

POLYTECHNIC OF TURIN

Faculty of Engineering

Master's Degree

 in Computer Engineering

Master Thesis

Android Wear: Usability Guidelines,

Features and Development of a Prototype

Supervisors

Prof. Maurizio Morisio

........................... Candidate

Andres Camilo Jimenez Vargas

...........................

October 2016

Index

1. Introduction .. 1

1.1. Description of the problematic .. 3

1.1.1. Formulation of the problem .. 3

1.1.2. Justification of the project .. 3

1.1.3. Expected Impact ... 4

1.2. Description of the project .. 4

1.2.1. General Objective ... 4

1.2.2. Specific Objectives ... 4

1.3. Expected deliverables .. 4

1.4. Methodology ... 5

2. Theoretical frame ... 7

2.1. Basis concepts about Table Me application .. 7

2.1.1. Profile features ... 7

2.1.2. In game features ... 9

2.2. Conceptual frame .. 11

2.2.1. Android Wear ... 11

2.3.1. Communication between devices ... 12

2.3.1.1. Notifications using Google Cloud Messaging .. 13

2.3.1.2. Message API ... 14

2.3.1.3. Data API .. 15

2.3.1.4. Channel API .. 16

2.3.2. Architecture for a multiplayer game .. 17

2.3.2.1. Peer to Peer .. 17

2.3.2.1. Client/Server .. 18

2.3.3. Communication technologies ... 19

2.3.3.1. Long Polling .. 19

2.3.3.1.1. AJAX Long polling .. 20

2.3.3.2. Web sockets ... 21

2.3.3.2.1 Socket IO ... 22

2.3.3.3. Technology benchmark ... 23

2.3.4. Graphic User Interface Design for Android Wear ... 24

3. Analysis .. 26

3.1. Proposed model ... 26

3.1.1. Distributed gameplay ... 26

3.1.2. User information management ... 27

3.2. Software prototype .. 27

3.2.1. Use cases .. 27

3.2.1.1. Actors .. 28

3.2.1.2. Use case description .. 28

3.2.2. Requirements description ... 30

3.2.3. Data model ... 30

3.2.4. Programming language for the server side ... 31

3.2.5. Architecture .. 31

3.2.6. Features and technical aspects .. 32

3.2.6.1. Profile information on the smartwatch .. 33

3.2.6.2. Gameplay on the smartwatch .. 33

3.2.6.3. Match history on the smartwatch .. 34

3.2.6.4. Leader board on the smartwatch ... 35

4. Development of the Solutions .. 36

4.1. Server .. 36

4.1.1. Class diagram ... 36

4.1.2. Server event behavior ... 37

4.2.1. Class diagram ... 38

4.2.2. Mobile event behavior .. 39

4.2.3. Sequence diagram of the behavior of the Game Service ... 40

4.2.3.1. User registration with the GCM token .. 40

4.2.3.1. Send challenge notification ... 41

4.2.3.2. Receive Challenge Notification .. 41

4.2.3.3. In Game ... 42

4.2.3.4. Show profile information .. 44

4.2.3.5. Show match history ... 44

4.2.3.6. Show leader board ... 45

4.3. Wear Client ... 46

4.3.1. Class diagram ... 46

4.4. Tests .. 47

4.4.1. Use case testing .. 47

4.4.2. User Interface Testing .. 48

5. Conclusions .. 50

6. Bibliography ... 51

7. Appendixes ... 54

7.1. Software Requirement Specification ... 54

7.2 Use Case Specification ... 71

7.3 Functional Requirement Document ... 89

7.4. Non Functional Requirement Documents ... 113

7.5. Requirement priorization ... 120

7.6. Installation Manual .. 122

7.7. Relational Matrix of Functional Requirements .. 126

7.7. Domain Model ... 127

7.8. Use Case Diagram ... 128

7.9. Class Diagram Table Me ... 129

7.10. Authorization Letter .. 130

7.11. Thesis Description ... 132

8. Acknowledgments .. 135

Figure index

Figure 1: Spiral model from Barry W. Boehm [1] ... 5

Figure 2: Profile screens of Table Me .. 8

Figure 3: Singular Match History Table Me .. 8

Figure 4: Main leader Board Table Me .. 9

Figure 5: Player Selection Table Me. ... 9

Figure 6: In Game Screen Table Me .. 10

Figure 7: End Game Table Me ... 10

Figure 8: Android Wear Context Stream[3] ... 11

Figure 9: Physical Architecture of multiple devices[4]. .. 12

Figure 10: GCM Architecture[7] .. 13

Figure 11: Message API Architecture of the implementation[12] ... 15

Figure 12: Data API Architecture of the implementation[15] ... 16

Figure 13: Peer to Peer architecture from Napster[16] .. 17

Figure 14: Architecture of components of Colyseus, (Figure 4 [17, p. 8]) 18

Figure 15: Long Polling [58] .. 20

Figure 16: AJAX Long Polling behavior[19] .. 21

Figure 17: Web Socket Architecture [58] .. 21

Figure 18: Speed Benchmark for AJAX persistent server, Socket IO server and Socket IO

persistent server [49] .. 23

Figure 19: Concurrent Benchmark on Socket IO server, number of messages sent by roundtrip

time in different concurrent rates[20] ... 24

Figure 20: Proposed Model .. 26

Figure 21: Data Model ... 31

Figure 22: Physical Architecture .. 31

Figure 23: Showa player profile in the smartwatch screens ... 33

Figure 24: Notification displayed in the smartwatch for the players. 33

Figure 25: In game screens for the blue team and the read team, and the screens for victory

and lose. .. 34

Figure 26: Showa player’s match history in the smartwatch screens 34

Figure 27: Showa player leader board in the smartwatch screens ... 35

Figure 28: Multiplayer Server Class Diagram ... 36

Figure 29: Table Me Domain Diagram .. 38

Figure 30: Device registration of the Google Cloud Messaging service token 40

Figure 31: Sequence diagram for sending a challenge notification to a player 41

Figure 32: Sequence diagram for receiving a challenge notification from Google Cloud

Messaging and showing it in the phone and the smartwatch ... 41

Figure 33: Sequence diagram for adding goals, auto goals and dismissing a goal during a

match intthe smartwatch ... 43

Figure 34: Sequence diagram for showing the profile information in the smartwatch 44

Figure 35: Sequence diagram to show the match history in the smartwatch of the player of the

device ... 44

Figure 36: Sequence diagram for showing the leader board in the smartwatch 45

Figure 37: Table Me Wear Domain Diagram .. 46

Figure 38: Original Karl Wiegers formula for requirement prioritization 61

Figure 39: Profile information .. 63

Figure 40: Notification on the smartwatch ... 64

Figure 41: In Game screens with victory and lose screens .. 64

Figure 42: Leader board screen .. 65

Figure 43: Requirement classification .. 69

Table Index

Table 1:Actors .. 28

Table 2: Phases of the Table Me application ... 29

Table 3: Use cases .. 29

Table 4: List of Use case testing performed. .. 48

1

1. Introduction

The Joint Open Lab (JOL), a research group of Telecom Italia (TIM), developed an

application named Table Me for Android and IOS mobile devices, to manage a game of

table foosball. The goal of the application is to trace a match between four people in a

mobile device, accounting the result and the performance of the players. Moreover, after

the user logged in, the application compiles all the information of the player's games,

showing their profile information with the statistics, achievements and match history.

Additionally, organizing their results in a leader board between all the players.

Thanks, to the functionalities of the application, it allows easily to follow and record a

table foosball match and to share this information with the community. However, as the

application is hosted locally in a single mobile device, it brings more complexity to the

user, either if the user is being part of the teams involved in a match or not, must pay

attention to the other player’s movements and goals to count them correctly.

To be able to solve this problem, it is desirable to give the capability to the players to be

involved in a game, in a more comfortable way without the necessity of having their

mobile devices on hand all time. With the use of a smart watch, the user can have the

commodity through the game, of having a functional instance of the game in a device

paired with a mobile device on the wrist. Based on that, it is possible to give that

functionality to the players taking away the dependency of using their phone constantly

during the match. In addition, this will decouple the creation of the match in a single

device, and make the match distributed with the devices involved in the match.

This project is focused on the development of an Android Mobile application and an

Android Wear application, that allow the usage of the same features of the previous Table

Me application in a smart watch. This will improve the players experience in the game,

involving it to give its results during the match in a more precise and comfortable way,

from a click away in his smart watch. Additionally, to access the user’s basic profile data

in the smart watch without the necessity of using the mobile device. To be able to develop

this solution, it is necessary to develop a solution (that is integrated to the Table Me

application), to manage the communication between the smart watch and the mobile

device. Moreover, to create the match distributed between multiple devices, is necessary

to develop a server able to handle the match and the communication to the devices.

From this point on, knowing the main objectives of the project, the it is necessary to

include an additional item to develop to create the multiplayer environment. Due to that, is

necessary to create a Server that follows the basic architecture of an interactive game

online with multiple players. Based on the Table Me application where commands of

goals in a match will be notified to the server, the implementation that approach the best

solution is a Peer to Peer architecture with Lockstep used in online strategy games such as

Star Craft, Age of Empires and Civilizations. This allows a real time gameplay with a

non-heavy load server that just recognize commands from users and deliver them to the

participants of the match without congesting their network resources. Additionally, the

architecture recommends the usage of real time technologies to facilitate the

communication of these commands. To solve this issue, it has been selected the usage of

Web Sockets via the library Socket IO that supports multiple platforms for the

communication including Android where the project was developed.

2

The developed solutions bring to the users the Table Me application for Android devices

and smartwatches, supporting a multiplayer interactive environment where a user as a

referee (being part of the match or not), can create a match and control the global score.

The Android Wear application provide an easy to use interface (developed based on the

lineaments proposed by Android), that allow to the users to interact with their own score

(adding and dismissing goals or auto goals). This solution allows to control in a more

accurate way the score of a match and follow it in real time by a referee that is hosting the

game in the phone. Additionally, providing the previous functionalities that the Table Me

application have in the smartwatch to consult the profile information, the leader board and

the match history of a player.

3

1.1. Description of the problematic

The application Table Me can just manage a table foosball match locally in one device,

restricting the players to be in touch with the game. In addition, this adds more difficulty

to the match's host to keep track of each of the players moves, even if the host is a

participant in the game or not. Moreover, all the data of the players and the matches are

stored in a server hosted by the JOL, and all the player's information each time by

application when the user open it and log in. Additionally, does not have an extension to

the Android Wear technology, if any user has one.

Based on the previous statements, here are the most important points that comes from this

problem:

 Difficult to use by the match's host (being a participant player or not), because

require to have the mobile device on hand and keep track of the score of each four

players during the game (limited user experience).

 The results of a match are followed by just the person using the application.

 Local dependency on a device to be able to keep track of the match.

 If a player has an Android Wear, he/she cannot use it with anything related to the

Table Me App [2].

1.1.1. Formulation of the problem

Provided the problematic description, the project search to resolve the following question:

How to develop an Android Wear to help managing a table foosball match with four

players, and provide the player's information in the Android Wear device, integrated with

the Table Me mobile application?

1.1.2. Justification of the project

The development and completion of this project seeks to show how is constituted and how

to use the recent technology of Android Wear with the smart watches. Based on that, the

project presents a guideline of implementation of the communication with the smart

watch, the design and implementation of the user interface. All this, to show how to solve

the problems presented from the Table Me application.

Within the Android Wear application solution, the project search to give a user that has a

smart watch, an instance of the application Table Me on it, to be able to use the main

features with no need of mobile device use. Additionally, be part of a match (being the

host or not), providing his results in the smart watch during the game. Because of that,

will decouple the dependence of managing a match in a single device, and finally as well

give the capability to a player (or players), of keeping track simultaneously of the game

and their results in the smart watch.

To be able to develop this solution is necessary to create an Android Wear application, as

well as two more components: An Android application to communicate the mobile with

the smart watch, and a server to be able to host the game communicating all the players

that participate in the match simultaneously.

Finally, the project seeks to develop a prototype that will be integrated with the already

working Table Me application.

4

1.1.3. Expected Impact

The expected impact of the project with the documented guideline to the usage of the

Android Wear technology is to help to facilitate the development of Wear applications

(mainly the communication between the mobile and the smart watch), providing a guide

to the developers that interested on the possible solutions that this implementation could

take.

Additionally, with the prototype integration it will expect to give a more comfortable and

easy to access way of using the Table Me application in a smart watch, facilitating the

usage of the main features, without using the phone. Moreover, give a more interactive

and easy way to the users to manage a game by the capability of a player of being part a

match simultaneously with the other players that may or may not use the application in

their smart watch. With this on future, is expected to give more functional features to the

Table Me application to give to the users that may have an Android Wear device, opening

the doors of the Android Wear market where the application can be used.

1.2. Description of the project

1.2.1. General Objective

Develop an Android Wear application, integrated with the Table Me mobile application,

that implements its main features and offer to the user to be part of a distributed match

with a smart watch, simultaneously with the other players of the match.

1.2.2. Specific Objectives

 Perform the characterization of the system by means of a process of requirement

engineering, identifying the general requirements for the server, mobile and

Android Wear applications, that allow to implement the main features of the Table

Me application, and create a distributed match with other devices.

 Perform the design and architecture of the server, the mobile and the wearable

application that allow to implement the main features of the Table Me application,

and to be able to create a distributed match with other devices.

 Develop a prototype of the mobile and the wearable application that allow to

implement the main features of the Table Me application, and to be able to create a

distributed match with other devices.

 Integrate the developed prototype with the Table Me application, coupling its

features with the already working one.

 Validate the integrated prototype in a testing environment of the domain of the

Table Me users.

1.3. Expected deliverables

The deliverables proposed and planned to this project are the following:

 A software requirement specification document, that will contain:

o Use cases model.

o Definition of system's scope.

o Functional and nonfunctional requirements.

o Requirement prioritization.

5

 A functional prototype integrated to the Table Me application, that will contain:

o User manual.

o Description of the main features of the prototype.

1.4. Methodology

The methodology that will be used to develop the project will be based on the spiral

lifecycle model from Barry W. Boehm [1]. This model is an incremental model that based

on a risk analysis of each step of the project done frequently, will allow to prioritize the

development of certain components of the project. The model proposes that in an iterative

development of four activities the software will be develop in phases that accumulate

prototypes or parts of it in the development of the system. The following figure illustrate

the main structure of the spiral model.

Figure 1: Spiral model from Barry W. Boehm [1]

The model is divided in four important phases. Firstly, determine objectives, where the

requirements are collected from the user’s necessities of the software and the development

of an initial design. Then, comes the identification of risks, where based on the previous

progress will be evaluated the risk that takes implementing the requirements capture in the

iteration. After that, the development phase initiates based on the previous design and

during the development multiple tests are done. Finally, the last iteration is for the user

evaluation of the software testing it until release, during this phase new tests are added to

be done in the following iterations.

For the purpose of this project the main four phases are described in the following:

 Diagnostic, research of the state of art and requirement collection based on the

user’s necessities and the research.

 Design and architecture, design of the software components and use cases to be

implemented. During this phase a requirement prioritization will be done to

6

identify the most complex requirements of the iteration for the development of a

use case.

 Development, implementation of the use cases in the JOL laboratory using the

smartwatches to perform tests.

 Testing and evaluation, after implementing the use cases planted for each month,

there will be a presentation of the prototype to the user showing the implemented

features, taking in account the comments and possible changes.

7

2. Theoretical frame

2.1. Basis concepts about Table Me application

The application Table Me was design to trace a table foosball match, in a single mobile

device. In the first instance, the application uses an authentication feature done through

Facebook API or Google plus API, registering the user in the server, and retrieving the

user information. After this authentication, the application shows a summary of the profile

of the player and the functionality to create a match with a button.

Based on this introduction, the application's features are divided in the player’s decisions

of consulting in deep his profile information of starting a match. For this reason, here

are presented the following features that the application offers.

2.1.1. Profile features

The application shows a dashboard screen divided in two sections:

 Profile summary [2], this section has the player's picture from Facebook or

Google plus, where can expand by clicking on it, and this will show in detail the

statistics, composed by:

o Victories.

o Losses.

o Total goals and average goals per match.

o Total auto goals.

o Best position.

o Best score.

o Preferred team mate.

o Nemesis team mate.

After this section located on the left of the main view, there are three rows at the

right side. The first row has the list of the latest achievements of the player; this

row has a plus button to see in detail the list of all the achievements of the player

in another screen. The second row has the ELO score of the player and his

position on the leader board displayed in a badge, clicking the image of the

position the application shows the full leader board in another screen.

Finally, the third row has two bars that represent the number of victories and the

number of lost matches. Each of the bars grows at the contrary of the other.

8

Figure 2: Profile screens of Table Me

 Match history [2], in the rest of the screen below the profile section as in the

Figure 2, there is a list of the matches where the player participated. Each row

represents a match, including the date and the images of the profiles of each

player. Finally, in the middle, it shows a green check if the player won that match,

or a red cross if not. By clicking the row with a match, the application will show

another screen with the complete information of the match in a screen similar to

the screen on game, showing the results of each team. This screen contains the

total goals scored by each team, the goals that each player did individually and the

auto goals too. The team that lost selected the match, will have a badge under the

team’s total score that says “rivincita” to play a revenge game, by pressing this the

user will start a new game with the same players of the match.

Figure 3: Singular Match History Table Me

 Main leader board [2], the user can enter to this screen by tapping the position

badge, this will show the general leader board. Moreover, if the user tap over one

of the players in the leader board, then the application will show the correspondent

9

profile information of the selected player. The profile information displayed have

the same attributes as the user’s profile section.

Figure 4: Main leader Board Table Me

2.1.2. In game features

 Player selection [2], after clicking on create a new match, the application displays

a new screen with a layout similar to a foosball course. On each side are two

buttons to add the participants of each team, by clicking on them it displays a list

with the players of the game, and the user is able to select a player to all the four

positions. After that, the application enables a button to start the game.

