POLYTECHNIC OF TURIN

Faculty of Engineering
Master's Degree

in Computer Engineering

Master Thesis

Android Wear: Usability Guidelines,
Features and Development of a Prototype

Supervisors

Prof. Maurizio Morisio
........................... Candidate

Andres Camilo Jimenez Vargas

October 2016

I [T [FTox {To] o I SRRSO PRPPO 1
1.1. Description of the problematiC............cuiiiiiiiiiie e 3
1.1.1. Formulation of the problem.............cooriiei i 3
1.1.2. Justification Of the ProjJECT ... 3
1.1.3. EXPECLEd IMPACT.....ccuiiiiiieie ettt reenne e 4
1.2. DesCription OF the PrOJECT.........ooiiiiiiieieiee e 4
1.2.1. General ODJECLIVE.......c.iieee et ae e 4
1.2.2. SPECITIC ODJECHIVES. ...t 4
1.3. Expected deliverabIes.cov i 4
1.4, METNOTOIOQY ...t bbbt 5

2. THEOTELICAI TTAME ...ttt b et ens 7
2.1. Basis concepts about Table Me appliCationcccccoviiiiiiiiiiieeee e 7
2.1. 1. Profile TEAIUIESocviiiiiiieiieieie et bbbt 7
2.1.2. IN QAME TEALUIES ...ttt ettt b ettt n e 9
2.2. CoNCEPLUAI TTAIME ..o et enne e 11
A N oo {0 o IR =T SRS 11
2.3.1. Communication DEIWEEN UEVICES.........uciiieieierieiie sttt 12
2.3.1.1. Notifications using Google Cloud MeSSagingcceovreereriienerenereseseseeeeeens 13
2.3.1.2. MESSAQE AP ..ottt 14
2.3.1.3. DAta AP ... nas 15
2.3.1.4. ChaNNEl AP ...ttt bbbt 16
2.3.2. Architecture for a multiplayer gamecooooeiiiiiiiin e, 17
2.3.2. 1. PEI 0 PRI ... 17
B T O 1= 11T Y SRS 18
2.3.3. Communication teChNOIOGIESccveiiiieiiee e 19
2.3.3. 1. LONG POHING ..ttt bbb 19
2.3.3.1.1. AJAX LONG POIIING ...c.vviiieieciiece ettt 20
2.3.3.2. WD SOCKELS.eveeieeiiesiiesie ettt te e e e et e e s taeteenaesraeneeneesneenneans 21
2.3.3.2.1 SOCKEL 1O ...ttt ettt sttt neens 22
2.3.3.3. Technology BenChmMark ... 23
2.3.4. Graphic User Interface Design for Android Wearcccocvevveiieiiie e, 24

B ANAIYSIS .. bbbt bbb bbbt 26
3.1, PropoSed MOGELcueoiiiiiiieie et 26

3.1.1. Distributed gamePIaYccceuiiieieieiiseiiseee e 26

3.1.2. User information Managementccueiueiiieieeriesieseesie e sieeseeseesre e e see e e e sneenneens 27

3.2, SOTEWAIE PrOTOTYPE ...tttk b bbb 27
32,1, USE CASES ...ttt ettt ekttt ee et et h e R R R R e e neennre s 27
B O T X! (0] £ PSP TRTOPRTUPOURUPRTS 28
3.2.1.2. USE CASE UESCIIPLION .. veevviciieieee ettt sttt et ae et e sraesre e sneene e 28
3.2.2. Requirements deSCrIPLIONccueiiiiriiiii et 30
3.2.3. DAta MOTEI ... s 30
3.2.4. Programming language for the Server Side..........ccooiiiiiiirinieicee e 31
3L2.5. ATCRITECIUIE ...ttt 31
3.2.6. Features and teChNICal BSPECTS..........coiiiiiiiiieicerese e 32
3.2.6.1. Profile information on the SmartwatCh.............cccooeiiiiiiniininc e 33
3.2.6.2. Gameplay on the SMartWatChcccoiiiiiiiii e 33
3.2.6.3. Match history on the SmartwatChcccccveiiiieiecie e 34
3.2.6.4. Leader board on the SMartwatChcccevieiiieiiee e 35
4. Development of the SOIULIONScoviiiiiiie e 36
O =T AV TP PP RUPOURTROT 36
I O =LYYo [- o | - T ISR PS 36
4.1.2. SErver VeNt DENAVIONcci i 37
o B O 1= TS0 [- o | - ISR SPS 38
4.2.2. Mobile eVent DENAVION............cooveiiecece e 39
4.2.3. Sequence diagram of the behavior of the Game Serviceccccecveveivevv e, 40
4.2.3.1. User registration with the GCM tOKENcceiiiiiiiiiiece e 40
4.2.3.1. Send challenge NOtIfiCAtioNcccveiiiieii e 41
4.2.3.2. Receive Challenge NOTITFICAtIONccocoiiiiiiiiiie e 41
4.2.3.3. IN GAIME ...ttt ettt b e b et et e nnr e neeanee s 42
4.2.3.4. Show profile INFOrMAatIoNocoiiiiiiiiic s 44
4.2.3.5. SNOW MALCH NISEOMYvecuiiiiiciie et 44
4.2.3.6. SNOW 1€A0EI DOAIT.......ooiiiiie ettt 45
4.3 WEAI CHIBNT ...ttt bttt e be e nbe e e e sbeenne e 46
BN R O - LS [- To] = 0 OSSOSO U PPV PRPRORPRRPIN 46
O -] £ TP T P PPRTUPTOPPUROT 47
4.4, 1. USE CASE TESTING ...ttt sttt bbbttt bbbt 47
4.4.2. USEr INTErTaCe TESTING ...ocvieiieiiieciie ettt ettt e e sree s 48
ST O] ot 1] o 1SS 50

(T =11 o] TToTo] 7= o] 1) 2SO SURPPSR 51

R Y 0] 1=] T [5OSR 54

7.1. Software Requirement SPECITICAION...........cuiiiiiiiiiici e 54
7.2 Use Case SPECITICALION.......ccueiieie et re e 71
7.3 Functional Requirement DOCUMENTccuiiiiiiieiiiieniesese e 89
7.4. Non Functional Requirement DOCUMENTSc.ccviveiierieeiesieesiesie e e sreesae e 113
7.5. RequIrement PrioriZatiON...........cceiiiiiinieiei et 120
7.6. INStAllation IMANUAL..........coiiiiiiiee e 122
7.7. Relational Matrix of Functional ReqUIrEMENES..........cccoviiriiiieieierce e 126
7.7. DOMAIN MOUEL.......oiiiiiiiiieee e bbb 127
7.8. USE CaSE DIAGIAMeiiuiiitieiiieie ettt te st ste ettt st ste s e ste et e neesbeeteeneesbeebeaneenneas 128
7.9. Class Diagram Table ME.......c.civiiiiii et 129
7.10. AUTNOTIZALION LELET ...evieieieeie sttt ettt ae e nneas 130
7.11. THESIS DESCIIPLIONuiiieiiieic ettt ettt raesae e sbeentesneesneas 132

