

datosacero = sizematrix ∗ porcentajes;

ind =porcentaje(absolutvaluedct, porcentajes);
b = porcentaje([absolutvaluedct], porcentajes);
absolutvaluedct(b) = 0;
disp(absolutvaluedct);

negative=(-1);
linealmatrix = zeros(sizematrix, 1);

for j=1:size(negativevalues, 1);
ifnegativevalues(j) == 1;
linealmatrix(j) = absolutvaluedct(j);
else
linealmatrix(j) = absolutvaluedct(j) ∗ negative;
end
end

MxNmatrix = reshape(linealmatrix, [longitudvector(1), longitudvector(2), longitudvector(3)]);
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for j=1:1:L;
idct(:,:,j)=zeros(M);
if j ¡= L
idct(:,:,j) = idct2(MxNmatrix(:, :, j));
else
end
end

PSNRdct(i) = psnr(idct, spectralimage);
end

Lo=1;
qmf = MakeONFilter(’Symmlet’,8);

for j=1:1:L;
fwav(:,:,j)=zeros(M);
if j ¡= L
fwav(:,:,j) = FWT2PO(spectralimage(:, :, j), Lo, qmf);
else
end
end

for m=1:1:L;
linealmatrixwav = zeros(sizematrix, 1);
ifm <= L;
linealmatrixwav = reshape(fwav, [sizematrix, 1]);
else
end
end

coefwav = sort(linealmatrixwav);

negativevalueswav = zeros(sizematrix, 1);
fori = 1 : size(linealmatrixwav, 1);
if linealmatrixwav(i) < 0;
negativevalueswav(i) = −1;
endiflinealmatrixwav(i) >= 0;
negativevalueswav(i) = 1;
endend
absolutvaluewav = abs(linealmatrixwav);

PSNRwav = zeros(1, 1);
fori = [1 : 1 : 100];
porcentajes = i;

datosacerowav = (sizematrix ∗ porcentajes);

indwav
= porcentajewav(absolutvaluewav, porcentajes);
b = porcentajewav([absolutvaluewav], porcentajes);
absolutvaluewav(b) = 0;
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disp(absolutvaluewav);

negative=(1);
linealmatrixwav = zeros(sizematrix, 1);

for j=1:size(negativevalueswav, 1);
if
negativevalueswav(j) == 1;
linealmatrixwav(j) = absolutvaluewav(j);
else
linealmatrixwav(j) = absolutvaluewav(j) ∗ negative;
end
end

MxNmatrixwav = reshape(linealmatrixwav, [longitudvector(1), longitudvector(2), longitudvector(3)]);

for j=1:1:L;
fwavi(:,:,j)=zeros(M);
if j ¡= L
fwavi(:,:,j) = IWT2PO(MxNmatrixwav(:, :, j), Lo, qmf);
else
end
end

PSNRwav(i) = psnr(fwavi, spectralimage);
end

Lo=1;
qmf = MakeONFilter(’Symmlet’,8);

for j=1:1:L;
fwavk(:,:,j)=zeros(M);
if j ¡= L
fwavk(:,:,j) = KronerDCTdirect(spectralimage(:,:,j),qmf, M, N, Lo);
else
end
end

for m=1:1:L;
linealmatrixkron = zeros(sizematrix,−1); ifm <= L;
linealmatrixkron = reshape(fwavk, [sizematrix, 1]);
else
end
end

coefkron = sort(linealmatrixkron);

negativevalueskron = zeros(sizematrix, 1);
fori = 1 : size(linealmatrixkron, 1);
if linealmatrixkron(i) < 0;
negativevalueskron(i) = −1;
end
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if linealmatrixkron(i) >= 0;
negativevalueskron(i) = 1;
end
end

absolutvaluekron = abs(linealmatrixkron);

PSNRkron = zeros(100, 1);
fori = [1 : 1 : 100];
porcentajes = i;

datosacerokron = sizematrix ∗ porcentajes;

indkron = porcentajekron(absolutvaluekron, porcentajes);
b = porcentajekron([absolutvaluekron], porcentajes);
absolutvaluekron(b) = 0;
disp(absolutvaluekron);

negative=(1);
linealmatrixkron = zeros(sizematrix, 1);

for j=1:size(negativevalueskron, 1);
ifnegativevalueskron(j) == 1;
linealmatrixkron(j) = absolutvaluekron(j);
else
linealmatrixkron(j) = absolutvaluekron(j) ∗ negative;
end
end