Figure 5: Player Selection Table Me.

 In game [2], after clicking the start game button, the application displays a layout

similar to a foosball course and the players of each team, identified by their

10

photos, over their respective sides. Over the sides of each of the player are three

buttons, the first for scoring a goal adding a point to the team who score it, second

to score an auto goal, and third to dismiss a goal. The application allows to keep

the score of a match until a team reach six points, and when the match ends it

display the results in a similar way to the match history screen.

Figure 6: In Game Screen Table Me

 End game [2], after one of the team’s scored six goals, the application asks to

confirm if the score is correct or not. Selecting the incorrect option, the last goal

will be dismissed and the game continue. In the other hand, by selecting the

correct score, the application will change the background color with the color of

the winner team with an animation of the score. Finally, a pop up window is

displayed showing the final score, and giving two options to the user: play a

revenge game or go back to the dashboard.

Figure 7: End Game Table Me

11

 Revenge game, after the user select to play a revenge game as shown in Figure 7,

the application shows the match all set up with the participants of the previous

match or the match selected from the history, enabling the start button to start the

game.

2.2. Conceptual frame

The conceptual frame of the project is target to the following important aspects to develop

the distributed game of foosball for the Table Me application. Firstly, is necessary to

know the main and important ways of communication between the mobile devices and

their correspondent smart watch. Secondly, an architecture for multiplayer games that

allow supporting the games correctly and its communication methodology. Finally, the

user interface to be implemented in the smartwatch, due that its reduced size, it is required

to know the guidelines to design and implement it.

2.2.1. Android Wear

The smartwatches that uses Android Wear are very recent, the first one was released the

25th June of 2014, being able to develop applications in the same manner as with a mobile

device. This release was using the android distribution Kit Kat 4.4.1 now a day the last

release is the version 1.4 launched 4th February 2016 using the distribution Lollipop 5.0

giving multiple features in addition with the previous updates such as Wi fi connection

directly from the watch, Bluetooth complementation, longer battery life management and

support to send multimedia data from the phone to the smartwatch.

The main features of Android Wear are that in the home page of the device it manages a

stream of cards displayed vertically in a Context Stream [55]that are stacked in a prioritize

way with the information sent from the phone. The stream cards allow to display

notifications and applications features that simplify the usage of the application in the

smartwatch and in the mobile device.

Figure 8: Android Wear Context Stream[3]

12

The context stream allows to access to applications features or notification information by

swiping to left displaying concatenated cards, and it can be dismissing by swiping to the

right.

Additionally, to this, Android Wear allow to create applications that use the Context

Stream to place the activities of the application. As said before the advantage of this

technology is the usage of the same implementation as in a mobile device development,

this allow an easy management of the application’s code.

In the following points there will be a description to the different ways to communicate

the smartwatch with the mobile device using the Message API [9], the Data API [13] and

the Channel API [32].

2.3.1. Communication between devices

In the communication between devices (mobile and smartwatch) is relevant to note that it

is necessary to take care of the compatibility between devices to be able to use them

correctly. Android offer the versioning of their releases for the mobile device that allow to

using different services depending of the device and the android distribution that it use, in

the same way the smartwatches that use Android Wear. About this, the technologies

developed for the smartwatches have evolved from the simple pair connection with a

single device through to Bluetooth, to a direct Wi Fi connection and have multiple

smartwatches connected to a single mobile device. The following architecture shows the

normal usage of this technology.

Figure 9: Physical Architecture of multiple devices[4].

Due to this, to be able to be compatible to the smartwatches that use only the Bluetooth

connection, it is necessary to know the communication methods between the mobile and

the smartwatch using the Wearable package[5]. This package implements all the different

ways to transfer and synchronize data between devices.

Additionally, is necessary to know a trustable way to communicate between mobile

devices using the Google Cloud Messaging service to notify asynchronously about events.

13

Moreover, this implementation helps to the development of a simple base of a multiplayer

architecture to be able to support a distributed game for the Table Me application.

2.3.1.1. Notifications using Google Cloud Messaging

The notifications are one-way asynchronous communication to send messages to a mobile

device to another. This can be done using Google Cloud Messaging service, that allow to

push notifications between devices sending a JSON message in an HTTP request to the

service with the information of the receiver and the message. To be able to use the service,

every device that use the application must register itself in the Google Cloud Messaging

service, and the result of that will obtain a token that will identify the device and through

it will be able to send and receive messages [6].

However, a device cannot know all the other devices that will send an asynchronous

message, as such in a game environment. For this it is needed a server that store this

information and help a device to easily send the message to the desired mobile. The

documentation of Google Cloud Messaging [6] advises to use this architectural

implementation in the following mode:

Figure 10: GCM Architecture[7]

Following the advice given by the source, the third party app server will be in charge of

store the information of all the clients that use the application saving the information of

each one for further requests. After this point, the server can act as a database of user’s

tokens so the client application can send the notification by itself, or the server can be

more active and manage to send the notifications by itself by demand of the users.

 After a message is sent using the Google Cloud Messaging service, the client uses a

listener service already implemented by Google (the GCM listener service [39]), that is

instantiated every time the device receive a message from Google Cloud. From that point

on, the device is in charge of raising the visual alert of the notification setting its visual

properties (e.g. icon of the notification, background, text, title, actions with pending

intents to open activities or services, etc.). It raises and display the notification drawer on

top of the user interface, and when the user slides it down it shows the full content. If it is

clicked it will execute the action with the pending intent that was set before, and will

execute the activity or service attached in the intent [7], [8] .

In the case of when the device paired to a smart watch, by default all the notifications

raised from the phone will be also in the smart watch. However, either there is an option

to raise the notification locally, so each device either the mobile or the smartwatch display

it. In the smartwatch the notifications are raised in a stack of cards that is managed by the

operative systems, where all notifications are organized by priority. the cards that display

14

a notification have multiple ways of use allowing to set the same properties as in the

mobile device [8]. Using the custom layout of a notification, the user can create a custom

view with a certain style of the card and its text; additionally, it is possible to add an extra

page that can be access by sliding to the left to put more information.

Finally, to open equally an action as in the mobile device, the notifications in the

smartwatch manage actions in an additional page per pending intent, and can be access by

the same way as the additional pages of the notification. A set of dots in the inferior part

of the interface below the notification represented the quantity of pages of the notification.

2.3.1.2. Message API

The messages are one-way communications that are suitable in short life applications of

components of it. this method of communication was designed mainly for remote

procedure calls (RPC [9]), to invoke functionalities between devices by sending a

message. A Data Layer managed the data to send and it is in charge of sending and

receiving the messages across the Bluetooth connection between devices. Additionally,

the Data Layer is in charge of raising the services that are waiting for a response through

this channel.

Moreover, the service is offered by the Google Play Services for Wearable devices, by

using the API implemented by Message API [5] inside the Wearable package [5], that is

able to send and receive messages between the mobile and the smartwatch, and used to

send data in byte format identified with a path id.

There is two main ways to use this way of communication. The first one, used just to

receive information, is done by using a Wearable Listener Service [10] that is activated by

the Data Layer when any kind of data event that is sent between devices (Device

connection, receiving messages, communication errors), will be notified in a specific

method. To capture messages sent by the Message API the service uses the

implementation on Message ()[10]. With this the data will arrive in a message event that

contains the bytes of the message, its identifier path, the id of the request of the message

and the source node that sent the data. Additionally, the service handled all the

connections automatically.

The second way of communication is guided to be implemented by using a Google API

Client applying the Wear API [5] that acts as a channel that allows to send data and attach

listeners to receive the data through the Message API listener implementations[9].

Additionally, the listeners give more information to control the actions to take. Because of

this, they allow to know when the devices (either a mobile or a smartwatch) are connected

or disconnected or when the communication between the devices suffer of an abeyance.

Finally, and the most important aspect is that the connection can be controlled in the

activity or service that will interact with the devices by the usage of the Google API Client

[11], using the same implementation with the method on Message() who connects and

disconnect the channel it's needed programmatically. It is important to note that, to be able

to send a message using this implementation, it is necessary to send it in a different thread

with the user interface or in the same thread where a service is running.

The following architecture shows how a message is send from the mobile device to the

smartwatch through the methods necessary to send a message as explained before.

15

Figure 11: Message API Architecture of the implementation[12]

With the latest releases of the Google Play Services, it is possible to pair via Bluetooth

multiple smartwatches with one mobile device, and there are identified as a node, with a

unique identifier. The nodes can be retrieved by using a node listener attached to a Google

API Client[11], and it will allow to have control over the devices when are connected or

disconnected to the mobile device and vice versa.

2.3.1.3. Data API

The Data API services [13] provided by the Wearable API [5], is a one-way

communication between devices paired via a Bluetooth connection, and was designed to

be used as a data synchronization method. As well as the Message API is used for RPC

(however does not allow to send more than a set of bytes); the Data API allows to send

objects in a Data Map. This act as a hash map storing any object with a string identifier,

allowing sending more heavy loaded data between devices without the necessity of

serializing the data. A Data Map allows storing the simple data types. Additionally, it can

use a bundle of data from an intent, and for images, audio or video, can be used Assets

that allow to store and serialize this kind of multimedia data[14].

The Data API access to the data layer, not as directly as the Message API. The data must

be stored in a request that is sent to the Data Layer, settled in a priority queue that is

organized depending of the urgency of the data to be sent (Between more urgency the

Data Map is sent without delay, the default configuration can take over 30 second to send

a Data Map[15]). Then, automatically sends the data to all the devices connected through

an instance of the Google API Client implementing the Wear API[5]. This can be a

disadvantage if a user use multiple smartwatches connected to the mobile.

 The usage of the implementations of the Data API is used in the same way that the

Message API. One implementation using a Wearable Listener Service [10] and the other

one controlling the connection using a Google API Client implementing the Wear API

[5], attaching to it a Data API Listener that implements the method on Data Changed

()[10].

For sending the data, it is necessary to use a Data Map as said before, store the

information into it and put it into a request, this request allow to set its urgency. Then, this

16

request is sent to the Data Layer through the Data API implementation in the Wearable

package[5]. Moreover, to be able to send the request, it must be done a thread different

form the thread where is running the user interface or the service.

After this, for receiving the Data Map sent, can be use the Wearable Listener Service

implemented by the Wearable API using the method onDataChanged() [10]. This method

works as a data synchronization method, receiving the Data Map issued by a device.

However, it is necessary to note that this listener will be activated only when the data sent

is not the same as it was received before, denying duplicated data.

The following architecture shows how a Data Map is sent from a mobile device to a

smartwatch using the implementations explained before.

Figure 12: Data API Architecture of the implementation[15]

2.3.1.4. Channel API

The Channel API is a service provided by the Wearable package[5], that send large

amounts of data, streaming it directly to an specific device. The Channel API create a

bidirectional connection with a node sending objects such as with a Data Map [15] and

also use Assets for multimedia data [14]. In this case, the Channel API is different to the

Data API due to that Data API uses data synchronization and it does not send repeated

information. In the other side, the Channel API sends the data independently if is

redundant or not. Additionally, it relays on the Message API to send in case of a heavy

loaded file and the Channel API streams the file through this way. Moreover, it facilitates

the streaming of data to and from the network, such as multimedia data. Finally, the

Channel API creates a copy of all the data received in local memory of each device. This

can be a disadvantage if a smartwatch or a mobile device does not have enough memory

to support copies of large files.

The implementation of the Channel API uses a streaming method to send the data through

a Google API Client implementing the Wear API [5], and it creates an input and an output

stream that is open until it is closed by the Google API Client. As before, the

17

implementation can be done using a Wearable Listener Service, but implementing the

methods on Channel Opened(), Channel Closed() when the channel is created and

onInputClosed() and onOutputClosed() [10], when the stream of data is closed by the

sender. Otherwise, controlling the connection with the Google API Client, attaching a

listener of Channel API implementing the same methods explained before.

2.3.2. Architecture for a multiplayer game

The architecture of a distributed game helps to use and organize the server correctly. In

the communication between the mobile devices and the game’s hosting server, is

necessary to use a technology that support the game without long delay response, and the

way how the data in the server and in the client is managed.

2.3.2.1. Peer to Peer

This architecture of a network where every device connected exchange information

between them apart if someone is a server or a client [56]. Additionally, for Real Time

Strategic games this architecture uses a deterministic lockstep that helps to simulate a

player behavior and to synchronize the communication between devices only sending

individual commands such as clicks or points over a game.

However, the architecture with the lockstep was thought only of local network games, this

could bring a high latency to the players. Firstly, due to the connection status, and finally

cause of the simulation of the game.

Moreover, the architecture allows to a component in the middle to run a soft controlled

instance of the input based on the previous state sent. This soft instance can be managed

with the games rules whenever a command triggers an event or is not permitted. The

component will notify the participants of the game only the commands form the other

players; this will allow a faster way of respond to results. Thanks to this, the architecture

allows to create real time communication between the devices, allowing to decouple the

dependency of a stable network connection.

The following figure illustrate the basic architecture model based on the Napster sharing

network design:

Figure 13: Peer to Peer architecture from Napster[16]

18

The architecture purpose is to use a light server component that allow to the clients to

communicate in a peer to peer way helping to synchronize the lighter data as an

intermediate cooperator between them.

2.3.2.1. Client/Server

The Client/Server architecture for multiplayer videogames is based in a soft client and a

heavy load server, where every client that is playing does not execute locally in the client,

but a soft instance of the game is paired with the information of the server. With this, the

client must work in order to update with the server’s multiple responses done from other

players. This allow to have a great performance in the client side, but it depends on the

state of the connection of the players with the server, for this case this can bring a lot of

latency in to the game, due that the clients will receive the update until the slowest client

send information to the player.

The implementation of a distributed architecture for interactive multiplayer games by

Ashwin R. Bharambe, Jeff Pang and Srinivasan Seshan[17], gives an explanation of the

development of a First Person Shooter named Colyseus. In their research, the authors

propose an architecture for the nodes involved in the game that help to organize the data

of the game and the interaction between the nodes. This can help to develop the

architecture of the server of the game and to adapt the client structure to the structure

developed in the Table Me application.

The following architecture (Fig. 5) shows the architecture of the nodes in the Colyseus

game. This can be used as a guide of the main elements for the server and for the client. In

first instance, this architecture is based on the Model View Controller (MVC) [57], with

the game application as the view, the local object store as the model and the object placer

and locator as the controller.

Figure 14: Architecture of components of Colyseus, (Figure 4[17, p8])

In the architecture referred, the nodes represent a set of important elements to have in the

client and in the server. In this case, the node 1 acts as a client and the node 2 as the

server. The elements are structured by the following way:

 As said before, the game application act as a view for the client, using the model to

represent the game engine or application, displaying the information of the game

stored in the model.

19

 The game application act as part of the controller in the server, using and

administrating the primary data of the game.

 The object locator helps to a node to discover the objects that are involved in a

primary interest. In the case of the Table Me application a new game, challenging

a set of players.

 The replica manager is in charge of have a loosely-synchronization[17] of the

replicas of the nodes and objects involved in the primary interest. In the case of the

Table Me application, it would be managing an instance of the replica of a node

involved in a game in an instance created on run time.

 Object Store, where is managed the storage of the node’s information and

additionally releasing memory of data not needed.

2.3.3. Communication technologies

For a multiplayer game is necessary to have short time response communications. For this

reason, it would be necessary to use real time communication to be able to ensure a

minimal time of response between Client and the Server. In addition, it is necessary to

guide the solution to implement a real time system.

A real time system responds to stimuli of an environment in an established time, as well as

ensuring the integrity of the data transmitted. Among real time systems, we find different

categories: the hard real time systems are those where response times must be always

respected, because can they can be involved in life threatening environments that need a

fast answer. Firm real time systems can miss some of the deadline times, but it does not

affect the environment where the system is. However, the performance will eventually

degrade if too many responses are missed, leading to degrading the system as well: so

different time limits must be set regularly, such as seismic or temperature sensors.

With a real time, system, which also is distributed, the communication becomes more

complex, because now it needs to consider the network infrastructure upon which the

system is running, and (as the data is sent) is assured that the communication is still in real

time.

To address the above, it is necessary to check the real time protocols: these protocols

allow us to transmit data within a stipulated time. There exist various implementations,

suitable for the different scenarios, each of them has advantages and disadvantages.

Likewise, many different technologies help us to achieve the above. The most important

one of these are Long Polling and Web sockets.

With respect to these technologies, we know that these three are used to achieve the

improvement needed based on a web application or a library on a mobile application.

2.3.3.1. Long Polling

The Long Polling technology is based on the usage for single purposed software for low

level hardware communications. This technology simulates a real time communication

through continued use of the http requests to a server using AJAX for web development of

20

interactive applications. To achieve this, the client establishes the connection with the

server asking if there is any update. Then the server replies with the updates (if any) [41]

[33]. Upon receive the response the client establishes the connection again and requests

next possible updates wait for any new information from the server. All the connections

managed by the server are stored in a data base where the server needs to query the

client’s connection each time a new request is received. This base protocol has the

disadvantage of high consumption of resources processing and I/O operations between the

data base and the clients, that must be used whether or not there are updates for clients. In

the Long polling implementation, when the server receives a request it waits some time to

send the response, although, the disadvantage is that it uses network resources constantly.

Additionally, if multiple clients are connected, the server will have a high load of work

just checking the state of the clients taking too long to answer. The following figure

illustrate the behavior of the Long Polling technology.

Figure 15: Long Polling [58]

To be able to manage the technology in android, it is necessary to use it with normal

HTTP request. However, the management of the response time must be done

programmatically to be able to repeat the responses in case of failure.

2.3.3.1.1. AJAX Long polling

The Asynchronous JavaScript and XML (AJAX) technique is used for applications that

are highly interactive with multiple users. This technology operates by only sending

additional data that trigger different actions in the client, without sending multimedia

content. This method of communication uses the long polling thanks that keeping the

connection alive in background, updating the user interface whenever a new state is

received from the server [49]. The technology uses XML HTTP Requests as standard to

communicate between clients, so it can be used in different platforms that use Java as

minimum.