8. ACKNOWIEAGMENTS ...ttt bbb n e 135

Figure index

Figure 1: Spiral model from Barry W. Boehm [1].......ccooiiiiiiiiiiiiiieeeec e, 5
Figure 2: Profile screens of Table Me........coooieii e 8
Figure 3: Singular Match History Table Mecccoiioiiiiiieece e 8
Figure 4: Main leader Board Table Me.........ccceiiiieiieie e 9
Figure 5: Player Selection Table Me. ..o 9
Figure 6: In Game SCreen Table MEccvoii e 10
Figure 7: ENd Game Table Mooiiiiiiee ettt s 10
Figure 8: Android Wear Context Stream[3]........ccccoviieiieiiiiieiiese e 11
Figure 9: Physical Architecture of multiple deViCes[4]. ..o 12
Figure 10: GCM AFChItECIUE[7] .eeve et 13
Figure 11: Message API Architecture of the implementation[12]..........cccocvviiiiiininicien, 15
Figure 12: Data APl Architecture of the implementation[15]ccccccvvveveiiecie e 16
Figure 13: Peer to Peer architecture from NapsSter[16]ccocvvrrieienenineseseseseeeeees 17
Figure 14: Architecture of components of Colyseus, (Figure 4 [17, p. 8]) .ccovvvvvevviiievrenene. 18
Figure 15: Long POHING [58] ... cuveieieiiiiiiiisieeiieie ettt 20
Figure 16: AJAX Long Polling behaVior[19]cccooeiiiiiicceece e 21

Figure 17:

Web Socket ArchiteCture [58]ooiiiiiiiiieieiese e 21

Figure 18: Speed Benchmark for AJAX persistent server, Socket 10 server and Socket 10

PEISISTENT SEIVET [A9] ...ttt bbbt 23
Figure 19: Concurrent Benchmark on Socket 10 server, number of messages sent by roundtrip
time in different conCurrent rateS[20].........coureiiiieieee e 24
Figure 20: PropoSed MOGELc.ooouiiiiiieie et 26
Figure 21: Data MOGELc.ooiii s 31
Figure 22: PhySiCal ArCNITECIUIEccviivieie et sre s 31
Figure 23: Showa player profile in the smartwatCh SCreens...........cccooeveiiiiiiiiicceee, 33
Figure 24: Notification displayed in the smartwatch for the players.c.ccccevveveicieenennn. 33
Figure 25: In game screens for the blue team and the read team, and the screens for victory
V00 I (01 SOOI 34
Figure 26: Showa player’s match history in the smartwatch screenscccoccvvveriiiieennns 34
Figure 27: Showa player leader board in the smartwatCh SCreensccccceevvevieiiecsie e, 35
Figure 28: Multiplayer Server Class DIgramccccccoveiiriniinineeieiese e 36
Figure 29: Table Me Domain Diagramccceiiieiiiiiiieiie et 38
Figure 30: Device registration of the Google Cloud Messaging service tokenc.cccc...... 40
Figure 31: Sequence diagram for sending a challenge notification to a player 41

Figure 32: Sequence diagram for receiving a challenge notification from Google Cloud

Messaging and showing it in the phone and the smartwatch ..., 41
Figure 33: Sequence diagram for adding goals, auto goals and dismissing a goal during a
MAtCh INtEhe SMAMWALCN.......c..i i e 43
Figure 34: Sequence diagram for showing the profile information in the smartwatch............ 44
Figure 35: Sequence diagram to show the match history in the smartwatch of the player of the
HBVICE .t bbb bbb R Rt bbb bbb e e e 44
Figure 36: Sequence diagram for showing the leader board in the smartwatch 45
Figure 37: Table Me Wear Domain Diagramcccovveriiieiieneeie s e esee e e eee e e 46
Figure 38: Original Karl Wiegers formula for requirement prioritizationc.cccceeveevenee. 61
Figure 39: Profile infOrmation............coceiiiii it 63
Figure 40: Notification on the SMartwatCh............cccooeiiiiiiiii e 64
Figure 41: In Game screens With victory and 10Se SCIEENScccvevveveereeiieiieeieere e 64
Figure 42: Leader DOArd SCIEENoiiiiiiiieieeee et 65
Figure 43: Requirement ClassifiCatioN.............cccciveiiiiieiieie e 69

Table Index

I Lo L= T i (o] £SO ORSUPSRS 28
Table 2: Phases of the Table Me appliCationc.cccvoveiieiiiic i, 29
LI L0 L S O L oF T SRR PP 29

Table 4: List of Use case testing performed.coooveieiieii e 48

1. Introduction

The Joint Open Lab (JOL), a research group of Telecom lItalia (TIM), developed an
application named Table Me for Android and I0S mobile devices, to manage a game of
table foosball. The goal of the application is to trace a match between four people in a
mobile device, accounting the result and the performance of the players. Moreover, after
the user logged in, the application compiles all the information of the player's games,
showing their profile information with the statistics, achievements and match history.
Additionally, organizing their results in a leader board between all the players.

Thanks, to the functionalities of the application, it allows easily to follow and record a
table foosball match and to share this information with the community. However, as the
application is hosted locally in a single mobile device, it brings more complexity to the
user, either if the user is being part of the teams involved in a match or not, must pay
attention to the other player’s movements and goals to count them correctly.

To be able to solve this problem, it is desirable to give the capability to the players to be
involved in a game, in a more comfortable way without the necessity of having their
mobile devices on hand all time. With the use of a smart watch, the user can have the
commodity through the game, of having a functional instance of the game in a device
paired with a mobile device on the wrist. Based on that, it is possible to give that
functionality to the players taking away the dependency of using their phone constantly
during the match. In addition, this will decouple the creation of the match in a single
device, and make the match distributed with the devices involved in the match.

This project is focused on the development of an Android Mobile application and an
Android Wear application, that allow the usage of the same features of the previous Table
Me application in a smart watch. This will improve the players experience in the game,
involving it to give its results during the match in a more precise and comfortable way,
from a click away in his smart watch. Additionally, to access the user’s basic profile data
in the smart watch without the necessity of using the mobile device. To be able to develop
this solution, it is necessary to develop a solution (that is integrated to the Table Me
application), to manage the communication between the smart watch and the mobile
device. Moreover, to create the match distributed between multiple devices, is necessary
to develop a server able to handle the match and the communication to the devices.

From this point on, knowing the main objectives of the project, the it is necessary to
include an additional item to develop to create the multiplayer environment. Due to that, is
necessary to create a Server that follows the basic architecture of an interactive game
online with multiple players. Based on the Table Me application where commands of
goals in a match will be notified to the server, the implementation that approach the best
solution is a Peer to Peer architecture with Lockstep used in online strategy games such as
Star Craft, Age of Empires and Civilizations. This allows a real time gameplay with a
non-heavy load server that just recognize commands from users and deliver them to the
participants of the match without congesting their network resources. Additionally, the
architecture recommends the usage of real time technologies to facilitate the
communication of these commands. To solve this issue, it has been selected the usage of
Web Sockets via the library Socket 10 that supports multiple platforms for the
communication including Android where the project was developed.