MxNmatrixkron = reshape(linealmatrixkron, [longitudvector(1), longitudvector(2), longitudvector(3)]);

for j=1:1:L;
Ifwavk(:,:,j)=zeros(M);
if j ¡= L
Ifwavk(:,:,j) = KronerDCTinverse(MxNmatrixkron(:, :, j), qmf,M,N,Lo);
else
end
end

PSNRkron(i) = psnr(Ifwavk, spectralimage);
end

i=[1:1:100]’;
plot(PSNRwav, i,

′ gx′, PSNRdct, i,
′ bo′, PSNRkron, i,

′ r+′);
title(′Wavelet,DCT − 2DandKroneckerTransforms′);
legend(′Wavelet′,′ DCT − 2D′,′ Kronecker′);
xlabel(′Percentaje− ylabel(′Spreading − PSNR′)
gridon
axis([0100− 0100]);

hold on
figure
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originalimage = subplot(3, 1, 1);
hist(coefdct, sizematrix);
title(originalimage,′ DCTcoefficients′)
axis([−33− 5030e3]);
Redcomponent = subplot(3, 1, 2);
hist(coefwav, sizematrix);
title(Redcomponent,′ Waveletcoefficients′)
axis([−33− 5030e3]);
Greencomponent = subplot(3, 1, 3);
hist(coefkron, sizematrix);
title(Greencomponent,′ Kroneckercoefficients′)
axis([−33− 5030e3]);

Wavelet Transform

close all; clear all; clc

image=imread;
(’C:7.jpg’);
image=rgb2gray(image);
image = imresize(image,[128, 128]);
figure
subplot(2, 1, 1)
imshow(image)
title(′(a)′, ...′FontUnits′,′ points′, ...′Interpreter′,′ latex′, ...′FontSize′, 11, ...′FontName′,′ Times′)
holdon

Iw=double(image);
L=1;
qmf = MakeONFilter(’Symmlet’,8);
fwav = FWT2PO(Iw, L, qmf);
longitudvectorwav = size(Iw);
sizematrixwav = longitudvectorwav(1) ∗ longitudvectorwav(2)
linealmatrixwav = reshape(fwav, [sizematrixwav, 1]);
negativevalueswav = zeros(sizematrixwav, 1);
fori = 1 : size(linealmatrixwav, 1);
if linealmatrixwav(i) < 0;
negativevalueswav(i) = −1;
end
iflinealmatrixwav(i) >= 0
negativevalueswav(i) = 1;
end
end

absolutvaluewav = abs(linealmatrixwav);

PSNRwav = zeros(100, 1);
i = 95;
porcentajes = i;
datosacerowav = sizematrixwav ∗ porcentajes;

indwav
= porcentajewav(absolutvaluewav, porcentajes);
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b = porcentajewav([absolutvaluewav], porcentajes);
absolutvaluewav(b) = 0;
disp(absolutvaluewav);

negative=(-1);
linealmatrixwav = zeros(sizematrixwav, 1);

for j=1:size(negativevalueswav, 1);
if
negativevalueswav(j) == 1;
linealmatrixwav(j) = absolutvaluewav(j);
else
linealmatrixwav(j) = absolutvaluewav(j) ∗ negative;
end
end

negativevalues = zeros(sizematrixwav, 1);
fori = 1 : size(linealmatrixwav, 1);
if linealmatrixwav(i) < 0;
negativevalues(i) = −1;
end
iflinealmatrixwav(i) >= 0;
negativevalues(i) = 0;
end
end
negativevalues=negativevalues ∗ (−1);
MxNmatrixwav = reshape(linealmatrixwav, [longitudvectorwav(1), longitudvectorwav(2)]);
fwavi = uint8(IWT2PO(MxNmatrixwav, L, qmf));
PSNRwav(i) = psnr(fwavi, image)
subplot(2, 1, 2)
imshow(fwavi)
title(′(b)′, ...′FontUnits′,′ points′, ...′Interpreter′,′ latex′, ...′FontSize′, 11, ...′FontName′,′ Times′)filename =
[′C : JAverianáıśıculosresultadośıculo2processing95.eps

′]; print(filename,′ −depsc2′);
Encode of information
function [B1,B2,B3,B4]= packbyte(dat)

temp=dat;
intpart = cast(floor(dat),′ uint16′);
mask = cast(hex2dec(′FF00′),′ uint16′);
B1 = cast(bitshift(bitand(mask, intpart),−8),′ uint8′);
mask = cast(hex2dec(′00FF ′),′ uint16′);
B2 = cast(bitand(mask, intpart),