AJAX can be use with long polling where, as said before, the client keeps the connection

to wait for the server response, when the client receives an update it immediately asks for

another long poll request to keep the connection. The following figure illustrate the AJAX

Long Polling behavior.

21

Figure 16: AJAX Long Polling behavior[19]

However, the drawbacks of this mode of use is the constant use of resources as said

before, and the client needs to initiate always the communication to be able to receive and

send data (not event based). Additionally, the server needs to be sending data often, or the

clients could have a memory overflow with the channel opened all the time consuming

memory and processing.

2.3.3.2. Web sockets

Web sockets are the technology that closely resembles the real time communication,

without the resource consumption that the Long polling uses. The web sockets open a

bidirectional channel between the server and the client on a single TCP connection, with

that the server will send when necessary any update to the client without overloading the

network of multiple requests. In first hand, this technology was used for browser use only,

however with the latest development on this technology it is able to use in any type of

server and client across multiple platforms, offering not only a great performance, but

security and scalability attributes for the developing. In this manner this technology allows

to implement massive platforms such as multiplayer interactive videogames.

The following figure show the behave of the Web Sockets technology.

Figure 17: Web Socket Architecture [58]

This technology offers a wide portfolio of solutions that easy up the communications

through different quality attributes. In the security area, the Web Sockets can be used in

encrypted connections between points, allowing secure communication using a TLS

connection. This implementation is named Web Socket Secure. In the reliability part, the

22

technology offers a transparent connection, that use automatic reconnection to the clients

and a trustable message sender that is aware to send the right messages to the clients in the

correct time. In top of this, to improve the usage of memory the Web Socket server

manage an array of the connected nodes in the application’s memory, allowing to reduce

I/O operations, differently than as it is used in Long Polling.

As said before, the web sockets are developed multiplatform, and there are multiple

implementations that can be used in different environments, then the best solutions for a

multiplatform system are the Web Socket Node, Stream Socket and Socket IO. However,

the Web Socket Node just use an implementation for Node JS client or server, but not

support for multiplatform. In the other hand, Socket IO allow to be used in the mobile

development environments for Android and IOS, and in various languages for the

standalone clients or servers in using JavaScript. In addition, Stream Socket can be used

by sending normal HTTP requests

Eric Terpstar had develop a prototype of a multiplayer game using web sockets,

implemented in a library named Socket IO [48]. This implementation is done in node JS

and express JS allowing to play the game through a browser, either from a phone a smart

tv or a computer. The game is called anagrammatix, and is a real time system for a

multiplayer game, where the players compete in a short time to find an anagram word in a

list of words. The players must find an anagram in the list based on an initial word with

the same letters given at the start of the game. This game shows a simple and complete

implementation of how to use Web Sockets in a library able to support the technology

handling the main features for the communication letting the user have an easy to use

implementation.

2.3.3.2.1 Socket IO

Socket IO is a Java Script framework cross platform that allow real time communication,

and open source. Since with the 1.4.5 release available it allows to deal with

compatibilities between browsers and devices [48]. Additionally, Socket IO manage a

library for android where can be used as easy as in the Java Script implementation. This

library communicates through events associated to a socket that are executed in a new

process each time a new event is received. This allows to handle concurrency issues more

easily. To the scalability of the server, Socket IO does not store and replicate data about

the connected clients, it just manages the events that are received and associate them with

the right nodes. This part is managed by the emitters that accept the connections and are in

charge of send and receive the right messages to the clients and the server. The multiple

implementation of the emitters in different environments, allow to an easy integration for

a cross platform application.

The implementation of the Socket IO uses a single TCP connection that is kept alive using

a small heartbeat message that allow to know through events when a client is connected,

reconnected or disconnected that allows in a more assertive way to know when a

connection is terminated. Additionally, to this, Socket IO, have a more refined

implementation of interconnection of clients independently the network error due to the

disconnection.

Socket IO have been managing an upgrade/fallback algorithm in the latest releases that

supports the type of connection that is needed depending of the client’s compatibility. If

the user has compatibility problems to use Web Sockets, Socket IO uses the algorithm, in

the other case, the connection is totally done through Web Sockets. In the initial

23

connection a Long Polling implementation is used, applying the improved memory

management approached explained before. After a connection is completed, the algorithm

tries to upgrade the connection to a Web Socket connection, keeping the channel alive and

closing the Long Polling session. If the upgrade is not possible the communication is done

through Long Polling behaving as the Web Sockets.

2.3.3.3. Technology benchmark

Finally, to be able to select correctly Socket IO for the development of the Back End of

this project, there are the following benchmarks done by Cubrid Apps & Tools, where

they explain and show the best solution to use for a server using real time communication.

This first benchmark shows quantity of messages sent in a certain rate of microseconds, it

used a server using AJAX that a similar implementation as with Long Polling with a

persistent data base of connections, a server using Socket IO and a server using Socket IO

but using persistent data base for the connections. These are the results:

Figure 18: Speed Benchmark for AJAX persistent server, Socket IO server and Socket IO persistent

server [49]

This shows that for small traffic the three implementations can be used in the same

manner, however when the load increases the Socket IO implementation improves due to

the lack of I/O operations with any connections database.

Now knowing the performance in the speed sending messages, now is necessary to know

the capability for having concurrent clients using a server that is very relevant for this

project to be able to host multiple matches without losing performance. The following

benchmark done by Drew Harry, who perform a set of test showing the concurrency

capacity of the Socket IO implementation, receiving and sending messages with different

loads, in a certain rate of concurrent connection from 25 to 1000 connections, within a

roundtrip time. These are the following results.

24

Figure 19: Concurrent Benchmark on Socket IO server, number of messages sent by roundtrip time

in different concurrent rates[20]

The main focus of this benchmark shows that by the higher concurrency level, the load

takes a longer around trip but it is not related with the message load, however, the

response times maintain the same distribution regardless of the load of the data sent, but it

depends on the concurrency level. Showing that this time difference between the higher

concurrent cases adds 100 ms that is manageable and not very costly for the application.

Finally, in conclusion the Socket IO solution would help to support a multiplayer game,

with a low delay of sending messages and a high support of multiple connections with

different load of data sent and received from the clients. Additionally, the Socket IO

implements multiple features that complement a cross platform solution with backwards

compatibility support in real time communication, reliable connections and security

features.

2.3.4. Graphic User Interface Design for Android Wear

For the development in the smartwatches using Android wear, google have developed a

set of design principles for the user interface design and performance in the following

way:

 “Focus on not stopping the user and all else will follow” [21], this explains that as

a smartwatch it has to be a device that allow to the user to do different tasks

without stopping him/her from the normal flow of actions.

 “Design for big gestures” [21] or big thumb principle design, that explain that is

necessary to be careful about the user interaction in different situations where the

interface has to be proportionate and easy to use. For this, Google advise to use

large interactive targets such as buttons or lists so the user can use easily.

 “Think about stream cards first” [21] As said before in 2.2.1. Android Wear, the

smart watch uses a steam cards that shows information and give features from

applications of the mobile device. For this is necessary to know when the design of

the application must use cards to show events from applications, cloud services or

sensors.

 “Do one thing, really fast” [21] An application will be used for small periods of

time, but is used multiple times a day, the application to be developed must show

25

potential but short information with few action buttons, allowing the user to use

the basic actions such as swipe left or right.

 “Design for the corner of the eye” [21] The application must not pull out the user

of his/her normal flow, the application must be design to be used quickly so the

user can return to do what it was doing.

 “Don’t be a constant shoulder tapper” [21] Do not constantly notify the user using

vibration actions to alert him. Notify him when is necessary.

This applies to single applications and stream card applications. Additionally, Google use

it for design principles for notifications in the stream card of the watch, for this the

notification can manage a style that is customizable that allow to use different actions in

concatenated cards using intents for a specific activity or to trigger a next card

concatenation.

26

3. Analysis

3.1. Proposed model

The proposed solution of the system using the user’s smartwatches to involve features of

the Table Me application will require existing components and new ones for its

development. Due to the previous implementation of the Table Me application, the JOL

(Joint Open Lab) manage a server in which all the system data is stored and request

through HTTP. Thanks to the server implementation, the solution counts with the user

information such as profile data, match history and leader board as it was used before. To

complete the solution, it would be necessary to complement the server with an additional

component that will be in charge of hosting the multiplayer platform. For this, is

necessary to note that is needed an internet connection to be able to use the previous

server such as the new one.

 The following model show the principal elements needed for the solution.

Figure 20: Proposed Model

Moreover, the multiplayer component will require the usage of the Google Cloud

Messaging to push notification to the devices to alert a user when is asked to participate or

not in a game.

In addition, the communication between the smartwatches and the mobile devices will be

through Bluetooth connection, this to support the previous smartwatches that only have

this channel to connect with the phone.

3.1.1. Distributed gameplay

For the implementation of the distributed gameplay it will use a Peer to Peer architecture

approach, based on the lockstep addition to this architecture, instead of using it for the

27

prediction of the users moves, it will be used to control a match allowing a user that use

the application in the mobile device to host the game and communicate to the participant

players. Additionally, it is taken in account the architectural implementation for managing

the game’s data done in the game Colyseus shown in the Figure 14.

The final system will use a real time technology for the communication with the client’s

mobile devices, and will require the usage of the services from Google Cloud Messaging

to push notification to trigger the events in the clients to be able to start or join a

distributed game. It is important to note that it will be necessary an internet connection to

be able to use this feature, if not the user still would be able to host a game in a single

mobile device as the previous implementation.

For the gameplay experience, the user that create a game has total control of the match as

a referee, in his/her mobile device. Meanwhile, the players with smartwatches that join the

game, can manage their own scores from the Android Wear device. However, if the

referee doesn’t allow a goal it can dismiss it from the phone. Finally, at the end of the

game, if the match creator scores the winning goal and decided to accept it, the players

will be notified and the game will end. In case that a player scores the winning goal from

the smartwatch, it will have the sale behavior as before and all the players and the match

creator will be notified of the winner.

3.1.2. User information management

The management of the user information is done through the server hosted by the JOL

(Joint Open Lab), and all the communication is done by a component named

Communication Manager, used in the Table Me application. For the implementation of

this section it is necessary to integrate and reuse the functionalities of the Communication

Manager when the user request it from the smartwatch. For this is necessary to use the

Wearable Listener Service [10] to receive the events from the smartwatch and return the

correct information of the user.

3.2. Software prototype

Through the design phase and the correspondent evaluation, it had been able to recollect

and represent the use cases and its respective requirements to describe the prototype’s

features and behaviors to be develop. To develop this, it had been done a Software

Requirement Specification, that show how was the process to define the use cases, the

respective requirements and the prioritization of them to identify their relevance to give a

precedence order to the most complex cases to implement. The document is in the

following annex: Software Requirement Specification.

The next sections will show the analysis and design of the integrated prototype of the

Table Me application before being programmed.

3.2.1. Use cases

The uses cases were developed using a process defined in a Software Requirement

Specification document (Annex: Software Requirement Specification) where had been

organized how will the use cases and the requirement derived from them were obtained

and refined to create the final product.

28

The recollection of the use cases and the requirements was done based on the description

of the game given by Marco Marengo, Cecchi Gian Luca and Alessandro Izzo

knowledgeable people that through a series of reunions had explain application

functionality and the desired features to be implemented with the Android Wear

technology. Additionally, the usage of the actual working application in the testing

version on the Google Play Store. From this was developed a description of the main

features and their principal elements.

3.2.1.1. Actors

The stake holders involved in the system are the following:

Actor name Description

Player A user of the Table Me application that is challenged to play a

game. This user has a smartwatch and the Table Me application

installed on it. This player is involved as a client in the interactive

multiplayer game managing his score in the game.

Match Creator A user of the Table Me application that create and host a game,

managing the team’s scores from the mobile device. The host as a

player too, is able to use the smartwatch if participate in the game,

as well using the application in the phone (noting that in the

smartwatch will be only the personal score).

GCM Google Cloud Messaging a service from Google that provide push

notifications feature to the server and the player’s mobile devices.

JOL Table Me

Server

The server of the previous implementation of the Table Me

application where all the data is stored and requested of the users

and their games.

Table 1:Actors

3.2.1.2. Use case description

After the recollection and refinement of the user’s information and necessities, the use

cases were classified in the following categories depending on the phase that are

developed:

Phase Description

Menu options Requirements about displaying the profile information, match

history and leader board.

Game preparation Requirements about the process to prepare a game and notify

the players that will be involved in the game.

Connection Requirements about the connection between the server and the

mobile client, and the mobile client and the smartwatch.

29

In game Requirements about a current match with or without multiple

players, hosted by a user of the Table Me application.

Game end Requirements about the finishing phases of a game.

Table 2: Phases of the Table Me application

Based on the previous information the use cases stated for the implementation of the

system are the following:

ID Use case name Phase

UC-001 Synchronize wear data Initialization

UC-002 Register device to the server Connection

UC-003 Create a match Connection

UC-004 Send notification to a device Game preparation

UC-005 Select red team Game preparation

UC-006 Select blue team Game preparation

UC-007 Use GCM service for a token Connection

UC-008 Receive challenge notification Game preparation

UC-009 Show challenge notification Game preparation

UC-010 Accept challenge In Game

UC-011 Start match Game preparation

UC-015 Add goal In game

UC-018 Update score In game

UC-019 Display score In game

UC-020 Select winner Game end

UC-021 Display winner or loser Game end

UC-024 Show profile data Menu options

UC-025 Show leader board Menu options

UC-026 Show matches history Menu options

UC-027 Notify player ready Game preparation

UC-028 Register player ready In game

UC-030 Register player decline In game

UC-031 Create match Game preparation

UC-032 Cancel match Game preparation

UC-035 Reconnect wear Connection

UC-036 Reconnect player Connection

UC-037 Add auto goal In Game

UC-038 Request user information Menu options

UC-039 Request leader board Menu options

UC-040 Request match history Menu options

Table 3: Use cases

 The use case diagram is in the following diagram: (Annex: Use case diagram)

 The total description of each use case is in the following file: (Annex: Use case

specification).

30

3.2.2. Requirements description

After defining the use cases, the requirements for the development of the scenarios

planned where collected and evaluated to check their correctness and priority. This section

has been done in the Software Requirement Specification (Annex: Software Requirement

Specification), where is a specification of each requirement and its dependencies.

 From that, it was produced the requirement classification based in the FURPS+ model

[22] to organize their types. The main two groups are the functional requirements and

nonfunctional requirements, the correspondent specification of each one is done in the

following files:

 Functional requirements: (Annex: Functional requirement specification)

 Nonfunctional requirements: (Annex: Nonfunctional requirement specification)

3.2.3. Data model

The system already manages a data model that uses the server and the Table Me

application to share information. The relevant issue is how to use this model to represent

the data that will be sent to the smartwatch when the user requests his profile information,

his match history and the general leader board. Based on the previous model, it has been

design the following data model that will be used to organize and structure the responses

from the server to send the correspondent information to the smartwatch.

31

Figure 21: Data Model

3.2.4. Programming language for the server side

For the implementation of this project’s server, it had been decided to be developed in

Node JS for the easy use of the Java Script language that allow thanks to the callback

based concurrency [49], the event based model used in server side and the ability to

encode and decode data in JSON format. Additionally, the technology of Socket IO [33]

and Stream Socket can be managed in this environment. Moreover, it will use the library

of Socket IO due that its multiplatform facilities with libraries for Android and Java

Script. Thanks to the benchmarks between the Long Polling technology using AJAX and

the Socket IO implementation, it has brought to a clear window of which technology can

give to the architecture of the system a better performance through the gameplay

experience.

3.2.5. Architecture

The logical architecture of the system follows the structure of the proposed model shown

in the Figure 20. Based on that, the deployment of the system will be done in the

following way shown in the physical architecture:

Figure 22: Physical Architecture

The multiplayer Table Me Server will be deployed in Node JS. The deployment for the

mobile devices will be in an Android Application Package (APK) for the phones and for

the smartwatches.

Concerning the communication of the system it is important to remark that as said before,

the usage of the previous implementation of the Table Me application and the server

developed for it will be used, all the communication is managed by a Communication

32

Manager via HTTP request to the JOL Table Me Server, this is used for the storage of

permanent data such as matches results and retrieving profile information of any player.

For the multiplayer Table Me server the communication will be done using web sockets

with the implementation of Socket IO using the libraries for Node JS in the server side

and Android for the client side. More over the usage of the Google Cloud Messaging

service to push notifications will be managed only by the server due that is the component

that knows all the players registered in the system, then the Table Me application will

receive the notification using the library provided in Google Play Services to receive a

notification as explained in 2.3.1.1. Notifications using Google Cloud Messaging.

Finally, the communication that will be used between the phone and the smartwatch will

be through the Bluetooth connection using the Wearable API for the communication. The

usage of this library is due that allow an effective communication for remote procedure

calls using the Message API, for functionalities in the mobile device; and for the

synchronization of heavy loads data with the Data API. The Channel API won’t be use

due that can generate memory overflow due that reserve a part of the smartwatch memory

to save a copy of the data sent from the phone, and is dedicatedly mostly for the transition

of files.

3.2.6. Features and technical aspects

The deployment and installation of the server will require for recommendation the Node

JS environment from version 4.4.4 onwards. After the installation it is required the

following libraries:

 Socket IO, for installation is necessary to type the following command “npm

install socket.io”.

 Google Cloud Messaging, for installation is necessary to type the following

command “npm install node-gcm”

For the deployment of and installation of the libraries for the Table Me application in

Android and Android Wear are done in the gradle build of the application adding the

following dependencies:

 Wearable API, compile 'com.google.android.gms:play-services-wearable:8.3.0'

 Socket IO, for this library the application contains the version 0.7.0 for Android

that is compatible with the version 1.0 onwards of the JavaScript implementation.