1

The developed solutions bring to the users the Table Me application for Android devices
and smartwatches, supporting a multiplayer interactive environment where a user as a
referee (being part of the match or not), can create a match and control the global score.
The Android Wear application provide an easy to use interface (developed based on the
lineaments proposed by Android), that allow to the users to interact with their own score
(adding and dismissing goals or auto goals). This solution allows to control in a more
accurate way the score of a match and follow it in real time by a referee that is hosting the
game in the phone. Additionally, providing the previous functionalities that the Table Me
application have in the smartwatch to consult the profile information, the leader board and
the match history of a player.

1.1. Description of the problematic

The application Table Me can just manage a table foosball match locally in one device,
restricting the players to be in touch with the game. In addition, this adds more difficulty
to the match's host to keep track of each of the players moves, even if the host is a
participant in the game or not. Moreover, all the data of the players and the matches are
stored in a server hosted by the JOL, and all the player's information each time by
application when the user open it and log in. Additionally, does not have an extension to
the Android Wear technology, if any user has one.

Based on the previous statements, here are the most important points that comes from this
problem:

e Difficult to use by the match's host (being a participant player or not), because
require to have the mobile device on hand and keep track of the score of each four
players during the game (limited user experience).

e The results of a match are followed by just the person using the application.
e Local dependency on a device to be able to keep track of the match.

e If a player has an Android Wear, he/she cannot use it with anything related to the
Table Me App [2].

1.1.1. Formulation of the problem
Provided the problematic description, the project search to resolve the following question:

How to develop an Android Wear to help managing a table foosball match with four
players, and provide the player's information in the Android Wear device, integrated with
the Table Me mobile application?

1.1.2. Justification of the project

The development and completion of this project seeks to show how is constituted and how
to use the recent technology of Android Wear with the smart watches. Based on that, the
project presents a guideline of implementation of the communication with the smart
watch, the design and implementation of the user interface. All this, to show how to solve
the problems presented from the Table Me application.

Within the Android Wear application solution, the project search to give a user that has a
smart watch, an instance of the application Table Me on it, to be able to use the main
features with no need of mobile device use. Additionally, be part of a match (being the
host or not), providing his results in the smart watch during the game. Because of that,
will decouple the dependence of managing a match in a single device, and finally as well
give the capability to a player (or players), of keeping track simultaneously of the game
and their results in the smart watch.

To be able to develop this solution is necessary to create an Android Wear application, as
well as two more components: An Android application to communicate the mobile with
the smart watch, and a server to be able to host the game communicating all the players
that participate in the match simultaneously.

Finally, the project seeks to develop a prototype that will be integrated with the already
working Table Me application.

1.1.3. Expected Impact

The expected impact of the project with the documented guideline to the usage of the
Android Wear technology is to help to facilitate the development of Wear applications
(mainly the communication between the mobile and the smart watch), providing a guide
to the developers that interested on the possible solutions that this implementation could
take.

Additionally, with the prototype integration it will expect to give a more comfortable and
easy to access way of using the Table Me application in a smart watch, facilitating the
usage of the main features, without using the phone. Moreover, give a more interactive
and easy way to the users to manage a game by the capability of a player of being part a
match simultaneously with the other players that may or may not use the application in
their smart watch. With this on future, is expected to give more functional features to the
Table Me application to give to the users that may have an Android Wear device, opening
the doors of the Android Wear market where the application can be used.

1.2. Description of the project
1.2.1. General Objective

Develop an Android Wear application, integrated with the Table Me mobile application,
that implements its main features and offer to the user to be part of a distributed match
with a smart watch, simultaneously with the other players of the match.

1.2.2. Specific Objectives

e Perform the characterization of the system by means of a process of requirement
engineering, identifying the general requirements for the server, mobile and
Android Wear applications, that allow to implement the main features of the Table
Me application, and create a distributed match with other devices.

e Perform the design and architecture of the server, the mobile and the wearable
application that allow to implement the main features of the Table Me application,
and to be able to create a distributed match with other devices.

e Develop a prototype of the mobile and the wearable application that allow to
implement the main features of the Table Me application, and to be able to create a
distributed match with other devices.

e Integrate the developed prototype with the Table Me application, coupling its
features with the already working one.

e Validate the integrated prototype in a testing environment of the domain of the
Table Me users.

1.3. Expected deliverables
The deliverables proposed and planned to this project are the following:
e A software requirement specification document, that will contain:
o Use cases model.
o Definition of system's scope.
o Functional and nonfunctional requirements.
o Requirement prioritization.

e A functional prototype integrated to the Table Me application, that will contain:
o User manual.
o Description of the main features of the prototype.

1.4. Methodology

The methodology that will be used to develop the project will be based on the spiral
lifecycle model from Barry W. Boehm [1]. This model is an incremental model that based
on a risk analysis of each step of the project done frequently, will allow to prioritize the
development of certain components of the project. The model proposes that in an iterative
development of four activities the software will be develop in phases that accumulate
prototypes or parts of it in the development of the system. The following figure illustrate
the main structure of the spiral model.

A Cumulative cost

1. Determine Progress 2, Identify and
objectives /’—i resolve risks

Review Operational

Detailed
design

Public domain image
< Author: Marctroy
Implementation

4. Plan the Release
next iteration 3. Development
and Test

Figure 1: Spiral model from Barry W. Boehm [1]

The model is divided in four important phases. Firstly, determine objectives, where the
requirements are collected from the user’s necessities of the software and the development
of an initial design. Then, comes the identification of risks, where based on the previous
progress will be evaluated the risk that takes implementing the requirements capture in the
iteration. After that, the development phase initiates based on the previous design and
during the development multiple tests are done. Finally, the last iteration is for the user
evaluation of the software testing it until release, during this phase new tests are added to
be done in the following iterations.

For the purpose of this project the main four phases are described in the following:

e Diagnostic, research of the state of art and requirement collection based on the
user’s necessities and the research.

e Design and architecture, design of the software components and use cases to be
implemented. During this phase a requirement prioritization will be done to

identify the most complex requirements of the iteration for the development of a
use case.

Development, implementation of the use cases in the JOL laboratory using the
smartwatches to perform tests.

Testing and evaluation, after implementing the use cases planted for each month,
there will be a presentation of the prototype to the user showing the implemented
features, taking in account the comments and possible changes.

2. Theoretical frame

2.1. Basis concepts about Table Me application

The application Table Me was design to trace a table foosball match, in a single mobile
device. In the first instance, the application uses an authentication feature done through
Facebook API or Google plus API, registering the user in the server, and retrieving the
user information. After this authentication, the application shows a summary of the profile
of the player and the functionality to create a match with a button.

Based on this introduction, the application's features are divided in the player’s decisions
of consulting in deep his profile information of starting a match. For this reason, here
are presented the following features that the application offers.

2.1.1. Profile features
The application shows a dashboard screen divided in two sections:

e Profile summary [2], this section has the player's picture from Facebook or
Google plus, where can expand by clicking on it, and this will show in detail the
statistics, composed by:

(@]

o

(@]

Victories.

Losses.

Total goals and average goals per match.
Total auto goals.