′ uint8′);
decpart = cast(10000 ∗ (dat− floor(dat)),′ uint16′);
mask = cast(hex2dec(′FF00′),′ uint16′);
B3 = cast(bitshift(bitand(mask, decpart),−8),′ uint8′);
mask = cast(hex2dec(′00FF ′),′ uint16′);
B4 = cast(bitand(mask, decpart),

′ uint8′);
end

Decode of information
function [tot]= unpackbyte(B1, B2, B3, B4)
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intpart = cast(B1,′ uint16′);
intpart = bitshift(intpart, 8);
B2 = cast(B2,′ uint16′);
intpart = intpart+B2;
intpart = cast(intpart,

′ double′);

decpart = cast(B3,′ uint16′);
decpart = bitshift(decpart, 8);
B4 = cast(B4,′ uint16′);
decpart = decpart+B4;
dec = cast(decpart,

′ double′);
tot = single(intpart+ dec/10000);
end

LoRa symbols creation
clear all; close all; clc;

SF = 8;
BW = 500000;
Fs = 500000;
preamblelen = 10;
synclen = 2;
totalsym = 4;
numsamples = Fs ∗ (2SF )/BW ;
symbols = [50, 100, 255, 1];

loratotalsym = preamblelen+ synclen+ totalsym;

outp = [];
inverse = 0;
for i = 1:preamblelen[outpreamble] = LoRaModulation(SF,BW,Fs, numsamples, 0, inverse);
outp((i− 1) ∗ numsamples+ 1 : i ∗ numsamples) = outpreamble;
end
inverse = 1;
for i = 1:synclen[outsync] = LoRaModulation(SF,BW,Fs, numsamples, 32, inverse);
outp = [outpoutsync];
end

inverse = 0;
for i = 1:totalsym[outsym] = LoRaModulation(SF,BW,Fs, numsamples, symbols(i), inverse);
outp = [outpoutsym];
end

inverse = 1;

[outreverse] = LoRaModulation(SF,BW,Fs, numsamples, 0, inverse);

for n = 1:1:loratotalsymdecodedout((n−1)∗numsamples+1 : n∗numsamples) = (outp((n−1)∗numsamples+1 :
n ∗ numsamples). ∗ outreverse);
endXtsynch = zeros(1, length(decodedout− 1024));
forn = 1 : length(decodedout)− 1024Xtsynch(n) = sum(decodedout(n : n+ 1024− 1));
end;
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form = 1 : 1 : loratotalsymFFTout(m, :) = abs((fft(decodedout((m− 1) ∗ numsamples+ 1 :
m ∗ numsamples), 2SF )));
endnumsamples = 2SF ;
k = 1;
form = preamblelen+ synclen+ 1 : 1 : loratotalsym[r, c] = max(FFTout(m, :));
datareceived(k) = c− 1;
k = k + 1;
end

figure(1);
samples = numsamples/4;
title(′DecodedLoRasymbols′);
spectrogram(decodedout, samples, samples− 1, samples, Fs,′ yaxis′);

figure;
samptime = 0 : 1 : numsamples− 1;
title(′FFTofreceivedLoRasymbols′);
form = 1 : 1 : loratotalsymplot(samptime, FFTout(m, :));holdon;
end
gridon;
Proberrs = length(find(datareceived = symbols))/length(symbols)

LoRa modulation function

function outpreamble = LoRaModulationnew(SF,BW,Fs, symbol, inverse)
T = (2SF )/BW ;
numsamples = 2SF ∗ (Fs/BW );
ts = 0 : 1/Fs : numsamples/Fs− 1/Fs;
phases = zeros(1, numsamples);
ifsymbol == 0phases = 2 ∗ pi ∗ (ts ∗BW ).2/(2(SF + 1));
ifinverse == 1
phases = 2 ∗ pi ∗BW ∗ ts− phases;
end;
else
fi = symbol ∗BW/(2SF );
indx = find(ts <= T − symbol/BW );
phases(indx) = 2 ∗ pi ∗ (fi ∗ ts(indx) + (ts(indx) ∗BW ).2/(2(SF + 1)));
indx = find(ts > T − symbol/BW );
phases(indx) = 2 ∗ pi ∗ (fi ∗ ts(indx) + (ts(indx) ∗BW ).2/(2(SF + 1))−BW ∗ ts(indx));
ifinverse == 1
phases = 2 ∗ pi ∗BW ∗ ts− phases;
end;
end;
outpreamble = exp(1i ∗ phases);
end