This library was developed by Naoyuki Kanezawa, if a new version is needed can

be downloaded from Naoyuki repository:

o https://github.com/socketio/socket.io-client-java

And would require the following dependency in the gradle build, where “x” is the

version of the library:

o compile('io.socket:socket.io-client:x) {

 exclude group: 'org.json', module: 'json'

 }

Finally, for the interfaces developed for the smartwatch application has two layouts for the

different types of watches such as the square or the round ones. For this, it has been used

https://github.com/socketio/socket.io-client-java

33

watch stub views that allow to set which layout will be displayed if is used in a device

with a round or square screen.

3.2.6.1. Profile information on the smartwatch

After opening the application, the user can use a list of option to select about the user’s

profile information and the game. The profile option shows in a similar way as in the

Table Me application the basic information of the user. Firstly, the photo, the position in

the leader board inside a badge, two bars that indicate proportionally the number of

victories (green bar) and number of lost games (red bar). The at the end the name of the

user and his/her ELO score.

Figure 23: Showa player profile in the smartwatch screens

3.2.6.2. Gameplay on the smartwatch

After a user that will host a game organize and create the team, a notification is issued to

the participants of the match will receive a notification in their phones and to their

smartwatches if they have one. At the watch the following notification is displayed.

Figure 24: Notification displayed in the smartwatch for the players.

Then, when the user start playing the game, the screen with the buttons where the player

can interact with the score is provided, with a button to add a goal in the center, a dismiss

goal button at the left bottom and an auto goal button at the right bottom. The user can

interact with them and the score is displayed in the results displayed in top of the screen

with its respective colors of the team.

34

Figure 25: In game screens for the blue team and the read team, and the screens for victory and lose.

Finally, in each case the users of a team win or lose a match the following screens are

displayed in the smartwatches using a base badge with their goals scored.

3.2.6.3. Match history on the smartwatch

When the match history option is selected, the user is provided with a brief list of the last

ten matches that he/she was part of. Each match is signaled with a cross and the message

“Lost!” if the player lost that game, or a check and the message “Won!” if the player won

the game. If the player wants to know a more detailed information of the match, it is

possible to click an item on the list and will provide a screen with the background color of

the victorious team, the score, and the photo of the participants. If the user wants to see

the players profile information, he/she can click on the image and the profile information

will be displayed.

Figure 26: Showa player’s match history in the smartwatch screens

35

3.2.6.4. Leader board on the smartwatch

When the leader board is selected a list of the ten first places in the leaderboard is loaded

and take between 3 to 4 seconds. After waiting, the list displays the basic information of

the player in the displayed position with his photo, name and position in a badge. If the

user wants to see the profile of the player in a certain position, he/she can select a player

in the list and it will show the basic profile information of the player.

Figure 27: Showa player leader board in the smartwatch screens

36

4. Development of the Solutions

The solution modeled was based on the previous Table Me application, that was studied to

identify the main items that the new items will interact and the new functionalities in the

already implemented in the first application.

The following domain model (Annex: Domain Model) illustrate the whole solution for the

mobile application, the smartwatch application and the server. The next sections will

describe the individual implementation and behavior of the solutions on each device.

4.1. Server

4.1.1. Class diagram

Figure 28: Multiplayer Server Class Diagram

As explained before the server uses the Socket IO and the Google Cloud Messaging

libraries. The Socket IO offers two interfaces to communicate via web sockets to a

singular client using socket or io.sockets.connected that are the set of active connected

sockets.

The server contains two important elements of the data model that are the ones that

intervene in the lockstep control of a match, the game and the device.

 Device, the device is the representation of a user of the Table Me application, this

is used following the implementation proposed by Google for the device

registration for the usage of Google Cloud Messaging. Additionally, is the soft

replica of a user from the JOL Table Me Server, this replica is destined for

multiplayer matches and pushing notifications following the architecture of the

game Colyseus[17].

 Game, an exact representation of a match from the Table Me application for the

phone, to control the score and the goals scored by the players, this is a soft

replica to control following the architecture peer to peer and for the game

Colyseus[17]. The game contains the score information of a match for each

player, knowing when someone score a goal or an auto goal, helping to keep track

37

of a match. Additionally, this instance contains attributes that allow to follow if at

least one player with a smartwatch wants to join a match and if the match has

ended. Finally, for the representation of the players the id is the only information

stored and the id of the web socket connection is stored for the players and the

host of the match.

4.1.2. Server event behavior

The implementation was done based on events as the Socket IO library determine. The

server manages the events based on a key string. The events relevant for the multiplayer

server are the following:

 Device registration (“dev_reg”), the event registers a device that has a new

Google Cloud Messaging token. The phone must send the player’s id from the

application, and the token retrieved from GCM. After receiving the data, the server

creates a new device if there is none existing with the same information. The

server checks if the user was registered before, in that case if the token changed

from the one registered before, the device is updated.

 Send notification (“send_not”), after the user that host the match create it, a

request for sending the notification is received checking if the players are

registered and if they contain the GCM token to be able to push the notification of

a new game. After that revision, an instance of a game based on an id counter is

created and stored in a set of active games. The game id is returned to the host and

notified to the players inside the notification message. Finally, the server sends the

request to the service in a JSON object doing a retry of 10 times in case of error.

 Set the match host (“set_host”), after the user that host the match create it, the

application notifies the server that the user will be the match host setting the web

socket id of the host in the game.

 Register web sockets (“reg_socket”), after a player accept the challenge of a

game in the smartwatch, the application registers the player in the server,

initializing the game for multiplayer if at least one player with a smartwatch send

the registration request. After that, the game start sending the actual score of the

game (at the beginning on zeros), to all participants. This event is reused in case a

player reconnects to the server.

 Adding and dismissing goals (“add_goal”), during a match the players and the

host will interact sending multiple commands to the server about the match

behavior, the command sent contains the id of the game, who did the command

and which type. The server searches if the game id is active and then verify who

did the action, updating the score and checking if a team won notifying the players

in each case. If a team win the game is removed from the active games and the

application in the players end the match.

 Dismissing a game (“game_end”), if the match host dismiss a game that have not

finished yet, the players are notified so the application is closed in the

smartwatches.

 Disconnection of a player or host(“disconnect”), if a player is disconnected is

removed from the array of player’s sockets and later on can rejoin the game by

registering the socket. However, if the host disconnects the game is finished.

38

 Retrieve last match(“get_match”), if the match host minimize the application, the

service in the mobile device continues managing the game. If the host return to the

application, the data is updated with the match instance in the server.4.2. Mobile Client

4.2.1. Class diagram

Figure 29: Table Me Domain Diagram

The Figure 29 illustrate the domain diagram of the application for the mobile devices.

This diagram shows the developed items for this project and only the items used from the

previous version of the Table Me application. To see the complete diagram (Link here).

The implementation for the mobile application is constituted mainly by the following

elements:

 Elements from the previous implementation:

o Match, representation of a match with the complete information of each

player retrieved from the JOL Table Me server.

o Communication Manager, manager of the HTTP request to the JOL Table

Me server to retrieve profile data, the history matches and the leader board.

o Dashboard Activity, activity that manage the layout of the home view of

the application for the user, allow to see profile information, leader board,

match history and create a new game. This activity is used to register the

device using the Google Cloud Messaging [6] service and sending the

information to the multiplayer server.

o Game Activity, activity that manages the layout for the player selection for

a game, the game management and the final results when a team wins. This

activity is in charge of multiple task for the creation of a match to be used

by the host and to notify the players. Additionally, direct the game score

based on the host and the player’s actions.

39

 New elements:

o My GCM Listener Service, a service that is initialize when a notification is

received from the Google Cloud Messaging [6] service, and the message

received has the game id and the participants of the game to inform the

player in the smartwatch. For this, first a brief notification is raised in the

phone and the Game Service is started to send a message to the smartwatch

to raise a notification with the complete information of the message.

o My Instance ID Listener Service, a service that is activated when the

token from the Google Cloud Messaging [6] service using the Registration

Intent Service to register the token to the server.

o Registration Intent Service, a service that register a device in the Google

Cloud Messaging service and sending the information to the multiplayer

server.

o Wearable Listener Service, a service that is active when a message or a

data map is sent to the phone from the watch. This service receives the

remote calls and start the Game Service with the required feature to

execute depending on the message. In most, the service is used to receive

request for the profile information, leader board, and match history.

o Send to Data Layer Thread, a custom thread that send a data map using

the Data API from the phone to the smartwatch.

o Game Service, the main service that contains the features for the

communication with the smartwatch. This activity handles the information

transfer with the Message API for sending and receiving remote calls to the

smartwatch, and sending data with the Data API. The game service uses

the Communication Manager to retrieve data from the JOL Table Me

server for the profile, leader board and match history information.

Additionally, the serve manages the communication with the multiplayer

server for sending commands of a game. Concerning the game data, the

service has a soft instance of the match following the architecture of the

game Colyseus [17].

4.2.2. Mobile event behavior

The mobile implementation has two type of events received, from the smartwatch and

from the server using Socket IO.

 Socket IO events

o On Game Service

 Update score (“add”), when the server sends a score update the data is

separated and sent to the smartwatch with only the total score. If a host is

using the smartwatch the event is received and a broadcast is sent to the

Game Activity to update the layout.

 A team won (“winner”), when a team wins the message is separated and is

checked if the current player of the device is part of the winners on the

40

message, then the message of victory or lose is sent directly to the

smartwatch.

 Game ended by the host(“res_game_end”), if a game is closed by the

match host without finishing the game the smartwatch is notified to close

the application.

 Disconnect, if a player disconnects with the server a flag to reconnect is set.

 Reconnect, if a player reconnects with the server the web socket is

registered to the server.

o On Game Activity

 Sending notification response, after sending the request for pushing

challenge notifications to a set of players, the answer of the server is the

game id of the instance created in the server.

 Message API events

o Player ready, a player has accepted a challenge notification and wants to

join a game, then a web socket registration is sent to the server.

o Add or dismiss a goal, the type of command is received (add goal “+”,

dismiss goal “-” or auto goal “a”), and is sent to the server with the id of

the current player.

o History detail, in the match history feature if the user requests the info of a

match, the application will retrieve the data of the players with the

Communication Manager, then sent in a data map to the smartwatch.

4.2.3. Sequence diagram of the behavior of the Game Service

The Game Service is the manager of the functionalities with the smartwatch and the Game

Activity manage the creation of a match, for this reason is necessary to do an emphasis of

the basic behavior of the implementation for each functionality. Based on the previous

explanation of the event behavior, the following diagrams illustrate the order how they are

invoked in each phase.

4.2.3.1. User registration with the GCM token

Figure 30: Device registration of the Google Cloud Messaging service token

41

When a user opens the application after logging in through the JOL Table Me server, the

Dashboard activity is displayed, at the beginning on the creation of this layout the device

registers to the Google Cloud Messaging service obtaining a token that is sent to the

server with the id of the user.

4.2.3.1. Send challenge notification

Figure 31: Sequence diagram for sending a challenge notification to a player

The match creator from the Table 1:Actors is the actor in charge of creating a match with

the mobile device, after starting the Game Activity, the data of the teams is collected

through the Communication Manager and after the selection a request notification is sent

to the server with the key string “send_not” and the server send a message with the game

id and the participants to the Google Cloud Messaging with the tokens of the players.

4.2.3.2. Receive Challenge Notification

Figure 32: Sequence diagram for receiving a challenge notification from Google Cloud Messaging and

showing it in the phone and the smartwatch

42

When a notification arrives from the Google Cloud Messaging, the service My GCM

Listener Service start and show a brief notification in the phone and send the message

through the Data API using Send to Data Layer Thread, to the smartwatch to raise a more

detailed notification in the watch. After the player from the Table 1:Actors, sees the

notification and accepts the challenge the Game Service start, then it proceeds to register

the web socket to the server and after that the player begins to receive updates from the

server.

4.2.3.3. In Game

43

Figure 33: Sequence diagram for adding goals, auto goals and dismissing a goal during a match intthe

smartwatch

This phase is based in the interaction of the player with the smartwatch in the Game

Activity, tapping in the different options (add a goal, add an auto goal or dismiss a goal).

After a player tap on a button the smartwatch communicates with the phone to send a

command to the server to update the score. When a team wins the result is sent to the

server so every player is notified of a victory with the list of players that won the match.

In the case of dismissing a goal, the Match object take care of decrease properly the score

and as before the score is sent to be updated.

44

4.2.3.4. Show profile information

Figure 34: Sequence diagram for showing the profile information in the smartwatch

When a player opens the application in the smart watch and select the profile option, the

phone is notified with a remote call using the Message API. After receiving the request,

the phone start the Game Service and send the current information of the player registered

in the device. All the relevant information (photo, name, elo and position) is sent through

the Data API to the smartwatch, finally is displayed to the user.

4.2.3.5. Show match history

Figure 35: Sequence diagram to show the match history in the smartwatch of the player of the device

When a player opens the application in the smart watch and select the match history

option, the phone with the Message API as before. The application uses the

Communication Manager to retrieve the list of last ten games of the player. Then the score

is selected and sent through Data API to the smartwatch. After that, if the player wants to

see the detail of a match, the watch notifies with a remote call to the phone and the Game

Service will receive the request of the information of a specific match. With that, the

45

service searches the information of the player’s participant on the match and all the

relevant information of the four players (photo, name, elo and position) is sent to the

smartwatch.

4.2.3.6. Show leader board

Figure 36: Sequence diagram for showing the leader board in the smartwatch

When a player opens the application and selects the leader board, the application is

notified via Message API with a remote call and the Game Service start and retrieve the

list of players organizing them by the position and selecting the first ten players. The all

the relevant information (photo, name, elo and position) is sent to the smartwatch and

displayed in a list with the photo, the name and the position in a badge with a distinctive

color for the first three players. Moreover, if the player wants to see the profile

information in detail of a player on the leaderboard, after clicking it on the list, the profile

layout is displayed with the information of the specific player.

46

4.3. Wear Client

4.3.1. Class diagram

Figure 37: Table Me Wear Domain Diagram

The wear application for the smart watches was design to only deal with communication

management and a light processing load of work that will be done by the mobile

application. The application is directed by the Wear Lobby Activity that is the activity that

manages the home layout of the application, and the Listener Service that receive the

remote calls and information from the phone. Moreover, the communication relays only

on the Wearable API through the Bluetooth connection between the devices. To see the

complete class diagram, Annex: Class Diagram.

The next activities to be explain send a remote call through the Message API to invoke the

Game Service in the phone so it can send the requested data in a data map through the

Data API. Each activity creates an individual connection with the phone and receive the

information.

The following elements are the structure of the Wear client.

 Listener Service, a service that start when receive a data map through the Data

API, the service is dedicated to start the Game Activity when a match start or a

player accept a challenge and to rise a notification sent from the phone.

47

 Wear Lobby Activity, the home layout when the user opens the application with a

list with the options profile, match history, leaderboard, achievements and exit.

The user can select the options and it will be redirected to the activity with the

required information.

 Win Activity, activity that control a layout that shows when a team win or lose a

match with the final score.

 Profile Activity, activity that control a layout that shows the relevant information

(photo, name, elo and position) of a player. This activity is reused to show the

detail of any other player in the leader board or in the match history.

 Leader board Activity, activity that controls a layout that shows in a list the ten

first positions in the leaderboard with a photo, the name of the players and the

position in a badge. If the user clicks on any of the players in the list, a detail of the

selected player’s profile is shown.

 History Activity, activity that controls a layout that shows a list of the ten last

games played by the user. The list shows the score and an indicator if the user won

or lose the game

 Detail History Activity, If the player clicks to see the detailed score, an activity

will rise with the photos and positions of the teams and the score. Additionally, if

the user clicks the photo of any participant player it displays the profile

information of the selected player.

4.4. Tests

The applications were tested in every iteration of the development to assure the fulfillment

of the use cases and main objectives of the project. When the functionalities of the

application were finished, they were tested multiple times and the test were done

incrementally (every item developed was always re tested together with the previous items

to verify their behavior).

The following are the tests done during the development to ensure the completion of the

objectives.

4.4.1. Use case testing

Functionality Use Cases tested Description of tests

Show profile

information UC-001, UC-024, UC-038

The tests performed were done by recovering the

profile information from the Table Me server, and

the communication with the smartwatch using the

data layer, when the application is open and closed

in the phone.

Show leader

board

UC-001, UC-025, UC-

039, UC-024, UC-038

The tests performed were done by recovering the

list of players from the Table Me server and

organizing them by the position. Additionally, the

communication with the smartwatch using the data

layer, when the application is open and closed in the

phone.

Show match UC-040, UC-026, UC-

The tests performed were done by recovering the

list of matches of the player from the Table Me

48

history 001, UC-024, UC-038 server. Additionally, the communication with the

smartwatch using the data layer, when the

application is open and closed in the phone.

Challenge

players

UC-003, UC-005, UC-

006, UC-007, UC-002,

UC-004, UC-008, UC-009

The tests performed were done in the Multiplayer

server sending multiple notifications to the

challenged players by a host, when the application

is open and closed in the phone.

Start

multiplayer

game

UC-010, UC-011, UC-

018, UC-019, UC-031,

UC-027, UC-028, UC-

011, UC-032

The tests performed were done in the Multiplayer

server and the application accepting and creating a

match with none active players up to four active

players, when the application is open and closed in

the phone.

Manage a

multiplayer

game

UC-015, UC-018, UC-

019, UC-020

The tests performed were done in the Multiplayer

server sending multiple commands from different

games at the same time.

Show final

results

UC-018, UC-019, UC-

021, UC-026

The tests performed were done in the Multiplayer

server processing the final results of a match and in

the application sending the results to the Table Me

server.

Android Wear

Connection

UC-001, UC-010, UC-

011, UC-015, UC-035

The tests were performed connecting and

disconnecting the smartwatch during a match and in

idle state when the user is in the menu.