Best position.

Best score.

Preferred team mate.

Nemesis team mate.

After this section located on the left of the main view, there are three rows at the
right side. The first row has the list of the latest achievements of the player; this
row has a plus button to see in detail the list of all the achievements of the player
in another screen. The second row has the ELO score of the player and his
position on the leader board displayed in a badge, clicking the image of the
position the application shows the full leader board in another screen.

Finally, the third row has two bars that represent the number of victories and the
number of lost matches. Each of the bars grows at the contrary of the other.

Solo emergencia B & & B2 W) 12:14pm. & & A 100%M 4:47

TableMe o] TableMe
N
g &

le mie partite [EAUSEBERUE
06052016 (34 £ X DO
wosz0s (R X DE
19042016 (R S v @ £
roe DD X @&

~n D . A S

&

14 vittorie = N
10 sconfitte

64 goal (2.67 per match)

1 auto-goal @
L]

0 migliore posizione

@

0 migliore punteggio
undefined

Nemesi: Marco

Figure 2: Profile screens of Table Me

e Match history [2], in the rest of the screen below the profile section as in the
Figure 2, there is a list of the matches where the player participated. Each row
represents a match, including the date and the images of the profiles of each
player. Finally, in the middle, it shows a green check if the player won that match,
or a red cross if not. By clicking the row with a match, the application will show
another screen with the complete information of the match in a screen similar to
the screen on game, showing the results of each team. This screen contains the
total goals scored by each team, the goals that each player did individually and the
auto goals too. The team that lost selected the match, will have a badge under the
team’s total score that says “rivincita” to play a revenge game, by pressing this the
user will start a new game with the same players of the match.

o + A 70%H 11:08m

TableMe Lo

SR A na e Stande Borean
& o w 0 &

30-06-2016

@ o 2 &

i 4

or b g =~ undefine
Colombatt: indefined
L\ W E—

Figure 3: Singular Match History Table Me

e Main leader board [2], the user can enter to this screen by tapping the position
badge, this will show the general leader board. Moreover, if the user tap over one
of the players in the leader board, then the application will show the correspondent

profile information of the selected player. The profile information displayed have
the same attributes as the user’s profile section.

+ A 70%m 11:08am

Lo

Danny

Marco Marengo

Alessandro 1zzo

L 4
<

w @ 0

undefined

Lucia Longo

+5 1508pt

Davide Colombatto

OO ®

1499pt

/ﬁ Gian Luca Cecchi
7T &

Figure 4: Main leader Board Table Me
2.1.2. In game features

e Player selection [2], after clicking on create a new match, the application displays
a new screen with a layout similar to a foosball course. On each side are two
buttons to add the participants of each team, by clicking on them it displays a list
with the players of the game, and the user is able to select a player to all the four
positions. After that, the application enables a button to start the game.

SoloemergenciaFl & @ = RS T) 12:14p.m

Table Me o]

Figure 5: Player Selection Table Me.

e In game [2], after clicking the start game button, the application displays a layout
similar to a foosball course and the players of each team, identified by their

9

photos, over their respective sides. Over the sides of each of the player are three
buttons, the first for scoring a goal adding a point to the team who score it, second
to score an auto goal, and third to dismiss a goal. The application allows to keep
the score of a match until a team reach six points, and when the match ends it
display the results in a similar way to the match history screen.

Soloemergenciafl i @2 RF 0o) 12:14p.m

Table Me &

. dER
Di Salvo Borean

0
@ 00 .
Colombatto @I@ Gargiulo

Figure 6: In Game Screen Table Me

End game [2], after one of the team’s scored six goals, the application asks to
confirm if the score is correct or not. Selecting the incorrect option, the last goal
will be dismissed and the game continue. In the other hand, by selecting the
correct score, the application will change the background color with the color of
the winner team with an animation of the score. Finally, a pop up window is
displayed showing the final score, and giving two options to the user: play a
revenge game or go back to the dashboard.

Table Me

Colombatto

Figure 7: End Game Table Me
10

e Revenge game, after the user select to play a revenge game as shown in Figure 7,
the application shows the match all set up with the participants of the previous
match or the match selected from the history, enabling the start button to start the
game.

2.2. Conceptual frame

The conceptual frame of the project is target to the following important aspects to develop
the distributed game of foosball for the Table Me application. Firstly, is necessary to
know the main and important ways of communication between the mobile devices and
their correspondent smart watch. Secondly, an architecture for multiplayer games that
allow supporting the games correctly and its communication methodology. Finally, the
user interface to be implemented in the smartwatch, due that its reduced size, it is required
to know the guidelines to design and implement it.

2.2.1. Android Wear

The smartwatches that uses Android Wear are very recent, the first one was released the
25" June of 2014, being able to develop applications in the same manner as with a mobile
device. This release was using the android distribution Kit Kat 4.4.1 now a day the last
release is the version 1.4 launched 4" February 2016 using the distribution Lollipop 5.0
giving multiple features in addition with the previous updates such as Wi fi connection
directly from the watch, Bluetooth complementation, longer battery life management and
support to send multimedia data from the phone to the smartwatch.

The main features of Android Wear are that in the home page of the device it manages a
stream of cards displayed vertically in a Context Stream [55]that are stacked in a prioritize
way with the information sent from the phone. The stream cards allow to display
notifications and applications features that simplify the usage of the application in the
smartwatch and in the mobile device.

Home

Cards J
(Context stream)

Figure 8: Android Wear Context Stream[3]

11

The context stream allows to access to applications features or notification information by
swiping to left displaying concatenated cards, and it can be dismissing by swiping to the
right.

Additionally, to this, Android Wear allow to create applications that use the Context
Stream to place the activities of the application. As said before the advantage of this
technology is the usage of the same implementation as in a mobile device development,
this allow an easy management of the application’s code.

In the following points there will be a description to the different ways to communicate
the smartwatch with the mobile device using the Message API [9], the Data API [13] and
the Channel API [32].

2.3.1. Communication between devices

In the communication between devices (mobile and smartwatch) is relevant to note that it
is necessary to take care of the compatibility between devices to be able to use them
correctly. Android offer the versioning of their releases for the mobile device that allow to
using different services depending of the device and the android distribution that it use, in
the same way the smartwatches that use Android Wear. About this, the technologies
developed for the smartwatches have evolved from the simple pair connection with a
single device through to Bluetooth, to a direct Wi Fi connection and have multiple
smartwatches connected to a single mobile device. The following architecture shows the
normal usage of this technology.

Google Servers

Cloud Node "I—ﬂ

T Wi-Fi

1
Mobile data/Wi-Fi

v

Phone Wateh 2

T

Bluetooth

Watch 1

Figure 9: Physical Architecture of multiple devices[4].

Due to this, to be able to be compatible to the smartwatches that use only the Bluetooth
connection, it is necessary to know the communication methods between the mobile and
the smartwatch using the Wearable package[5]. This package implements all the different
ways to transfer and synchronize data between devices.

Additionally, is necessary to know a trustable way to communicate between mobile
devices using the Google Cloud Messaging service to notify asynchronously about events.