LoRa Transmissor

clear all; close all; clc;

connectedRadios = findsdru;
if strncmp(connectedRadios(1).Status, ’Success’, 7) radioFound = true;
platform = connectedRadios(1).Platform;
switch connectedRadios(1).Platform case ’B200’,’B210’ address = connectedRadios(1).SerialNum;
case ’N200/N210/USRP2’,’X300’,’X310’ address = connectedRadios(1).IPAddress;
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end
else
radioFound = false;
address = ’192.168.10.2’;
platform = ’N200/N210/USRP2’;
end

load(’DatatestSF
′
5);

data1 = [outp′; zeros(1536, 1)]

tx1 = comm.SDRuTransmitter(...′Platform′,′ B200′, ...′SerialNum′,′ 30BA179′, ...′CenterFrequency′, 920e6, ...′InterpolationFactor′, 64, ...′Gain′, 8)step(tx1, data1);
release(tx1)
toc

LoRa Receiver
clear all; clc; close all

connectedRadios = findsdru;
if strncmp(connectedRadios(1).Status, ’Success’, 7) radioFound = true;
platform = connectedRadios(1).Platform;
switch
connectedRadios(1).Platform case ’B200’,’B210’
address = connectedRadios(1).SerialNum;
case
’N200/N210/USRP2’,’X300’,’X310’
address = connectedRadios(1).IPAddress;
end
else
radioFound = false;
address = ’192.168.10.2’;
platform = ’N200/N210/USRP2’;
end

fmRxParams = getParamsSdruFMExamples(platform);

switch platform
case ’B200’,’B210’
radio = comm.SDRuReceiver(... ’Platform’, platform, ... ’SerialNum’, address, ... ’MasterClockRate’, fmRx-
Params.RadioMasterClockRate);
case ’X300’,’X310’
radio = comm.SDRuReceiver(... ’Platform’, platform, ... ’IPAddress’, address, ... ’MasterClockRate’, fmRx-
Params.RadioMasterClockRate);
case ’N200/N210/USRP2’
radio = comm.SDRuReceiver(... ’Platform’, platform, ... ’IPAddress’, address);
end

radio.CenterFrequency = 868e6
radio.Gain = 35;
radio.DecimationFactor = 50;
radio.SamplesPerFrame = fmRxParams.RadioFrameLength;
radio.OutputDataType = ’single’
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A Appendix A

fmRxParams = getParamsSdruFMExamples(platform)
AudioFrameTime = fmRxParams.AudioFrameTime/10;

hwInfo = info(radio)

fmBroadcastDemod = comm.FMBroadcastDemodulator(... ’SampleRate’, fmRxParams.RadioSampleRate, ...
’FrequencyDeviation’, fmRxParams.FrequencyDeviation, ... ’FilterTimeConstant’, fmRxParams.FilterTimeConstant,
... ’AudioSampleRate’, fmRxParams.AudioSampleRate, ... ’PlaySound’, true, ... ’BufferSize’, fmRxParams.BufferSize,
... ’Stereo’, true);

freqsax = −2000000/2 : 2000000/4000 : 2000000/2− 2000000/4000;
axis([freqsax(1)freqsax(2)00.1]);
ticifradioFound
timeCounter = 0;
Xt = NaN(4000, 5000);
c = 1;

[x, len] = step(radio);
tic;
while timeCounter ¡ fmRxParams.StopTime
x, len
= step(radio);
timeCounter = timeCounter + AudioFrameTime;

Xt(1:4000,c)=x(1:4000);
c=c+1;
end
else
warning(message(’sdru:sysobjdemos:MainLoop’))
end
toc
release(fmBroadcastDemod)
release(radio)

Wavelet Inverse Transform
close all; clear all; clc

input(’Cargar los datos para realizar la transformada inversa wavelet...’) L=1;
qmf = MakeONFilter(’Symmlet’,8);

load (’DATAfwavi
′);

linealmatrixwav = data
longitudvector = 128;
MxNmatrixwav = reshape(linealmatrixwav, [longitudvector, longitudvector]);

fwavi=uint8(IWT2PO(MxNmatrixwav, L, qmf));
fwavi = imresize(fwavi, [73138])
imshow(fwavi)

1
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