Server

Connection

UC-036, UC-031, UC-

032, UC-028, UC-030,

UC-018, UC-002

The tests were performed connecting and

disconnecting the phone from internet during a

match and in idle state when de user is not using the

application or is in the dashboard.

Table 4: List of Use case testing performed.

4.4.2. User Interface Testing

The user interface in the smartwatch was validated via the lineaments given by Android

[21], following the rules described by them. With this the following metrics were applied

to verify each feature and screen to validate the usability.

 Design for big gestures [21]: in list menus as the home screen must display at

maximum 3 items big enough to cover the screen to be easily touched.

 Stream Cards [21]: for the notifications, they were prioritized to be queued when

a challenge arrives. If the player does not attend the notification the next one will

replace it. The notification can be reused for multiple games without dismissing it.

 Do one thing, really fast [21]: Each feature of the application has followed the

maximum amount of four touches and swipes to performed the functionality.

o Profile: Open application, touch profile, dismiss card.

o Leader board: Open application, touch leader board, dismiss card.

o Game history: Open application, touch game history, touch summary,

dismiss.

49

o Game: In game interaction, dismiss result card.

 Design for the corner of the eye [21]: The application has summarized

information on each card to not keep the player too long in the application, so it

was decided to check at maximum to have five items per screen that fill the

interface that are easy to read.

o Profile: Photo, name, elo, classification.

o Leader board: List with photo and classification.

o Game history: List with indicator of victory or loss, score, text of victory or

loss.

Game summary: Four photos and score.

o Game: Add goal button, add auto goal, remove goal, score.

End game: result badge and text of victory or loss.

 Don’t be a constant shoulder tapper [21]: The application only will notify when

the user is challenged vibrating just once per notification.

50

5. Conclusions

 The objective of creating a multiplayer version of the Table Me application was

totally fulfilled developing and adapting the main features of the Table Me

application, following the design lineaments of Android and the user’s

requirements.

 The implementation of the Peer to Peer server with lockstep without simulation

using Socket IO to improve the communication allow to the application an easy to

use interface in real time to communicate the application with the server allowing

to not increment significantly the delay the communication between the items that

have a small traffic interaction.

 The communication performance given by the application using Android Wear

technology in the testing environment gave excellent results with a maximum

delay of 1 to 2 seconds to deliver the information to the smartwatch, this delay due

to the Bluetooth connection range and obstacles that can be between the devices.

 The APIs from the Wearable package used in the project to develop the

communication with the application were the Message API due to the easy usage

and the functionalities that provide to send appropriately remote procedure call

with the games commands (goals, dismiss goals, auto goals) adapting the Peer to

Peer server’s structure Finally, the Data API to synchronize large amounts data

(profile, leader board, match history) using Assets and supporting basic data types.

 The Android Wear application was design to not consume large amounts of energy

of the smartwatch during the operation during the game or when the user is

consulting information. For this reason, the application does not keep the screen on

until the user actively focusses the screen to use it, and the heavy load operations

are provided by the service in the phone that runs only when the user request

information through an interaction.

 The design of the application for the smartwatch was based on sketches previously

done by the group in the laboratory, and the last version fulfilled the final user’s

expectation giving enhanced and easy to use interfaces during the gameplay and

consulting the player information following the design lineaments of Android [21].

 The methodology used for the development of the project allowed to create an

organize and schedule to deliver the application and deliverables items to fulfill

the items to be developed with the approval of the final user on time.

 The Android wear technology is advancing faster, allowing different

functionalities to be used with the phone or a direct connection with internet, and

the basic channels of communications between the devices, offer the basic data

exchange and easy to use. It allows an easy and fast development of android wear

applications. However, the management of large amount of data to be exchanged

via Bluetooth can take too long and present inconsistent data. With the time when

the technology migrates to the usage of Wi-Fi or better connection with the

smartwatch allow a better network performance.

51

6. Bibliography

[1] “The Spiral Model > UltimateSDLC.com,” The Ultimate Guide to the SDLC, 13-Aug-

2011.

[2] Enrico Catalano, “Table Me - table soccer app on Behance.” [Online]. Available:

https://www.behance.net/gallery/31215047/TableMe-table-soccer-app. [Accessed: 10-

Apr-2016].

[3] “2359 Media: Mobile Application Development | Android for wearables: Opportunities

and Limitations of Watch Apps.” [Online]. Available:

http://2359media.com/2014/09/26/android-for-wearables-opportunities-and-limitations-

of-watch-apps/. [Accessed: 25-Apr-2016].

[4] “Sending and Syncing Data | Android Developers.” [Online]. Available:

http://developer.android.com/intl/es/training/wearables/data-layer/index.html.

[Accessed: 11-Apr-2016].

[5] “Wearable,” Google Developers. [Online]. Available:

https://developers.google.com/android/reference/com/google/android/gms/wearable/Wear

able. [Accessed: 11-Apr-2016].

[6] “Google Cloud Messaging: Overview,” Google Developers. [Online]. Available:

https://developers.google.com/cloud-messaging/gcm. [Accessed: 10-Apr-2016].

[7] Dan Adrei, “How To Create a Server to Send Push Notifications with GCM to Android

Devices Using Python,” DigitalOcean. [Online]. Available:

https://www.digitalocean.com/community/tutorials/how-to-create-a-server-to-send-push-

notifications-with-gcm-to-android-devices-using-python. [Accessed: 10-Apr-2016].

[8] “Creating a Notification for Wearables | Android Developers.” [Online]. Available:

http://developer.android.com/intl/es/training/wearables/notifications/creating.html.

[Accessed: 10-Apr-2016].

[9] “MessageApi,” Google Developers. [Online]. Available:

https://developers.google.com/android/reference/com/google/android/gms/wearable/Mess

ageApi. [Accessed: 10-Apr-2016].

[10] “WearableListenerService,” Google Developers. [Online]. Available:

https://developers.google.com/android/reference/com/google/android/gms/wearable/Wear

ableListenerService. [Accessed: 11-Apr-2016].

[11] “Accessing Google APIs,” Google Developers. [Online]. Available:

https://developers.google.com/android/guides/api-client. [Accessed: 11-Apr-2016].

[12] Michael Hahn, “Data Layer Messages — Android Wear Docs 1.2 documentation.”

[Online]. Available: http://android-wear-docs.readthedocs.org/en/latest/sync.html.

[Accessed: 10-Apr-2016].

[13] “DataApi,” Google Developers. [Online]. Available:

https://developers.google.com/android/reference/com/google/android/gms/wearable/Data

Api. [Accessed: 10-Apr-2016].

[14] “Asset,” Google Developers. [Online]. Available:

https://developers.google.com/android/reference/com/google/android/gms/wearable/Asset

. [Accessed: 11-Apr-2016].

[15] Michael Hahn, “Data Layer DataMap Objects — Android Wear Docs 1.2

documentation.” [Online]. Available: http://android-wear-

docs.readthedocs.org/en/latest/data.html. [Accessed: 10-Apr-2016].

[16] “P2P.” [Online]. Available: http://ww2.cs.fsu.edu/~jungkkim/P2P.html. [Accessed: 28-

Apr-2016].

52

[17] “A Distributed Architecture for Interactive Multiplayer Games, Ashwin R. Bharambe

Jeff Pang Srinivasan Seshan.” .

[19] “php - What are Long-Polling, Websockets, Server-Sent Events (SSE) and Comet? -

Stack Overflow.” [Online]. Available:

http://stackoverflow.com/questions/11077857/what-are-long-polling-websockets-server-

sent-events-sse-and-comet. [Accessed: 28-Apr-2016].

[20] “drewww/socket.io-benchmarking @ GitHub.” [Online]. Available:

http://drewww.github.io/socket.io-benchmarking/. [Accessed: 25-Apr-2016].

[21] “Design Principles for Android Wear | Android Developers.” [Online]. Available:

http://developer.android.com/intl/es/design/wear/principles.html. [Accessed: 25-Apr-

2016].

[22] “FURPS - Ingeniería Software.” [Online]. Available:

http://clases3gingsof.wikifoundry.com/page/FURPS. [Accessed: 28-Apr-2016].

[23] Dan Adrei, “How To Create a Server to Send Push Notifications with GCM to Android

Devices Using Python.”

[24] “Android Wear Book: Create an Advanced Wearable List View,” Home. .

[25] Dejan Đurovski, “Android Wear - Wearable Message Api.” [Online]. Available:

http://dejan.djurovski.net/2015/01/15/android-wear-wearable-message-api/. [Accessed:

10-Apr-2016].

[26] Paresh Mayani, “Android Wear - Part 4 - Simple notifications.” [Online]. Available:

http://www.technotalkative.com/android-wear-part-4-simple-notifications/. [Accessed:

10-Apr-2016].

[27] “Developer Guidelines,” Google Developers. [Online]. Available:

https://developers.google.com/nearby/developer-guidelines. [Accessed: 10-Apr-2016].

[28] E. Terpstra, “Building Multiplayer Games with Node.js and Socket.IO,” Modern Web,

30-Sep-2013.

[29] “Android Wear Docs, michael Hahn.”

[30] “Ingenieria de requerimientos, Herramienta para Implementar LEL y Escenarios.” .

[31] S. Okamoto, M. Kamada, M. Kohana, and T. Yonekura, “Rapid Authoring of Web-

based Multiplayer Online Games,” in Proceedings of International Conference on

Information Integration and Web-based Applications & Services, New York, NY, USA,

2013, pp. 639:639–639:643.

[32] “ChannelApi,” Google Developers. [Online]. Available:

https://developers.google.com/android/reference/com/google/android/gms/wearable/Chan

nelApi. [Accessed: 11-Apr-2016].

[33] R. D. Richard K. Lomotey, “Efficient mobile services consumption in mHealth.”

[Online]. Available:

http://dl.acm.org/citation.cfm?id=2500279&CFID=599129620&CFTOKEN=16880902.

[Accessed: 10-Apr-2016].

[34] arungupta, “REST vs WebSocket Comparison and Benchmarks,” Miles to go 3.0 ..., 24-

Feb-2014.

[35] Lorie Pisicchio, “SSE vs Websockets,” Streamdata.io, 21-Apr-2015. .

[36] cjihrig, “Server-Sent Events in Node.js,” Colin J. Ihrig’s Blog, 08-Aug-2012. .

[37] Nodejs Hispano, “Introducción a Socket.io #nodejs | Node.js Hispano.” .

[38] “Sending and Receiving Messages | Android Developers.” [Online]. Available:

http://developer.android.com/intl/es/training/wearables/data-layer/messages.html.

[Accessed: 10-Apr-2016].

[39] “Gcm http://developer.android.com/intl/es/training/wearables/data-layer/index.html

Service,” Google Developers. [Online]. Available:

53

https://developers.google.com/android/reference/com/google/android/gms/gcm/GcmLi

stenerService. [Accessed: 11-Apr-2016].

[40] “Il modello di comunicazione long-polling,” HTML.it. [Online]. Available:

http://www.html.it/pag/33600/il-modello-di-comunicazione-long-polling/. [Accessed: 11-

Apr-2016].

[41] “Simple Long Polling Example with JavaScript and jQuery.” [Online]. Available:

http://techoctave.com/c7/posts/60-simple-long-polling-example-with-javascript-and-

jquery. [Accessed: 11-Apr-2016].

[42] “Research of Web Real-Time Communication Based on Web Socket, by Qigang Liu,

Xiangyang Sun.” .

[43] “The Web Sockets API.” [Online]. Available: https://www.w3.org/TR/2009/WD-

websockets-20091222/. [Accessed: 11-Apr-2016].

[44] “WebSocket,” Wikipedia, the free encyclopedia. 01-Apr-2016.

[45] “Tecnología Push,” Wikipedia, la enciclopedia libre. 26-Nov-2015.

[46] “Socket.IO JavaScript framework ready for real-time apps | InfoWorld.” [Online].

Available: http://www.infoworld.com/article/2607757/javascript/socket-io-javascript-

framework-ready-for-real-time-apps.html. [Accessed: 12-Apr-2016].

[47] “Real-Time Systems.” [Online]. Available:

https://users.ece.cmu.edu/~koopman/des_s99/real_time/. [Accessed: 25-Apr-2016].

[48] “Socket.IO — Introducing Socket.IO 1.0.” .

[49] “A Node.js speed dilemma: AJAX or Socket.IO? | CUBRID Blog.” [Online]. Available:

http://www.cubrid.org/blog/cubrid-appstools/nodejs-speed-dilemma-ajax-or-socket-io/.

[Accessed: 25-Apr-2016].

[50] “Android Wear,” Wikipedia, the free encyclopedia. 20-Apr-2016.

[51] “About | Node.js.” [Online]. Available: https://nodejs.org/en/about/. [Accessed: 28-Apr-

2016].

[52] “El Libro para Principiantes en Node.js» Un tutorial completo de node.js.” [Online].

Available: http://www.nodebeginner.org/index-es.html. [Accessed: 28-Apr-2016].

[53] “Understanding the Node.js Event Loop,” NodeSource, 21-Jan-2015. [Online].

Available: http://nodesource.com/blog/understanding-the-nodejs-event-loop/. [Accessed:

28-Apr-2016].

[54] “What is Spiral model- advantages, disadvantages and when to use it?” [Online].

Available: http://istqbexamcertification.com/what-is-spiral-model-advantages-

disadvantages-and-when-to-use-it/. [Accessed: 28-Apr-2016].

[55] “Android Wear | Android Developers.” [Online]. Available:

https://developer.android.com/design/wear/index.html#Other. [Accessed: 05-Oct-2016]

[56] “Gaffer on Games | Deterministic Lockstep.” Available:

http://gafferongames.com/networked-physics/deterministic-lockstep/ [Accessed: 05-

Oct-2016].

[57] “Introduction | Understanding Model-View-Controller.” [Online]. Available:

https://stefanoborini.gitbooks.io/modelviewcontroller/content/. [Accessed: 05-Oct-2016].

[58] “WebSockets vs Server-Sent Events vs Long-polling.” [Online]. Available:

http://dsheiko.com/weblog/websockets-vs-sse-vs-long-polling/. [Accessed: 05-Oct-2016].

54

7. Appendixes

7.1. Software Requirement Specification

POLYTECHNIC OF TURIN

Faculty of Engineering

Master's Degree

 in Computer Engineering

Software Requirement Specification

Andres Camilo Jimenez Vargas

October 2016

55

Index

1. Introduction ... 59

2. Process of development of requirements .. 60

2.1. Obtaining the use cases and requirements ... 60

2.2. Refinement of the use cases .. 60

2.3. Functional requirements .. 60

2.4. Nonfunctional requirements .. 60

2.5. Requirement identification .. 60

2.6. Requirement specification ... 61

2.7. Requirement prioritization .. 61

2.8. Verification and validation .. 62

2.9. Requirement traceability ... 62

2.9.1 General traceability ... 62

2.9.2. Individual traceability .. 63

3. Global Description .. 63

3.1. External interfaces ... 63

3.1.1. User Graphic Interface ... 63

3.1.1.1 Profile information on the smartwatch ... 63

3.1.1.2. Gameplay on the smartwatch .. 63

3.1.1.3. Match history on the smartwatch .. 64

3.1.1.4. Leader board on the smartwatch ... 65

3.1.2. Software and Hardware interface ... 65

3.2. Application characterization .. 66

3.3. User characterization ... 66

3.4. Restrictions .. 66

3.5. Assumptions and dependencies ... 67

3.6. Domain Model ... 68

3.7. Requirement distribution. .. 68

56

Figure table

Figure 1: Original Karl Wiegers formula for requirement prioritization 61

Figure 2: Profile information.. 63

Figure 3: Notification on the smartwatch ... 64

Figure 4: In Game screens with victory and lose screens .. 64

Figure 5: Leader board screen .. 65

Figure 6: Requirement classification .. 69

57

Table index

Table 1: User characterization table ... 66

Table 2: Requirement classification specification ... 70

59

1. Introduction

The Joint Open Lab (JOL), a research group of Telecom Italia (TIM), developed an

application named Table Me for Android and IOS mobile devices, to manage a game of

table foosball. This document is done to describe the process of recollection and analysis

of the requirements for a distributed game version of the Table Me application using smart

watches, the application will be developed for Android mobile devices and Android Wear

devices.

For the correct way to structure and implement this solution is necessary to control the

requirements that the system needs based on the user’s necessities and the previous scope

of the Table Me application done before. The requirements are the base of the

development process of the system, for this reason these must be analyzed in an adequate

way to identify correctly the features of the application and the restrictions that this and

the projects are attach.

Therefore, this can be used as a manual for the development of the project, this will allow

to do the appropriate evaluation of the punctual functionalities that must be in the

application, develop a prioritization to know the order of the implementation of the

features, and finally trace all the dependencies of the system.

The present will have a scope of the following characteristics:

 Description of the process followed for the requirement recollection and analysis.

 Description of the prioritization process of the requirements to determine the

functionalities to implement.

 Description of the process for obtaining the use cases.

 The domain model of the Server, the Android and the Android Wear applications.

60

2. Process of development of requirements

2.1. Obtaining the use cases and requirements

The recollection of the use cases and the requirements was done based on the description

of the game given by Marco Marengo, Cecchi Gian Luca and Alessandro Izzo

knowledgeable people that through a series of reunions had explain application

functionality and the desired features to be implemented with the Android Wear

technology. Additionally, the usage of the actual working application in the testing

version on the Google Play Store. From this was developed a description of the main

features and their principal elements.

2.2. Refinement of the use cases

For the refinement of the use cases, every time a set of use cases were developed, the

application was presented to Marco Marengo and from that, all the feedback was

implemented in the application and corrected in the use case and requirement

specification. Additionally, with the guidance Marco Marengo, Cecchi Gian Luca and

Alessandro Izzo and the usage of the Table Me application, it is possible to concrete the

scenarios when and where the application will be in use.

2.3. Functional requirements

Based on the description of the application’s features, the experience acquires form the

presentations and the use cases that have been developed the functional requirements of

the system. Where are specified the characteristics that the project must include for the

completion.