12

Moreover, this implementation helps to the development of a simple base of a multiplayer
architecture to be able to support a distributed game for the Table Me application.

2.3.1.1. Natifications using Google Cloud Messaging

The notifications are one-way asynchronous communication to send messages to a mobile
device to another. This can be done using Google Cloud Messaging service, that allow to
push notifications between devices sending a JSON message in an HTTP request to the
service with the information of the receiver and the message. To be able to use the service,
every device that use the application must register itself in the Google Cloud Messaging
service, and the result of that will obtain a token that will identify the device and through
it will be able to send and receive messages [6].

However, a device cannot know all the other devices that will send an asynchronous
message, as such in a game environment. For this it is needed a server that store this
information and help a device to easily send the message to the desired mobile. The
documentation of Google Cloud Messaging [6] advises to use this architectural
implementation in the following mode:

Client App

3rd-Party App

Server GCM Connection Servers

Figure 10: GCM Architecture[7]

Following the advice given by the source, the third party app server will be in charge of
store the information of all the clients that use the application saving the information of
each one for further requests. After this point, the server can act as a database of user’s
tokens so the client application can send the notification by itself, or the server can be
more active and manage to send the notifications by itself by demand of the users.

After a message is sent using the Google Cloud Messaging service, the client uses a
listener service already implemented by Google (the GCM listener service [39]), that is
instantiated every time the device receive a message from Google Cloud. From that point
on, the device is in charge of raising the visual alert of the notification setting its visual
properties (e.g. icon of the notification, background, text, title, actions with pending
intents to open activities or services, etc.). It raises and display the notification drawer on
top of the user interface, and when the user slides it down it shows the full content. If it is
clicked it will execute the action with the pending intent that was set before, and will
execute the activity or service attached in the intent [7], [8] .

In the case of when the device paired to a smart watch, by default all the notifications
raised from the phone will be also in the smart watch. However, either there is an option
to raise the notification locally, so each device either the mobile or the smartwatch display
it. In the smartwatch the notifications are raised in a stack of cards that is managed by the
operative systems, where all notifications are organized by priority. the cards that display

13

a notification have multiple ways of use allowing to set the same properties as in the
mobile device [8]. Using the custom layout of a notification, the user can create a custom
view with a certain style of the card and its text; additionally, it is possible to add an extra
page that can be access by sliding to the left to put more information.

Finally, to open equally an action as in the mobile device, the notifications in the
smartwatch manage actions in an additional page per pending intent, and can be access by
the same way as the additional pages of the notification. A set of dots in the inferior part
of the interface below the notification represented the quantity of pages of the notification.

2.3.1.2. Message API

The messages are one-way communications that are suitable in short life applications of
components of it. this method of communication was designed mainly for remote
procedure calls (RPC [9]), to invoke functionalities between devices by sending a
message. A Data Layer managed the data to send and it is in charge of sending and
receiving the messages across the Bluetooth connection between devices. Additionally,
the Data Layer is in charge of raising the services that are waiting for a response through
this channel.

Moreover, the service is offered by the Google Play Services for Wearable devices, by
using the API implemented by Message API [5] inside the Wearable package [5], that is
able to send and receive messages between the mobile and the smartwatch, and used to
send data in byte format identified with a path id.

There is two main ways to use this way of communication. The first one, used just to
receive information, is done by using a Wearable Listener Service [10] that is activated by
the Data Layer when any kind of data event that is sent between devices (Device
connection, receiving messages, communication errors), will be notified in a specific
method. To capture messages sent by the Message APl the service uses the
implementation on Message ()[10]. With this the data will arrive in a message event that
contains the bytes of the message, its identifier path, the id of the request of the message
and the source node that sent the data. Additionally, the service handled all the
connections automatically.

The second way of communication is guided to be implemented by using a Google API
Client applying the Wear API [5] that acts as a channel that allows to send data and attach
listeners to receive the data through the Message API listener implementations[9].
Additionally, the listeners give more information to control the actions to take. Because of
this, they allow to know when the devices (either a mobile or a smartwatch) are connected
or disconnected or when the communication between the devices suffer of an abeyance.
Finally, and the most important aspect is that the connection can be controlled in the
activity or service that will interact with the devices by the usage of the Google API Client
[11], using the same implementation with the method on Message() who connects and
disconnect the channel it's needed programmatically. It is important to note that, to be able
to send a message using this implementation, it is necessary to send it in a different thread
with the user interface or in the same thread where a service is running.

The following architecture shows how a message is send from the mobile device to the
smartwatch through the methods necessary to send a message as explained before.

14

iy Handheld ™, /" Wearable ™,
Message F'N

.getData
MessageEvent
.onMessageReceived
Wearable.MessageApi
WearableListenerService
sendMessage
Data Layer Data Layer
\ Bluetooth \ ’/

Figure 11: Message API Architecture of the implementation[12]

With the latest releases of the Google Play Services, it is possible to pair via Bluetooth
multiple smartwatches with one mobile device, and there are identified as a node, with a
unique identifier. The nodes can be retrieved by using a node listener attached to a Google
API Client[11], and it will allow to have control over the devices when are connected or
disconnected to the mobile device and vice versa.

2.3.1.3. Data API

The Data API services [13] provided by the Wearable APl [5], is a one-way
communication between devices paired via a Bluetooth connection, and was designed to
be used as a data synchronization method. As well as the Message API is used for RPC
(however does not allow to send more than a set of bytes); the Data API allows to send
objects in a Data Map. This act as a hash map storing any object with a string identifier,
allowing sending more heavy loaded data between devices without the necessity of
serializing the data. A Data Map allows storing the simple data types. Additionally, it can
use a bundle of data from an intent, and for images, audio or video, can be used Assets
that allow to store and serialize this kind of multimedia data[14].

The Data API access to the data layer, not as directly as the Message API. The data must
be stored in a request that is sent to the Data Layer, settled in a priority queue that is
organized depending of the urgency of the data to be sent (Between more urgency the
Data Map is sent without delay, the default configuration can take over 30 second to send
a Data Map[15]). Then, automatically sends the data to all the devices connected through
an instance of the Google API Client implementing the Wear API[5]. This can be a
disadvantage if a user use multiple smartwatches connected to the mobile.

The usage of the implementations of the Data API is used in the same way that the
Message API. One implementation using a Wearable Listener Service [10] and the other
one controlling the connection using a Google API Client implementing the Wear API
[5], attaching to it a Data API Listener that implements the method on Data Changed

(0[10].

For sending the data, it is necessary to use a Data Map as said before, store the
information into it and put it into a request, this request allow to set its urgency. Then, this

15

request is sent to the Data Layer through the Data APl implementation in the Wearable
package[5]. Moreover, to be able to send the request, it must be done a thread different
form the thread where is running the user interface or the service.

After this, for receiving the Data Map sent, can be use the Wearable Listener Service
implemented by the Wearable API using the method onDataChanged() [10]. This method
works as a data synchronization method, receiving the Data Map issued by a device.
However, it is necessary to note that this listener will be activated only when the data sent
IS not the same as it was received before, denying duplicated data.

The following architecture shows how a Data Map is sent from a mobile device to a
smartwatch using the implementations explained before.

/ Handheld \ / Wearable A\

Data ‘ DataMap |
.getDataMap
‘ PutDataMapRequest
‘ DataMapltem |
.getDataMap
DataMapltem.fromDataltem
DataMap ‘ | Dataltem ‘
.asPutDataRequest .getDataltem
‘ PutDataRequest ‘ ‘ DataEventBuffer ‘
‘ Wearable.DataApi ‘ -onDataChanged
‘ WearableListenerService |
JputDataltem
‘ Data Layer ‘ | Data Layer |

\‘ Bluetooth A 4 > y

Figure 12: Data API Architecture of the implementation[15]

2.3.1.4. Channel API

The Channel API is a service provided by the Wearable package[5], that send large
amounts of data, streaming it directly to an specific device. The Channel API create a
bidirectional connection with a node sending objects such as with a Data Map [15] and
also use Assets for multimedia data [14]. In this case, the Channel API is different to the
Data API due to that Data API uses data synchronization and it does not send repeated
information. In the other side, the Channel API sends the data independently if is
redundant or not. Additionally, it relays on the Message API to send in case of a heavy
loaded file and the Channel API streams the file through this way. Moreover, it facilitates
the streaming of data to and from the network, such as multimedia data. Finally, the
Channel API creates a copy of all the data received in local memory of each device. This
can be a disadvantage if a smartwatch or a mobile device does not have enough memory
to support copies of large files.

The implementation of the Channel API uses a streaming method to send the data through
a Google API Client implementing the Wear API [5], and it creates an input and an output
stream that is open until it is closed by the Google API Client. As before, the

16

implementation can be done using a Wearable Listener Service, but implementing the
methods on Channel Opened(), Channel Closed() when the channel is created and
onlnputClosed() and onOutputClosed() [10], when the stream of data is closed by the
sender. Otherwise, controlling the connection with the Google API Client, attaching a
listener of Channel API implementing the same methods explained before.

2.3.2. Architecture for a multiplayer game

The architecture of a distributed game helps to use and organize the server correctly. In
the communication between the mobile devices and the game’s hosting server, is
necessary to use a technology that support the game without long delay response, and the
way how the data in the server and in the client is managed.

2.3.2.1. Peer to Peer

This architecture of a network where every device connected exchange information
between them apart if someone is a server or a client [56]. Additionally, for Real Time
Strategic games this architecture uses a deterministic lockstep that helps to simulate a
player behavior and to synchronize the communication between devices only sending
individual commands such as clicks or points over a game.

However, the architecture with the lockstep was thought only of local network games, this
could bring a high latency to the players. Firstly, due to the connection status, and finally
cause of the simulation of the game.

Moreover, the architecture allows to a component in the middle to run a soft controlled
instance of the input based on the previous state sent. This soft instance can be managed
with the games rules whenever a command triggers an event or is not permitted. The
component will notify the participants of the game only the commands form the other
players; this will allow a faster way of respond to results. Thanks to this, the architecture
allows to create real time communication between the devices, allowing to decouple the
dependency of a stable network connection.

The following figure illustrate the basic architecture model based on the Napster sharing
network design:

Client
Pear

Figure 13: Peer to Peer architecture from Napster[16]

17

The architecture purpose is to use a light server component that allow to the clients to
communicate in a peer to peer way helping to synchronize the lighter data as an
intermediate cooperator between them.

2.3.2.1. Client/Server

The Client/Server architecture for multiplayer videogames is based in a soft client and a
heavy load server, where every client that is playing does not execute locally in the client,
but a soft instance of the game is paired with the information of the server. With this, the
client must work in order to update with the server’s multiple responses done from other
players. This allow to have a great performance in the client side, but it depends on the
state of the connection of the players with the server, for this case this can bring a lot of
latency in to the game, due that the clients will receive the update until the slowest client
send information to the player.

The implementation of a distributed architecture for interactive multiplayer games by
Ashwin R. Bharambe, Jeff Pang and Srinivasan Seshan[17], gives an explanation of the
development of a First Person Shooter named Colyseus. In their research, the authors
propose an architecture for the nodes involved in the game that help to organize the data
of the game and the interaction between the nodes. This can help to develop the
architecture of the server of the game and to adapt the client structure to the structure
developed in the Table Me application.

The following architecture (Fig. 5) shows the architecture of the nodes in the Colyseus
game. This can be used as a guide of the main elements for the server and for the client. In
first instance, this architecture is based on the Model View Controller (MVC) [57], with
the game application as the view, the local object store as the model and the object placer
and locator as the controller.

Node 1 Node 2
\ Game Application | | Game Applicaiion |
it Pt

® @ [~ Object Piacer Object Placer || @ ®

® ®

[

DL% * Replica *| Replica [&E:It
M M
Store danager anager Store
} f I :
Object Locator = Object Locator

Figure 14: Architecture of components of Colyseus, (Figure 4[17, p8])

In the architecture referred, the nodes represent a set of important elements to have in the
client and in the server. In this case, the node 1 acts as a client and the node 2 as the
server. The elements are structured by the following way:

e As said before, the game application act as a view for the client, using the model to
represent the game engine or application, displaying the information of the game
stored in the model.

18

e The game application act as part of the controller in the server, using and
administrating the primary data of the game.

e The object locator helps to a node to discover the objects that are involved in a
primary interest. In the case of the Table Me application a new game, challenging
a set of players.

e The replica manager is in charge of have a loosely-synchronization[17] of the
replicas of the nodes and objects involved in the primary interest. In the case of the
Table Me application, it would be managing an instance of the replica of a node
involved in a game in an instance created on run time.

e Object Store, where is managed the storage of the node’s information and
additionally releasing memory of data not needed.

2.3.3. Communication technologies

For a multiplayer game is necessary to have short time response communications. For this
reason, it would be necessary to use real time communication to be able to ensure a
minimal time of response between Client and the Server. In addition, it is necessary to
guide the solution to implement a real time system.

A real time system responds to stimuli of an environment in an established time, as well as
ensuring the integrity of the data transmitted. Among real time systems, we find different
categories: the hard real time systems are those where response times must be always
respected, because can they can be involved in life threatening environments that need a
fast answer. Firm real time systems can miss some of the deadline times, but it does not
affect the environment where the system is. However, the performance will eventually
degrade if too many responses are missed, leading to degrading the system as well: so
different time limits must be set regularly, such as seismic or temperature sensors.

With a real time, system, which also is distributed, the communication becomes more
complex, because now it needs to consider the network infrastructure upon which the
system is running, and (as the data is sent) is assured that the communication is still in real
time.

To address the above, it is necessary to check the real time protocols: these protocols
allow us to transmit data within a stipulated time. There exist various implementations,
suitable for the different scenarios, each of them has advantages and disadvantages.
Likewise, many different technologies help us to achieve the above. The most important
one of these are Long Polling and Web sockets.

With respect to these technologies, we know that these three are used to achieve the
improvement needed based on a web application or a library on a mobile application.