2.4. Nonfunctional requirements

Based on the presentations of the application and the design decision taken, it has been

developed the nonfunctional requirements of the system. These describe the attributes and

restriction that the project must achieve to be accepted by the client.

2.5. Requirement identification

The identification was done through the use cases based on the description of the

application. Based on these, the application’s flow was described in the assert or failure

situations and from that the requirements were identified contemplating the lineaments of

the previous Table Me application. Thanks to this process it was able to classify the

requirements adequately easing the requirement specification.

61

2.6. Requirement specification

The attributes used for the specification of the requirement were:

 ID: Unique deification of the requirement.

 Description: Definition of the requirement.

 State: Shows the phase of progress of the requirement in the following

classification: Proposed, Validated, Implemented.

 Priority: priority of each requirement that is based on the modified formula of

Karl Wiegers, that give a score that if is greater than 1 has more priority.

 Type: Functional or Nonfunctional.

 Relations: Show the relation of the requirement with the other requirements and

the use cases, these can be of dependence or realization.

2.7. Requirement prioritization

The prioritization of the requirements was estimated based on the formula of Karl

Wiegers. The method is described in the following way (All the measures are done from 1

to 9):

 Benefit: relative benefit of the implementation of the requirement.

 Penalization: relative penalization if the requirement is not implemented.

 Cost: calculation of the relative cost, based in the following factors: complexity,

design and code reuse, and documentation needed.

 Risk: relative risk based on the technic complexity and the feasibility needed.

It is necessary to remember that these indicators are subjective to the person involved in

the development and implementation of the project.

The formula of Wiegers is the following:

Figure 38: Original Karl Wiegers formula for requirement prioritization

Where the value is the sum of the benefit and the penalization in percentage. The cost

weight and the magnitude assigned to each item, in this case there has been assigned the

same magnitude to both for this their value is 1.

In conclusion, it has been decided for the project’s requirement prioritization to use this

measurement where the higher calcification shows the most complex and costly

requirements to implement.

62

2.8. Verification and validation

The verification of the requirements was done through the reunions with Marco Marengo,

Cecchi Gian Luca and Alessandro Izzo and the presentations of the application refining

the requirements.

The validation of the requirements was done using a checklist by the Construx Software

Builders that verify the following attributes.

 Is unique?

 Is explanatory?

 Is consistent?

 Is feasible?

 Has correct references?

 Is precise and not ambiguous?

 Us atomic?

 Is traceable?

 Is a declaration of a necessity and not a solution?

 Is it necessary?

 Show how to execute it?

2.9. Requirement traceability

2.9.1 General traceability

The traceability of the requirements is developed through different tools that were used to

perform the follow up, identification of requirements and the dependencies to help the

development of the application and the integration with the previous Table Me

application.

The tools used to manage the traceability of the requirements are the following:

 Use cases: the use cases are used for the identification of the requirements,

moreover are necessary to establish the information flow in the different scenarios.

 Prioritization table: The table of requirements prioritization to identify easily the

order of implementation of which requirements must be implemented in the

correct way achieving the essential functionalities of the system. (Annex:

Prioritization Table)

 Realization Matrix: This matrix is used to identify the relations between the

requirements and use cases, so in the same way in a graphic way identify the

dependencies between requirements and how to find the prerequisites between

them.

63

o Annex: Realization Matrix for functional requirements.

2.9.2. Individual traceability

The individual traceability of the requirements is done by the attributes that allow to

identify the relations of dependency and implementation through the system.

The attributes of each requirement to be traced are the following:

 Use case relations: the use case where the requirement was obtaining, and has a

relation that implements it.

 Requirement relations: The requirements that are associated and dependent to

the requirement.

3. Global Description

3.1. External interfaces

3.1.1. User Graphic Interface

3.1.1.1 Profile information on the smartwatch

After opening the application, the user can use a list of option to select about the user’s

profile information and the game. The profile option shows in a similar way as in the

Table Me application the basic information of the user. Firstly, the photo, the position in

the leader board inside a badge, two bars that indicate proportionally the number of

victories (green bar) and number of lost games (red bar). The at the end the name of the

user and his/her ELO score.

Figure 39: Profile information

3.1.1.2. Gameplay on the smartwatch

64

After a user that will host a game organize and create the team, a notification is issued

to the participants of the match will receive a notification in their phones and to their

smartwatches if they have one. At the watch the following notification is displayed.

Figure 40: Notification on the smartwatch

Then, when the user start playing the game, the screen with the buttons where the player

can interact with the score is provided, with a button to add a goal in the center, a dismiss

goal button at the left bottom and an auto goal button at the right bottom. The user can

interact with them and the score is displayed in the results displayed in top of the screen

with its respective colors of the team.

Figure 41: In Game screens with victory and lose screens

Finally, in each case the users of a team win or lose a match the following screens are

displayed in the smartwatches using a base badge with their goals scored.

3.1.1.3. Match history on the smartwatch

When the match history option is selected, the user is provided with a brief list of the

last ten matches that he/she was part of. Each match is signaled with a cross and the

message “Lost!” if the player lost that game, or a check and the message “Won!” if the

player won the game. If the player wants to know a more detailed information of the

65

match, it is possible to click an item on the list and will provide a screen with the

background color of the victorious team, the score, and the photo of the participants. If

the user wants to see the players profile information, he/she can click on the image and

the profile information will be displayed.

3.1.1.4. Leader board on the smartwatch

When the leader board is selected a list of the ten first places in the leaderboard is

loaded and take between 3 to 4 seconds. After waiting, the list displays the basic

information of the player in the displayed position with his photo, name and position in

a badge. If the user wants to see the profile of the player in a certain position, he/she can

select a player in the list and it will show the basic profile information of the player.

Figure 42: Leader board screen

3.1.2. Software and Hardware interface

The Android mobile application is able to deploy on mobile devices that have a

distribution from Android 5.0 (Lollipop) to Android 4.1 (Jelly bean). And for the Android

Wear application that have a distribution from Android 4.4 (KitKat) to Android 5.0

(Lollipop). The application can be used in smart watches with round screen or rectangular

66

screen. Finally, the server can be deployed in a computer that has installed Node JS and

had installed Socket IO, and Google Cloud Messaging plugins for Node JS.

3.2. Application characterization

The final system must allow the following characteristics:

 The server application must support multiple client connections in multiple

matches.

 The server application must allow to create multiple matches.

 A client through the TableMe application can create a game notifying the server

and the involved players allowing them to use their smartwatches if they have any.

 The match host and the players can help to manage a game’s score.

 Every player with a smartwatch can score a goal, dismiss a goal or score an auto

goal.

 All the players and the host will be notified in real time from the server.

 The host of the game will see the progress of the game in the user graphic interface

of a match from the previous TableMe application.

3.3. User characterization

User

type

Description Privileges Previous knowledge

Player A player can enter

to a game is has a

smartwatch, the

notification is

displayed on the

watch and can be

opened from it.

 Connect to a match.

 Score goals, dismiss

goals and score auto

goals.

 Win a match.

The user must have the

application in the mobile

device, in the smartwatch.

Additionally, know how to

play table foosball.

Host The host is a user

that creates a

game from the

TableMe

application

inviting to play

other players.

 Control all the scores of

all the players.

 Create a match.

 Finish a match.

The user must have the

application in the mobile

device. Additionally, know

how to play table foosball.

Table 5: User characterization table

3.4. Restrictions

For the development of the project are the following restrictions:

67

 Language restriction:

o The clients must be implemented in Android for the Android mobile and

Android Wear devices.

o The server must be implemented in Java Script using the platform Node JS.

 Programming restriction: The project will be implemented using the Object

Oriented paradigm for software development.

 Connection restriction:

o The server must admit multiple user connection simultaneously for multiple

matches.

o The mobile client must connect to a single server that host the matches.

o The match will be alive until the match host finish the game or it gets

disconnected.

 Game restriction:

o The system must implement a table foosball match rules with four players,

following the lineaments stipulated by the previous TableMe application.

 Architecture restriction:

o The system must develop following the Client/Server architecture for the

communication for between the server and the mobile devices.

o The system must use the Colyseus multiplayer game architecture for the

implementation of the game instances in the clients and the server.

 Persistent restrictions:

o The server application must persist the devices registered with a new

Google Cloud Messaging token.

o The server will not use a data base for the persistency.

o The persistency will be done through normal files.

 User interface restrictions:

o The interfaces of the system will be in English.

3.5. Assumptions and dependencies

The following dependencies are considerate for the development and execution of the

system:

 The server used in the previous TableMe application will provide information of

the user’s profile, and match history. Additionally, the leaderboard of the players.

 The mobile devices used must be connected to internet.

 The mobile devices may or not have a smartwatch paired.

68

 The requirements of the system are formulated by Marco Marengo though

presentations of the application and the guideline of the previous Table Me

application.

The following assumptions are considered for the development and execution of the

system:

 The mobile and smartwatch devices where the application is installed can execute

the application.

3.6. Domain Model

The domain model of the application is represented in the following diagram: and

specified in the following document: Annex: Domain Model

3.7. Requirement distribution.

Based on the process of identification of requirements, it has been stipulated that the

following classification of requirements must be divided in different functionalities and

phases of the game and the application. The following diagram shows the classification of

the requirements:

69

Figure 43: Requirement classification

The following table shows a brief explanation of the different categories of

requirements defined above.

Type Classification Description

Functional Menu options Requirements about displaying the profile information,

match history and leader board.

Game preparation Requirements about the process to prepare a game and

notify the players that will be involved in the game.

Connection Requirements about the connection between the server

and the mobile client, and the mobile client and the

smartwatch.

In game Requirements about a current match with or without

multiple players, hosted by a user of the TableMe

application.

70

Game end Requirements about the finishing phases of a game.

Non-

functional

Interface Requirements that allow the flow between the

application information and the user.

Usability Requirements that provide the system’s way to use for

the users.

Performance Requirements of the performance expected from the

applications.

Compatibility Requirements of the compatibility dependencies needed

to deploy and execute the system.

Reliability Requirements that allow support in failure cases.

Scalability Requirements that guide the system on how must grow

as the user grow too.

Implementation Requirements of the system implementation.

Table 6: Requirement classification specification

71

7.2 Use Case Specification

POLYTECHNIC OF TURIN

Faculty of Engineering

Master's Degree

in Computer Engineering

Use case Specification

Andres Camilo Jimenez Vargas

October 2016

72

Index

UC-035 Reconnect Wear Device .. 73

UC-036 Reconnect Player ... 73

UC-038 Request user information ... 74

UC-039 Request match history ... 74

UC-040 Request leader board ... 75

UC-001 Synchronize wear data ... 75

UC-002 Register device to the server ... 76

UC-003 Create a match ... 76

UC-004 Send notification to a device ... 77

UC-005 Select read team ... 77

UC-006 Select blue team ... 78

UC-007 Use GCM service for a token .. 78

UC-008 Receive challenge notification .. 79

UC-009 Show challenge notification .. 79

UC-010 Accept challenge ... 80

UC-011 Start Match .. 81

UC-015 Manage Score .. 81

UC-018 Update score .. 82

UC-019 Display score ... 83

UC-020 Select winner ... 83

UC-021 Display winner or loser ... 84

UC-024 Show profile data ... 84

UC-025 Show leaderboard .. 85

UC-026 Show matches history .. 85

UC-027 Notify player ready .. 86

UC-028 Register player ready ... 86

UC-030 Register player decline .. 87

UC-031 Create match .. 87

UC-032 Cancel match ... 88

73

Name of the use

case: UC-035 Reconnect Wear Device

Author: Andres Camilo Jimenez Vargas

Creation date: 17/04/2016

Notes: Modification

date:

17/04/2016

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1.The wear device is disconnected

2.The server is notified from the disconnection.

3.Wait for reconnection.

4.1. If connected

4.1.1. Register device in the server and restore the game's

information.

4.2. If not connected.

4.2.1. Wait for connection.

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1.The wear device is disconnected

2.The server is notified from the disconnection.

3.Wait for reconnection.

4.1. If connected

4.1.1. Register device in the server and restore the game's

information.

4.2. If not connected.

4.2.1. Wait for connection.

Restrictions

Invariant

(Approved)

A wear device has been disconnected from the mobile.

Invariant

(Approved)

The user is in a current game.

Name of the use

case: UC-036 Reconnect Player

Author: Andres Camilo Jimenez Vargas

Creation date: 17/04/2016 Modification

date:

26/04/2016

74

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Prepare the mobile device for reconnection.

2.1. If reconnected

2.1.1. Register device and restore the score of the game.

2.2. if not connected.

2.2.1. Waiting for connection event.

Restrictions

Invariant

(Approved)

A player has disconnected from the server

Name of the use

case: UC-038 Request user information

Author: Andres Camilo Jimenez Vargas

Creation date: 28/04/2016 Modification

date:

28/04/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The user request a wear synchronization.

2. Request the user update to the JOL Table Me server

3. Receive server answer

4. Send information to synchronize

Restrictions

Invariant

(Approved)

A user paired the wear device

Name of the use

case: UC-039 Request match history

Author: Andres Camilo Jimenez Vargas

Creation date: 28/04/2016 Modification

date:

28/04/2016

Notes:

Scenarios:

75

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The user request a wear synchronization.

2. Request the match history to the JOL Table Me server

3. Receive server answer

4. Send information to synchronize

Restrictions

Invariant

(Approved)

The user paired the wear device

Name of the use

case: UC-040 Request leader board

Author: Andres Camilo Jimenez Vargas

Creation date: 28/04/2016 Modification

date:

28/04/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The user request a wear synchronization.

2. Request the leader board to the JOL Table Me server

3. Receive server answer

4. Send information to synchronize

Restrictions

Invariant

(Approved)

The user paired wear device

Name of the use

case: UC-001 Synchronize wear data

Author: Andres Camilo Jimenez Vargas

Creation date: 19/11/2005 Modification

date:

28/04/2016

Notes:

Scenarios:

Basic Path 1. Open the application.

76

Conventions:

 Mobile

application.

 Wear application.

 Server.

2. Search for Bluetooth connected nodes.

3. Compile all user information and put it in a data map.

4. Send information to the wear device.

Restrictions

Pre-condition

(Proposed)

The player opened the application.

Name of the use

case: UC-002 Register device to the server

Author: Andres Camilo Jimenez Vargas

Creation date: 20/11/2005 Modification

date:

24/02/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Send a token request to the GCM service.

2. Receive a JSON response and extract the token.

3. Send to the server the token given by the GCM service.

Restrictions

Pre-condition

(Approved)

The user opens the application at least once before.

Name of the use

case: UC-003 Create a match

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 1. The user presses the button to start a new game.

2. A new instance of the game is instantiated.

3. UC-006 Select blue team.

77

 Mobile

application.

 Wear application.

 Server.

4. UC-005 Select red team.

5. UC-011 Start Match.

Restrictions

Pre-condition

(Approved)

The user has registered to the server.

Pre-condition

(Approved)

The user synchronized data with the wear application.

Name of the use

case: UC-004 Send notification to a device

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Receive the teams in the match.

2. UC-031 Create match.

3. Send the notification to all team players using GCM service.

Restrictions

Pre-condition

(Approved)

All the players must be registered on the server.

Name of the use

case: UC-005 Select read team

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path 1. The mobile application sends a request to the server to retrieve the

78

Conventions:

 Mobile

application.

 Wear application.

 Server.

list of opponents.

2. The player clicks the button of the defense position of red team.

3. The player selects the player in the list.

4. The player clicks the button of the offense position of red team.

5. The player selects the player in the list.

6. UC-011 Start match.

Restrictions

Pre-condition

(Approved)

All the players must be registered on the server.

Name of the use

case: UC-006 Select blue team

Author: Andres Camilo Jimenez Vargas

Creation date: 09/03/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The mobile application sends a request to the server to retrieve the

list of opponents.

2. The player clicks the button of the defense position of blue team.

3. The player selects the player in the list.

4. The player clicks the button of the offense position of blue team.

5. The player selects the player in the list.

1. UC-011 Start match.

Restrictions

Pre-condition

(Approved)

All the players must be registered on the server.

Name of the use

case: UC-007 Use GCM service for a token

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

79

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Get the instance id of the application.

2. Send a token request to the GCM service with the id of the

application.

3. Retrieve the token.

4. UC-002 Register device to the server.

Restrictions

Pre-condition

(Approved)

The user opens the application.

Post-condition

(Approved)

A unique token for the device from the GCM service.

Name of the use

case: UC-008 Receive challenge notification

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The notification is received in the mobile.

2. The mobile sends a message to the wear application with the

notification.

3. UC-009 Show challenge notification.

Restrictions

Pre-condition

(Approved)

The server sends a notification to the GCM service to the

teams.

Name of the use

case: UC-009 Show challenge notification

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

80

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Receive the message from the mobile in a listener with the game id.

2. Prepare to start the game of the contender in an intent with the game

id.

3. Create the notification with the data provided from the mobile.

4. Rise the notification in the wear device.

5. UC-010 Accept challenge.

Restrictions

Pre-condition

(Approved)

The user synchronized with the wear application.

Pre-condition

(Approved)

The mobile received the notification from the GCM service.

Pre-condition

(Approved)

The mobile sent a message to the wear device with the

notification.

Name of the use

case: UC-010 Accept challenge

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Alternate

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The user sweeps the notification to the left for the link to open the

game.

2. The user taps the button to open the game.

3. UC-029 Send decline game.

4. Close the activity.

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The user sweeps the notification to the left for the link to open the

game.

2. The user clicks the button to start the game.

3. UC-027 Notify player ready.

4. A new activity rises and wait for the opponent to be ready.

Restrictions

Pre-condition

(Approved)

All players must be registered on the server

Pre-condition The challenge notification was shown.

81

(Approved)

Name of the use

case: UC-011 Start Match

Author: Andres Camilo Jimenez Vargas

Creation date: 09/03/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Create a game instance with the teams.