2.3.3.1. Long Polling

The Long Polling technology is based on the usage for single purposed software for low
level hardware communications. This technology simulates a real time communication
through continued use of the http requests to a server using AJAX for web development of

19

interactive applications. To achieve this, the client establishes the connection with the
server asking if there is any update. Then the server replies with the updates (if any) [41]
[33]. Upon receive the response the client establishes the connection again and requests
next possible updates wait for any new information from the server. All the connections
managed by the server are stored in a data base where the server needs to query the
client’s connection each time a new request is received. This base protocol has the
disadvantage of high consumption of resources processing and 1/0 operations between the
data base and the clients, that must be used whether or not there are updates for clients. In
the Long polling implementation, when the server receives a request it waits some time to
send the response, although, the disadvantage is that it uses network resources constantly.
Additionally, if multiple clients are connected, the server will have a high load of work
just checking the state of the clients taking too long to answer. The following figure
illustrate the behavior of the Long Polling technology.

HTTP

| Client |

fr"\L.\.'; .
o % id state

updated state

Figure 15: Long Polling [58]

To be able to manage the technology in android, it is necessary to use it with normal
HTTP request. However, the management of the response time must be done
programmatically to be able to repeat the responses in case of failure.

2.3.3.1.1. AJAX Long polling

The Asynchronous JavaScript and XML (AJAX) technique is used for applications that
are highly interactive with multiple users. This technology operates by only sending
additional data that trigger different actions in the client, without sending multimedia
content. This method of communication uses the long polling thanks that keeping the
connection alive in background, updating the user interface whenever a new state is
received from the server [49]. The technology uses XML HTTP Requests as standard to
communicate between clients, so it can be used in different platforms that use Java as
minimum.

AJAX can be use with long polling where, as said before, the client keeps the connection
to wait for the server response, when the client receives an update it immediately asks for
another long poll request to keep the connection. The following figure illustrate the AJAX
Long Polling behavior.

20

———— [N —

= Server

<l Client

Figure 16: AJAX Long Polling behavior[19]

However, the drawbacks of this mode of use is the constant use of resources as said
before, and the client needs to initiate always the communication to be able to receive and
send data (not event based). Additionally, the server needs to be sending data often, or the
clients could have a memory overflow with the channel opened all the time consuming
memory and processing.

2.3.3.2. Web sockets

Web sockets are the technology that closely resembles the real time communication,
without the resource consumption that the Long polling uses. The web sockets open a
bidirectional channel between the server and the client on a single TCP connection, with
that the server will send when necessary any update to the client without overloading the
network of multiple requests. In first hand, this technology was used for browser use only,
however with the latest development on this technology it is able to use in any type of
server and client across multiple platforms, offering not only a great performance, but
security and scalability attributes for the developing. In this manner this technology allows
to implement massive platforms such as multiplayer interactive videogames.

The following figure show the behave of the Web Sockets technology.

Custom port

action, recipientld

Figure 17: Web Socket Architecture [58]

This technology offers a wide portfolio of solutions that easy up the communications
through different quality attributes. In the security area, the Web Sockets can be used in
encrypted connections between points, allowing secure communication using a TLS
connection. This implementation is named Web Socket Secure. In the reliability part, the

21

technology offers a transparent connection, that use automatic reconnection to the clients
and a trustable message sender that is aware to send the right messages to the clients in the
correct time. In top of this, to improve the usage of memory the Web Socket server
manage an array of the connected nodes in the application’s memory, allowing to reduce
I/O operations, differently than as it is used in Long Polling.

As said before, the web sockets are developed multiplatform, and there are multiple
implementations that can be used in different environments, then the best solutions for a
multiplatform system are the Web Socket Node, Stream Socket and Socket 10. However,
the Web Socket Node just use an implementation for Node JS client or server, but not
support for multiplatform. In the other hand, Socket 10 allow to be used in the mobile
development environments for Android and IOS, and in various languages for the
standalone clients or servers in using JavaScript. In addition, Stream Socket can be used
by sending normal HTTP requests

Eric Terpstar had develop a prototype of a multiplayer game using web sockets,
implemented in a library named Socket 10 [48]. This implementation is done in node JS
and express JS allowing to play the game through a browser, either from a phone a smart
tv or a computer. The game is called anagrammatix, and is a real time system for a
multiplayer game, where the players compete in a short time to find an anagram word in a
list of words. The players must find an anagram in the list based on an initial word with
the same letters given at the start of the game. This game shows a simple and complete
implementation of how to use Web Sockets in a library able to support the technology
handling the main features for the communication letting the user have an easy to use
implementation.

2.3.3.2.1 Socket 10

Socket 10 is a Java Script framework cross platform that allow real time communication,
and open source. Since with the 1.4.5 release available it allows to deal with
compatibilities between browsers and devices [48]. Additionally, Socket 10 manage a
library for android where can be used as easy as in the Java Script implementation. This
library communicates through events associated to a socket that are executed in a new
process each time a new event is received. This allows to handle concurrency issues more
easily. To the scalability of the server, Socket 10 does not store and replicate data about
the connected clients, it just manages the events that are received and associate them with
the right nodes. This part is managed by the emitters that accept the connections and are in
charge of send and receive the right messages to the clients and the server. The multiple
implementation of the emitters in different environments, allow to an easy integration for
a cross platform application.

The implementation of the Socket 10 uses a single TCP connection that is kept alive using
a small heartbeat message that allow to know through events when a client is connected,
reconnected or disconnected that allows in a more assertive way to know when a
connection is terminated. Additionally, to this, Socket 10, have a more refined
implementation of interconnection of clients independently the network error due to the
disconnection.

Socket 10 have been managing an upgrade/fallback algorithm in the latest releases that
supports the type of connection that is needed depending of the client’s compatibility. If
the user has compatibility problems to use Web Sockets, Socket 10 uses the algorithm, in
the other case, the connection is totally done through Web Sockets. In the initial

22

connection a Long Polling implementation is used, applying the improved memory
management approached explained before. After a connection is completed, the algorithm
tries to upgrade the connection to a Web Socket connection, keeping the channel alive and
closing the Long Polling session. If the upgrade is not possible the communication is done
through Long Polling behaving as the Web Sockets.

2.3.3.3. Technology benchmark

Finally, to be able to select correctly Socket 10 for the development of the Back End of
this project, there are the following benchmarks done by Cubrid Apps & Tools, where
they explain and show the best solution to use for a server using real time communication.
This first benchmark shows quantity of messages sent in a certain rate of microseconds, it
used a server using AJAX that a similar implementation as with Long Polling with a
persistent data base of connections, a server using Socket 10 and a server using Socket 10
but using persistent data base for the connections. These are the results:

6,000
5,000
4,000

Ms. 3,000 AJAX (ms.)
== soket.io (ms.)
2,000 —#—socket.io persistent (ms.)

1,000

10 100 250 500
Data exchanges made

Figure 18: Speed Benchmark for AJAX persistent server, Socket 10 server and Socket 10 persistent
server [49]

This shows that for small traffic the three implementations can be used in the same
manner, however when the load increases the Socket 10 implementation improves due to
the lack of 1/0O operations with any connections database.