2. UC-004 Send notification to device.

3. Receive the game id from the server.

Restrictions

Pre-condition

(Approved)

The match creator selected all team's players.

Pre-condition

(Approved)

All players are registered in the server.

Name of the use

case: UC-015 Manage Score

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

26/04/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The player clicks the button to score a goal, dismiss or auto goal.

2. The wear application sends a message to the phone to inform a goal

or auto goal.

3. UC-018 Update score.

4. The mobile application receive the score updated with the game id.

5. The mobile application sends the score to the wear device.

6. UC-021 Display score.

82

Restrictions

Pre-condition

(Approved)

A match already started.

Pre-condition

(Approved)

All players are registered in the server.

Name of the use

case: UC-018 Update score

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

24/02/2016

Notes:

Scenarios:

Alternate

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Receive a goal or auto goal notification with the id of whom scored

it.

2. Search the game instance.

3. Send to the registered sockets the score of the game.

4. Check if no one has score six point.

5. UC-018 Display score.

6. UC-020 Select winner.

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Receive a goal or auto goal notification with the id of whom scored

it.

2. Search the game instance.

3. Send to the registered sockets the score of the game.

4. Check if no one has score six point.

5. UC-018 Display score.

Restrictions

Pre-condition

(Approved)

A match has already started.

Pre-condition

(Approved)

A user scored a goal.

Post-condition

(Approved)

All the related devices are notified of the score.

Pre-condition

(Approved)

Game id.

83

Name of the use

case: UC-019 Display score

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Receive an updated score from the mobile.

2. Update the user interface.

Restrictions

Pre-condition

(Approved)

A match has already started.

Pre-condition

(Approved)

The mobile application sent a message with the updated score

to the wear application.

Name of the use

case: UC-020 Select winner

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

24/02/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. A user scored six points.

2. Send a message to the mobiles notifying to each player if it is has

won or lost the match.

3. Finish the game instance.

4. UC-021 Display winner or loser.

Restrictions

Pre-condition

(Approved)

A match has already started.

Pre-condition

(Approved)

A player scored a goal.

84

Name of the use

case: UC-021 Display winner or loser

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

24/02/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The mobile receive the information of the winner or the loser.

2. The mobile save the match in a history

3. The mobile send a message to the wear device with the information.

4. The wear device receives information and display it in the user

interface.

Restrictions

Pre-condition

(Approved)

A match has already started.

Pre-condition

(Approved)

The mobile sent the information of a winner or loser of the

match.

Name of the use

case: UC-024 Show profile data

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The player clicks the option of profile in the menu.

2. The wear application checks the persisted data of the profile.

3. The wear application shows a new screen with the profile data.

Restrictions

Pre-condition

(Approved)

The user synchronized the wear application.

85

Name of the use

case: UC-025 Show leaderboard

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The player clicks the button in the menu to see the leader board.

2. The wear application sends the request to the mobile application.

3. The mobile application sends the request to the server application.

4. UC-034 Send latest leader board

5. Receive the leader board.

6. Display the list of players of the leader board.

Restrictions

Pre-condition

(Approved)

The player registered in the server.

Name of the use

case: UC-026 Show matches history

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The player clicks the option of match history in the menu.

2. The wear application checks the persisted data of the match history.

3. The wear application shows a new screen with the list of matches

organized from the newest to the oldest.

Restrictions

Pre-condition

(Approved)

The user synchronized the wear application.

86

Name of the use

case: UC-027 Notify player ready

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Receive the message from the wear application.

2. Attach to the message the game id and the player's id.

3. Send the message to the server application.

Restrictions

Pre-condition

(Approved)

All players are registered in the server.

Pre-condition

(Approved)

Wear application sent that the player is ready to play.

Name of the use

case: UC-028 Register player ready

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The server application receives a player register request.

2. The server application searches the game and the player of the

registration.

3. The server application set in ready the player.

4. If all players are ready.

5. Start match.

Alternate

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. The server application receives a player register request.

2. The server application searches the game and the player of the

registration.

3. The server application set in ready the player.

4. If not all players are ready.

5. Wait for the other players to be ready to start the match.

87

Restrictions

Pre-condition

(Approved)

All players registered in the server.

Pre-condition

(Approved)

Game id.

Pre-condition

(Approved)

Player id.

Pre-condition

(Approved)

A match was created.

Name of the use

case: UC-030 Register player decline

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

07/05/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. A player decline a game.

2. Notify host

3. UC-032 Cancel match

Restrictions

Invariant

(Approved)

A game challenge was sent to a set of players

Invariant

(Approved)

All players are registered

Name of the use

case: UC-031 Create match

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

09/03/2016

Notes:

Scenarios:

88

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. A new game instance is created with a unique id.

2. All information of the teams is stored in the game instance.

3. Wait for the player to be ready.

Restrictions

Pre-condition

(Approved)

All players must be registered in the server.

Pre-condition

(Approved)

A notification request arrived from a mobile application.

Name of the use

case: UC-032 Cancel match

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification

date:

07/05/2016

Notes:

Scenarios:

Basic Path

Conventions:

 Mobile

application.

 Wear application.

 Server.

 1. Send message to finish game to players.

2. Send message to finish game to host.

Restrictions

Invariant

(Approved)

All players are registered

Invariant

(Approved)

A player declines a game

89

7.3 Functional Requirement Document

POLYTECHNIC OF TURIN

Faculty of Engineering

Master's Degree

in Computer Engineering

Functional Requirements Specification

Andres Camilo Jimenez Vargas

October 2016

90

Index

REQ-001 Send profile information mobile .. 92

REQ-002 Save match history mobile .. 92

REQ-003 Send match history mobile .. 92

REQ-004 Send leader board mobile .. 93

REQ-005 Request leader board ... 93

REQ-006 Show profile .. 93

REQ-007 Show match history ... 94

REQ-008 Show leader board ... 94

REQ-009 Select blue offense player .. 95

REQ-010 Get GCM token ... 95

REQ-011 Send registration .. 95

REQ-012 Register device .. 96

REQ-013 Create match .. 96

REQ-014 Select red defines player .. 96

REQ-015 Retrieve players ... 97

REQ-016 Send notification request ... 97

REQ-017 Select blue defines player .. 98

REQ-019 Save game request ... 98

REQ-020 Send notification to rise ... 98

REQ-021 Rise notification in wear .. 99

REQ-022 Join game wear .. 99

REQ-023 Start game wear ... 99

REQ-024 Ready player wear ... 100

REQ-025 Ready player mobile .. 100

REQ-026 Start game server ... 101

REQ-027 Manage game by id .. 101

REQ-028 Add goal wear .. 101

REQ-029 Subtract goal wear ... 102

REQ-030 Send score update wear ... 102

REQ-031 Send score update mobile .. 103

REQ-032 Update score received server ... 103

REQ-033 Send score update .. 103

91

REQ-034 Receive updated score mobile ... 104

REQ-035 Send update score wear ... 104

REQ-036 Display update wear .. 104

REQ-037 Identify winner player server ... 105

REQ-038 Notify mobile winner ... 105

REQ-039 Notify mobile lose ... 105

REQ-040 Receive winner mobile .. 106

REQ-041 Send winner wear .. 106

REQ-042 Display winner wear .. 106

REQ-043 Display lose wear ... 107

REQ-044 Return home .. 107

REQ-045 Deny game ... 108

REQ-046 Deny game server .. 108

REQ-047 Deny challenge mobile server ... 108

REQ-048 Receive lose mobile ... 108

REQ-049 Send lose wear ... 109

REQ-050 Select red offense player .. 109

REQ-052 Recognize wear connection ... 109

REQ-053 Recognize wear disconnection .. 110

REQ-054 Notify server wear disconnection .. 110

REQ-057 Notify reconnection wear .. 110

REQ-058 Notify score connection mobile ... 111

REQ-059 Notify score reconnection mobile .. 111

REQ-079 Send auto goal ... 111

REQ-080 Request profile ... 112

REQ-081 Request match history ... 112

92

 REQ-001 Send profile information mobile

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The mobile application must send the profile

information to the wear application.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-080 Request profile

Realization:

Type of element: Requirement

Realization: Use case: UC-001

 REQ-002 Save match history mobile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must store the match history

of each created.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-026 Start game server

Realization:

Type of element: Requirement

Realization: Use case: UC-021

 REQ-003 Send match history mobile

«Functio

nal»

State:

finished

Difficulty: Medium Priority: 0.4

Description: The mobile application must send the match

history to the wear application.

Dependencies:

93

Type of element: Requirement

Dependency: Requirement: REQ-081 Request match history

Realization:

Type of element: Requirement

Realization: Use case: UC-001

 REQ-004 Send leader board mobile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send the latest leader

board to the wear application.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-005 Request leader board

Realization:

Type of element: Requirement

Realization: Use case: UC-025

 REQ-005 Request leader board

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The mobile application must request the latest

leader board to the server

Realization:

Type of element: Requirement

Realization: Use case: UC-025

 REQ-006 Show profile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to a player to show

94

the profile information of the player.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-001 Send profile information

mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-024

 REQ-007 Show match history

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to a player to show

the match history of the player.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-003 Send match history mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-026

 REQ-008 Show leader board

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to a player to show

the latest leader board.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-004 Send leader board mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-025

95

 REQ-009 Select blue offense player

«Funct

ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the match creator

to select the player of the blue team that will play in offense

position.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-013 Create match

Realization:

Type of element: Requirement

Realization: Use case: UC-006

 REQ-010 Get GCM token

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must use the GCM service to

retrieve the token of the device.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-011 Send registration

Realization:

Type of element: Requirement

Realization: Use case: UC-007

 REQ-011 Send registration

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The mobile application must register the device with

the token in the server.

Realization:

Type of element: Requirement

Realization: Use case: UC-002

96

 REQ-012 Register device

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The server application must store the token and the

id of the registered devices.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-010 Get GCM token

Realization:

Type of element: Requirement

Realization: Use case: UC-002

 REQ-013 Create match

«Funct

ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the match creator

to create a new match.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-016 Send notification request

 Requirement: REQ-011 Send registration

 Requirement: REQ-023 Start game wear

Requirement: REQ-026 Start game server

 Requirement: REQ-015 Retrieve players

Realization:

Type of element: Requirement

Realization: Use case: UC-003

 REQ-014 Select red defines player

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must allow the match creator

97

select the player of the red team that will play in defines position.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-013 Create match

Realization:

Type of element: Requirement

Realization: Use case: UC-005

 REQ-015 Retrieve players

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must retrieve from the

server a list of players.

Realization:

Type of element: Requirement

Realization: Use case: UC-005

 REQ-016 Send notification request

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must allow the match creator

send the notification request of the challenge to the players to

start the game.

Dependencies:

 Type of element: Requirement

Dependency: Requirement: REQ-009 Select blue offense player

 Requirement: REQ-011 Send registration

 Requirement: REQ-050 Select red offense player

 Requirement: REQ-014 Select red defines player

 Requirement: REQ-017 Select blue defines player

Realization:

Type of element: Requirement

Realization: Use case: UC-011

98

 REQ-017 Select blue defines player

«Funct

ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the match creator

select the player of the blue team that will play in defines

position.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-013 Create match

Realization:

Type of element: Requirement

Realization: Use case: UC-006

 REQ-019 Save game request

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must store the game request

with the information of each team.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-026 Start game server

 Requirement: REQ-016 Send notification request

 Requirement: REQ-013 Create match

Realization:

Type of element: Requirement

Realization: Use case: UC-031

 REQ-020 Send notification to rise

99

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the wear

application when a challenge notification arrives.

Dependencies:

Type of element: Requirement

 Requirement: REQ-019 Save game request

 Requirement: REQ-026 Start game server

 Requirement: REQ-021 Rise notification in wear

Realization:

Type of element: Requirement

Realization: Use case: UC-008

 REQ-021 Rise notification in wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must rise a notification to

accept the challenge.

Realization:

Type of element: Requirement

Realization: Use case: UC-009

 REQ-022 Join game wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must start the game when a

player clicks the button on the challenge notification.

Realization:

Type of element: Requirement

Realization: Use case: UC-010

 REQ-023 Start game wear

100

«Funct

ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must notify the wear device

to start the game.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-022 Join game wear

Realization:

Type of element: Requirement

Realization: Use case: UC-011

 REQ-024 Ready player wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must notify the mobile

application that the player is ready

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-022 Join game wear

Realization:

Type of element: Requirement

Realization: Use case: UC-027

 REQ-025 Ready player mobile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the server that

the player is ready

Dependencies:

Type of element: Requirement

101

Dependency: Requirement: REQ-022 Join game wear

Realization:

Type of element: Requirement

Realization: Use case: UC-027

 REQ-026 Start game server

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must start a game when at

least the host or any player is ready

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-022 Join game wear

Realization:

Type of element: Requirement

Realization: Use case: UC-018

 REQ-027 Manage game by id

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must manage a game based

on the game id and the player's id.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-026 Start game server

Realization:

Type of element: Requirement

Realization: Use case: UC-018

 REQ-028 Add goal wear

«Funct State: finished Difficulty: Hard Priority: 0.6

102

ional»

Description: The wear application must allow the player add a

goal in a match.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-030 Send score update wear

Realization:

Type of element: Requirement

Realization: Use case: UC-018

 REQ-029 Subtract goal wear

«Funct

ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The wear application must allow the player subtract

a goal in a match.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-030 Send score update wear

Realization:

Type of element: Requirement

Realization: Use case: UC-015

 REQ-030 Send score update wear

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The wear application must send the score to be

updated to the mobile application.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-031 Send score update mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-018

103

 REQ-031 Send score update mobile

«Functio

nal»

State:

finished

Difficulty: Medium Priority: 0.5

Description: The mobile application must send the score to be

updated to the server.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-033 Send score update

Realization:

Type of element: Requirement

Realization: Use case: UC-018

 REQ-032 Update score received server

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must update the score when it

receives a request to be updated.

Realization:

Type of element: Requirement

Realization: Use case: UC-018

 REQ-033 Send score update

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must send to the players wear

application the updated score.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-032 Update score received server

Realization:

104

Type of element: Requirement

Realization: Use case: UC-018

 REQ-034 Receive updated score mobile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.4

Description: The mobile application must receive the updated

score from the server.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-032 Update score received server

Realization:

Type of element: Requirement

Realization: Use case: UC-019

 REQ-035 Send update score wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send to the wear

application the updated score.

Realization:

Type of element: Requirement

Realization: Use case: UC-019

 REQ-036 Display update wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must display the updated score

in the player's game screen.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-035 Send update score wear

105

Requirement: REQ-026 Start game server

Realization:

Type of element: Requirement

Realization: Use case: UC-019

 REQ-037 Identify winner player server

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must identify a winner when

a player scores six points.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-038 Notify mobile winner

 Requirement: REQ-026 Start game server

Realization:

Type of element: Requirement

Realization: Use case: UC-020

 REQ-038 Notify mobile winner

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The server application must notify the mobile

application when a player won the game.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-040 Receive winner mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-020

 REQ-039 Notify mobile lose

106

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The server application must notify the mobile

application when a player lost the game.

Realization:

Type of element: Requirement

Realization: Use case: UC-020

 REQ-040 Receive winner mobile

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The mobile application must receive the server's

notification of a winner.

Realization:

Type of element: Requirement

Realization: Use case: UC-021

 REQ-041 Send winner wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send a winner

notification to the wear application.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-040 Receive winner mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-021

 REQ-042 Display winner wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must display the winner layout

if the player won the game.

107

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-041 Send winner wear

Realization:

Type of element: Requirement

Realization: Use case: UC-021

 REQ-043 Display lose wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must display the loser layout if

the player lost the game.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-039 Notify mobile lose

Realization:

Type of element: Requirement

Realization: Use case: UC-021

 REQ-044 Return home

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The wear application must allow the user return

home when the game ends.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-043 Display lose wear

 Requirement: REQ-042 Display winner wear

Realization:

Type of element: Requirement

Realization: Use case: UC-034

108

 REQ-045 Deny game

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to deny a challenge

when a notification had risen.

Realization:

Type of element: Requirement

Realization: Use case: UC-010

 REQ-046 Deny game server

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send a challenge deny

to the server.

Realization:

Type of element: Requirement

Realization: Use case: UC-030

 REQ-047 Deny challenge mobile server

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must deny a challenge when a

mobile application notifies it.

Realization:

Type of element: Requirement

Realization: Use case: UC-030

 REQ-048 Receive lose mobile

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The mobile application must receive the server's

notification of a loser.

Realization:

Type of element: Requirement

109

Realization: Use case: UC-021

 REQ-049 Send lose wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send a loser notification

to the wear application.

Realization:

Type of element: Requirement

Realization: Use case: UC-021

 REQ-050 Select red offense player

«Funct

ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the user select the

player of the red team that will play in offense position.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-013 Create match

Realization:

Type of element: Requirement

Realization: Use case: UC-005

 REQ-052 Recognize wear connection

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must recognize when the

wear device is connected to the mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-035

110

 REQ-053 Recognize wear disconnection

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must recognize when the

wear device is disconnected of the mobile device

Realization:

Type of element: Requirement

Realization: Use case: UC-035

 REQ-054 Notify server wear disconnection

«Funct

ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The mobile application must notify the server when

the wear device is disconnected

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-053 Recognize wear

disconnection

Realization:

Type of element: Requirement

Realization: Use case: UC-036

 REQ-057 Notify reconnection wear

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify to the wear the

score of the game when a wear device is connected to the mobile

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-052 Recognize wear connection

 Requirement: REQ-053 Recognize wear disconnection

Realization:

111

Type of element: Requirement

Realization: Use case: UC-036

 REQ-058 Notify score connection mobile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the actual score

of a game to any participant player that connect in the server

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-057 Notify reconnection wear

 Requirement: REQ-034 Receive updated score mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-038

 REQ-059 Notify score reconnection mobile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the actual score

of a game to any participant player that reconnect in the server

Realization:

Type of element: Requirement

Realization: Use case: UC-024

 Use case: UC-025

 Use case: UC-026

 REQ-079 Send auto goal

«Funct

ional»

State: finished Difficulty: Hard Priority:0.6

Description: The wear application must allow the player to score

an auto goal in a match.

Dependencies:

112

Type of element: Requirement

Dependency: Requirement: REQ-030 Send score update wear

Realization:

Type of element: Requirement

Realization: Use case: UC-015

 REQ-080 Request profile

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must request the latest user

profile to the server

Realization:

Type of element: Requirement

Realization: Use case: UC-024

 REQ-081 Request match history

«Funct

ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must request the latest user

match history to the server

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-002 Save match history mobile

Realization:

Type of element: Requirement

Realization: Use case: UC-026

113

7.4. Non Functional Requirement Documents

POLYTECHNIC OF TURIN

Faculty of Engineering

Master's Degree

in Computer Engineering

Non Functional Requirements

Specification

Andres Camilo Jimenez Vargas

October 2016

114

Index

1. Usability ... 115

1.1.REQ-064 Interface design by Google .. 115

2. Performance ... 115

2.1. REQ-066 Connection time mobile .. 115

2.2. REQ-067 Notification GCM ... 115

2.3.REQ-068 Receive incoming connections .. 115

2.4. REQ-069 Game architecture ... 115

2.5. REQ-070 GCM architecture .. 116

3. Usability ... 116

3.1. REQ-071 Manual .. 116

4. Scalability .. 116

4.1. REQ-072 Players connected ... 116

5. Compatibility ... 116

5.1.REQ-073 Wear compatibility .. 116

5.2. REQ-074 Mobile compatibility .. 117

6. Reliability ... 117

6.1. REQ-075 Player recover ... 117

7. Implementation .. 117

7.1. REQ-076 Server implementation .. 117

7.2. REQ-065 Application integration ... 117

8. Interface ... 118

8.1. REQ-077 Design interfaces round wear .. 118

8.2. REQ-078 Design interfaces square wear .. 118

8.3. REQ-060 Interface menu list .. 118

8.4. REQ-061 Interface profile wear .. 118

8.5. REQ-062 Interface history wear ... 119

8.6. REQ-063 Show leader board wear ... 119

115

1. Usability

1.1. REQ-064 Interface design by Google

«Usabil

ity»

State: finish Difficulty: Medium Priority: 0.4

Description: The wear application must follow the user interface

design rules form google.

2. Performance

 2.1. REQ-066 Connection time mobile

«Perfor

mance»

State: finish Difficulty: Medium Priority: 0.5

Description: The connection of the mobile application with the

server must be done in a try during from 1 to 10 seconds

 2.2. REQ-067 Notification GCM

«Perfor

mance»

State: finish Difficulty: Medium Priority: 0.5

Description: The notification of the creation of a game must be

done in a try during 1 to 10 seconds.

 2.3.REQ-068 Receive incoming connections

«Perfor

mance»

State: finish Difficulty: Medium Priority: 0.5

Description: The server application must receive any incoming

connections to an existing game in progress.

 2.4. REQ-069 Game architecture

«Perfor

mance»

State: finish Difficulty: Medium Priority: 0.5

Description: The server application must save the instances of the

116

devices connected in a persistent way following the architecture

of Ashwin R. Bharambe, Jeff Pang and Srinivasan Seshan

proposed for a multi player game.

 2.5. REQ-070 GCM architecture

«Perfor

mance»

State: finish Difficulty: Medium Priority: 0.5

Description: The server application must save the GCM tokens

from the users following the architecture proposed by Google in

the google Cloud Messaging implementation.

3. Usability

 3.1. REQ-071 Manual

«Usabil

ity»

State: finish Difficulty: Medium Priority: 0.5

Description: The application must provide a user manual for the

wear application usage.

4. Scalability

 4.1. REQ-072 Players connected

«Scala

bility»

State: finish Difficulty: Medium Priority: 0.5

Description: The server application must provide support to

multiple games conformed by maximum 5 players connected

playing simultaneously.

5. Compatibility

 5.1.REQ-073 Wear compatibility

«Comp State: finish Difficulty: Medium Priority: 0.4

117

atibility

»

Description: The wear application must be compatible to android

wear devices from Kit Kat version to the actual version Lollipop

 5.2. REQ-074 Mobile compatibility

«Comp

atibility

»

State: finish Difficulty: Medium Priority: 0.5

Description: The mobile application must be compatible to

android devices from Jelly Bean version to the actual version

Lollipop

6. Reliability

 6.1. REQ-075 Player recover

«Reliab

ility»

State: finish Difficulty: Medium Priority: 0.5

Description: The system must recover the score of a game of a

player that reconnect to a game.

7. Implementation

 7.1. REQ-076 Server implementation

«Imple

mentati

on»

State: finish Difficulty: Medium Priority: 0.5

Description: The server application must be implemented using

node js.

 7.2. REQ-065 Application integration

«Imple

mentati

on»

State: finish Difficulty: Hard Priority: 0.7

Description: The wear and mobile application must be integrated

with the latest version of the Table Me application

118

8. Interface

 8.1. REQ-077 Design interfaces round wear

«Interf

ace»

State: finish Difficulty: Medium Priority: 0.5

Description: The wear application must design the interfaces for

the round smartwatches

 8.2. REQ-078 Design interfaces square wear

«Interf

ace»

State: finish Difficulty: Medium Priority: 0.5

Description: The wear application must design the interfaces for

the square smartwatches

 8.3. REQ-060 Interface menu list

«Interf

ace»

State: finish Difficulty: Medium Priority: 0.5

Description: The wear application must show as home page list of

main features to choose

 8.4. REQ-061 Interface profile wear

«Interf

ace»

State: finish Difficulty: Medium Priority: 0.5

Description: The wear application must show after click the

profile item in the list the user's facebook logo, the victories and

119

loses and the elo.

 8.5. REQ-062 Interface history wear

«Interf

ace»

State: finish Difficulty: Medium Priority: 0.5

Description: The wear application must show after click the

history item in the list the list of matches of the user with detailed

information

 8.6. REQ-063 Show leader board wear

«Interf

ace»

State: finish Difficulty: Medium Priority: 0.5

Description: The wear application must show after click the

leader board item in the list, the latest leader board updated.

120

7.5. Requirement priorization

ID Benefit Penalization Total value Value % Cost Cost % Risk Risk % Priority Complexity

REQ-065 Application integration 9 9 18 1.7 9 1.8 3 0.7 0.713 Hard

REQ-013 Create match 8 9 17 1.6 8 1.6 4 0.9 0.668 Hard

REQ-050 Select red offense player 8 9 17 1.6 7 1.4 5 1.1 0.663 Hard

REQ-009 Select blue offense player 8 9 17 1.6 7 1.4 5 1.1 0.663 Hard

REQ-079 Send auto goal 8 9 17 1.6 7 1.4 5 1.1 0.663 Hard

REQ-028 Add goal wear 8 7 15 1.5 8 1.6 3 0.7 0.647 Hard

REQ-029 Subtract goal wear 8 7 15 1.5 8 1.6 3 0.7 0.647 Hard

REQ-023 Start game wear 9 9 18 1.7 7 1.4 6 1.3 0.646 Hard

REQ-017 Select blue defense player 7 9 16 1.5 7 1.4 5 1.1 0.624 Hard

REQ-075 Player recover 7 8 15 1.5 8 1.6 4 0.9 0.590 Medium

REQ-014 Select red defense player 6 9 15 1.5 7 1.4 5 1.1 0.585 Medium

REQ-022 Join game wear 8 8 16 1.5 7 1.4 6 1.3 0.574 Medium

REQ-024 Ready player wear 8 8 16 1.5 7 1.4 6 1.3 0.574 Medium

REQ-025 Ready player mobile 8 8 16 1.5 7 1.4 6 1.3 0.574 Medium

REQ-026 Start game server 8 9 17 1.6 7 1.4 7 1.5 0.564 Medium

REQ-027 Manage game by id 9 9 18 1.7 8 1.6 7 1.5 0.559 Medium

REQ-037 Identify winner player server 7 8 15 1.5 6 1.2 7 1.5 0.534 Medium

REQ-052 Recognize wear connection 7 8 15 1.5 6 1.2 7 1.5 0.534 Medium

REQ-053 Recognize wear disconnection 7 8 15 1.5 6 1.2 7 1.5 0.534 Medium

REQ-059 Notify score reconnection mobile 8 8 16 1.5 7 1.4 7 1.5 0.531 Medium

REQ-069 Game architecture 6 6 12 1.2 5 1.0 6 1.3 0.505 Medium

REQ-068 Receive incoming connections 6 6 12 1.2 5 1.0 6 1.3 0.505 Medium

REQ-020 Send notification to rise 7 5 12 1.2 5 1.0 6 1.3 0.505 Medium

REQ-066 Connection time mobile 6 7 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-067 Notification GCM 6 7 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-016 Send notification request 7 6 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-045 Deny game 7 6 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-046 Deny game server 7 6 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-047 Deny challenge mobile server 7 6 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-058 Notify score connection mobile 8 5 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-002 Save match history mobile 9 4 13 1.3 6 1.2 6 1.3 0.503 Medium

REQ-076 Server implementation 5 9 14 1.4 7 1.4 6 1.3 0.502 Medium

REQ-004 Send leader board mobile 7 7 14 1.4 7 1.4 6 1.3 0.502 Medium

REQ-034 Receive updated score mobile 6 8 14 1.4 6 1.2 7 1.5 0.499 Medium

REQ-003 Send match history mobile 7 7 14 1.4 6 1.2 7 1.5 0.499 Medium

REQ-061 Interface profile wear 7 8 15 1.5 7 1.4 7 1.5 0.498 Medium

REQ-062 Interface history wear 7 8 15 1.5 7 1.4 7 1.5 0.498 Medium

REQ-006 Show profile 8 8 16 1.5 8 1.6 7 1.5 0.497 Medium

REQ-007 Show match history 8 8 16 1.5 8 1.6 7 1.5 0.497 Medium

REQ-008 Show leader board 8 8 16 1.5 8 1.6 7 1.5 0.497 Medium

REQ-063 Interface leader board wear 8 8 16 1.5 8 1.6 7 1.5 0.497 Medium

REQ-073 Wear compatibility 5 6 11 1.1 6 1.2 5 1.1 0.467 Medium

REQ-074 Mobile compatibility 5 6 11 1.1 6 1.2 5 1.1 0.467 Medium

REQ-015 Retrieve players 7 6 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-042 Display winner wear 6 7 13 1.3 7 1.4 6 1.3 0.466 Medium

121

REQ-043 Display lose wear 6 7 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-049 Send lose wear 6 7 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-031 Send score update mobile 6 7 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-032 Update score received server 6 7 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-057 Notify reconnection wear 7 6 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-080 Request profile 7 6 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-081 Request match history 7 6 13 1.3 7 1.4 6 1.3 0.466 Medium

REQ-041 Send winner wear 5 7 12 1.2 6 1.2 6 1.3 0.465 Medium

REQ-010 Get GCM token 6 6 12 1.2 6 1.2 6 1.3 0.465 Medium

REQ-019 Save game request 6 6 12 1.2 6 1.2 6 1.3 0.465 Medium

REQ-036 Display update wear 6 6 12 1.2 6 1.2 6 1.3 0.465 Medium

REQ-060 Interface menu list 6 6 12 1.2 6 1.2 6 1.3 0.465 Medium

REQ-064 Interface design by Google 6 6 12 1.2 6 1.2 6 1.3 0.465 Medium

REQ-021 Rise notification in wear 7 5 12 1.2 6 1.2 6 1.3 0.465 Medium

REQ-033 Send score update 6 8 14 1.4 7 1.4 7 1.5 0.465 Medium

REQ-035 Send update score wear 6 7 13 1.3 6 1.2 7 1.5 0.463 Medium

REQ-072 Players connected 6 4 10 1.0 4 0.8 6 1.3 0.461 Medium

REQ-030 Send score update wear 6 7 13 1.3 7 1.4 7 1.5 0.432 Easy

REQ-005 Request leader board 7 5 12 1.2 7 1.4 6 1.3 0.430 Easy

REQ-001 Send profile information mobile 7 4 11 1.1 6 1.2 6 1.3 0.426 Easy

REQ-012 Register device 5 6 11 1.1 6 1.2 6 1.3 0.426 Easy

REQ-038 Notify mobile winner 5 6 11 1.1 6 1.2 6 1.3 0.426 Easy

REQ-039 Notify mobile lose 5 6 11 1.1 6 1.2 6 1.3 0.426 Easy

REQ-077 Design interfaces round wear 6 4 10 1.0 6 1.2 5 1.1 0.424 Easy

REQ-078 Design interfaces square wear 6 4 10 1.0 6 1.2 5 1.1 0.424 Easy

REQ-070 GCM architecture 5 6 11 1.1 5 1.0 7 1.5 0.423 Easy

REQ-054 Notify server wear disconnection 7 6 13 1.3 7 1.4 8 1.7 0.402 Easy

REQ-011 Send registration 5 6 11 1.1 7 1.4 6 1.3 0.395 Easy

REQ-040 Receive winner mobile 5 5 10 1.0 6 1.2 6 1.3 0.387 Easy

REQ-048 Receive lose mobile 5 5 10 1.0 6 1.2 6 1.3 0.387 Easy

REQ-044 Return home 4 4 8 0.8 5 1.0 5 1.1 0.372 Easy

REQ-071 Manual 4 4 8 0.8 4 0.8 7 1.5 0.334 Easy

Total 1034 503 460

122

7.6. Installation Manual

Installation Manual

1. Server on Node JS:

The deployment and installation of the server will require for recommendation the Node

JS environment from version 4.4.4 onwards. After the installation it is required the

following libraries:

 Socket IO, for installation is necessary to type the following command “npm

install socket.io”.

 Google Cloud Messaging, for installation is necessary to type the following

command “npm install node-gcm”

For the update process of the information for the usage of the Google Cloud Messaging

service. In this step is necessary to access to the Google Console Developer using the

following procedure in the link. There you need to fill in with the name of the project in

the console and the name of the package “it.telecomitalia.tableme”. Finally, it will create

automatically the Server API Key and the Sender Id, this information must be updated in

the server at the index.js with the API Key and in the application in the Quick references

class updating the server id.

After that the server will deploy using the file system creating two folders, Config to save

the data of the games ids, and Devices, where all the users that connect to the server will

be registered.

2. Android application and Android Wear:

For the deployment of and installation of the libraries for the Table Me application in

Android and Android Wear are done in the gradle build of the application adding the

following dependencies:

 Wearable API, compile 'com.google.android.gms:play-services-

wearable:8.3.0'

 Socket IO, for this library the application contains the version 0.7.0 for

Android that is compatible with the version 1.0 onwards of the JavaScript

implementation. This library was developed by Naoyuki Kanezawa, if a new

version is needed can be downloaded from Naoyuki repository:

o https://github.com/socketio/socket.io-client-java

And would require the following dependency in the gradle build, where “x” is

the version of the library:

o compile('io.socket:socket.io-client:x) {

 exclude group: 'org.json', module: 'json'

 }

 Important: If any changes are performed to the gradle of the app or the wear

modules, it is necessary to update them with the same information. To be able to be

compatible between the phone and the smartwatch, the gradles must provide the same

https://developers.google.com/mobile/add?platform=android&cntapi=gcm&cntapp=Default%20Demo%20App&cntpkg=gcm.play.android.samples.com.gcmquickstart&cnturl=https:%2F%2Fdevelopers.google.com%2Fcloud-messaging%2Fandroid%2Fstart%3Fconfigured%3Dtrue&cntlbl=Continue%20with%20Try%20Cloud%20Messaging
https://github.com/socketio/socket.io-client-java

123

configurations for the android part such as compile Sdk version, build tools version,

signing configs, default config, build types and dex options.

Finally, for the interfaces developed for the smartwatch application has two layouts for the

different types of watches such as the square or the round ones. For this, it has been used

watch stub views that allow to set which layout will be displayed if is used in a device

with a round or square screen.

2.1. Profile information on the smartwatch

After opening the application, the user can use a list of option to select about the user’s

profile information and the game. The profile option shows in a similar way as in the

Table Me application the basic information of the user. Firstly, the photo, the position in

the leader board inside a badge, two bars that indicate proportionally the number of

victories (green bar) and number of lost games (red bar). The at the end the name of the

user and his/her ELO score.

2.2. Gameplay on the smartwatch

After a user that will host a game organize and create the team, a notification is issued to

the participants of the match will receive a notification in their phones and to their

smartwatches if they have one. At the watch the following notification is displayed.

Then, when the user start playing the game, the screen with the buttons where the player

can interact with the score is provided, with a button to add a goal in the center, a dismiss

goal button at the left bottom and an auto goal button at the right bottom. The user can

124

interact with them and the score is displayed in the results displayed in top of the screen

with its respective colors of the team.

Finally, in each case the users of a team win or lose a match the following screens are

displayed in the smartwatches using a base badge with their goals scored.

2.3. Match history on the smartwatch

When the match history option is selected, the user is provided with a brief list of the last

ten matches that he/she was part of. Each match is signaled with a cross and the message

“Lost!” if the player lost that game, or a check and the message “Won!” if the player won

the game. If the player wants to know a more detailed information of the match, it is

possible to click an item on the list and will provide a screen with the background color of

the victorious team, the score, and the photo of the participants. If the user wants to see

the players profile information, he/she can click on the image and the profile information

will be displayed.

2.4. Leader board on the smartwatch

125

When the leader board is selected a list of the ten first places in the leaderboard is loaded

and take between 3 to 4 seconds. After waiting, the list displays the basic information of

the player in the displayed position with his photo, name and position in a badge. If the

user wants to see the profile of the player in a certain position, he/she can select a player

in the list and it will show the basic profile information of the player.

126

7.7. Relational Matrix of Functional Requirements

127

7.7. Domain Model

128

7.8. Use Case Diagram

129

7.9. Class Diagram Table Me