Now knowing the performance in the speed sending messages, now is necessary to know
the capability for having concurrent clients using a server that is very relevant for this
project to be able to host multiple matches without losing performance. The following
benchmark done by Drew Harry, who perform a set of test showing the concurrency
capacity of the Socket 10 implementation, receiving and sending messages with different
loads, in a certain rate of concurrent connection from 25 to 1000 connections, within a
roundtrip time. These are the following results.

23

— 25
— 50
g 75
i 1))
— 200

1| — 300
— 400
w500
— 750
1000

mean roundtrip time

0 2000 4000 6000 8000 10000 12000 14000 16000
messages sent per second

Figure 19: Concurrent Benchmark on Socket 10 server, number of messages sent by roundtrip time
in different concurrent rates[20]

The main focus of this benchmark shows that by the higher concurrency level, the load
takes a longer around trip but it is not related with the message load, however, the
response times maintain the same distribution regardless of the load of the data sent, but it
depends on the concurrency level. Showing that this time difference between the higher
concurrent cases adds 100 ms that is manageable and not very costly for the application.

Finally, in conclusion the Socket 10 solution would help to support a multiplayer game,
with a low delay of sending messages and a high support of multiple connections with
different load of data sent and received from the clients. Additionally, the Socket 10
implements multiple features that complement a cross platform solution with backwards
compatibility support in real time communication, reliable connections and security
features.

2.3.4. Graphic User Interface Design for Android Wear

For the development in the smartwatches using Android wear, google have developed a
set of design principles for the user interface design and performance in the following
way:

e “Focus on not stopping the user and all else will follow” [21], this explains that as
a smartwatch it has to be a device that allow to the user to do different tasks
without stopping him/her from the normal flow of actions.

e “Design for big gestures” [21] or big thumb principle design, that explain that is
necessary to be careful about the user interaction in different situations where the
interface has to be proportionate and easy to use. For this, Google advise to use
large interactive targets such as buttons or lists so the user can use easily.

e “Think about stream cards first” [21] As said before in 2.2.1. Android Wear, the
smart watch uses a steam cards that shows information and give features from
applications of the mobile device. For this is necessary to know when the design of
the application must use cards to show events from applications, cloud services or
Sensors.

e “Do one thing, really fast” [21] An application will be used for small periods of
time, but is used multiple times a day, the application to be developed must show

24

potential but short information with few action buttons, allowing the user to use
the basic actions such as swipe left or right.

e “Design for the corner of the eye” [21] The application must not pull out the user
of his/her normal flow, the application must be design to be used quickly so the
user can return to do what it was doing.

e “Don’t be a constant shoulder tapper” [21] Do not constantly notify the user using
vibration actions to alert him. Notify him when is necessary.

This applies to single applications and stream card applications. Additionally, Google use
it for design principles for notifications in the stream card of the watch, for this the
notification can manage a style that is customizable that allow to use different actions in
concatenated cards using intents for a specific activity or to trigger a next card
concatenation.

25

3. Analysis

3.1. Proposed model

The proposed solution of the system using the user’s smartwatches to involve features of
the Table Me application will require existing components and new ones for its
development. Due to the previous implementation of the Table Me application, the JOL
(Joint Open Lab) manage a server in which all the system data is stored and request
through HTTP. Thanks to the server implementation, the solution counts with the user
information such as profile data, match history and leader board as it was used before. To
complete the solution, it would be necessary to complement the server with an additional
component that will be in charge of hosting the multiplayer platform. For this, is
necessary to note that is needed an internet connection to be able to use the previous
server such as the new one.

The following model show the principal elements needed for the solution.

deployrmert Solution Model /

JOL Server

JOL TableMe HTTR wAndroids Bluetooth wAndroid Wears
Server ‘Phane :Emartwatch
HTTF
Multiplzyer Tablehe Real Time/TCP whndroids Bluetooth whndroid Wears
Server :Fhone ‘Smartwatch

HTTF

Google Cloud
Messagin

Figure 20: Proposed Model

Moreover, the multiplayer component will require the usage of the Google Cloud
Messaging to push notification to the devices to alert a user when is asked to participate or
not in a game.

In addition, the communication between the smartwatches and the mobile devices will be
through Bluetooth connection, this to support the previous smartwatches that only have
this channel to connect with the phone.

3.1.1. Distributed gameplay

For the implementation of the distributed gameplay it will use a Peer to Peer architecture
approach, based on the lockstep addition to this architecture, instead of using it for the
26

prediction of the users moves, it will be used to control a match allowing a user that use
the application in the mobile device to host the game and communicate to the participant
players. Additionally, it is taken in account the architectural implementation for managing
the game’s data done in the game Colyseus shown in the Figure 14.

The final system will use a real time technology for the communication with the client’s
mobile devices, and will require the usage of the services from Google Cloud Messaging
to push notification to trigger the events in the clients to be able to start or join a
distributed game. It is important to note that it will be necessary an internet connection to
be able to use this feature, if not the user still would be able to host a game in a single
mobile device as the previous implementation.

For the gameplay experience, the user that create a game has total control of the match as
a referee, in his/her mobile device. Meanwhile, the players with smartwatches that join the
game, can manage their own scores from the Android Wear device. However, if the
referee doesn’t allow a goal it can dismiss it from the phone. Finally, at the end of the
game, if the match creator scores the winning goal and decided to accept it, the players
will be notified and the game will end. In case that a player scores the winning goal from
the smartwatch, it will have the sale behavior as before and all the players and the match
creator will be notified of the winner.

3.1.2. User information management

The management of the user information is done through the server hosted by the JOL
(Joint Open Lab), and all the communication is done by a component named
Communication Manager, used in the Table Me application. For the implementation of
this section it is necessary to integrate and reuse the functionalities of the Communication
Manager when the user request it from the smartwatch. For this is necessary to use the
Wearable Listener Service [10] to receive the events from the smartwatch and return the
correct information of the user.

3.2. Software prototype

Through the design phase and the correspondent evaluation, it had been able to recollect
and represent the use cases and its respective requirements to describe the prototype’s
features and behaviors to be develop. To develop this, it had been done a Software
Requirement Specification, that show how was the process to define the use cases, the
respective requirements and the prioritization of them to identify their relevance to give a
precedence order to the most complex cases to implement. The document is in the
following annex: Software Requirement Specification.

The next sections will show the analysis and design of the integrated prototype of the
Table Me application before being programmed.

3.2.1. Use cases

The uses cases were developed using a process defined in a Software Requirement
Specification document (Annex: Software Requirement Specification) where had been
organized how will the use cases and the requirement derived from them were obtained
and refined to create the final product.

27

The recollection of the use cases and the requirements was done based on the description
of the game given by Marco Marengo, Cecchi Gian Luca and Alessandro 1zzo
knowledgeable people that through a series of reunions had explain application
functionality and the desired features to be implemented with the Android Wear
technology. Additionally, the usage of the actual working application in the testing
version on the Google Play Store. From this was developed a description of the main
features and their principal elements.

3.2.1.1. Actors

The stake holders involved in the system are the following:
Actor name Description

Player A user of the Table Me application that is challenged to play a
game. This user has a smartwatch and the Table Me application
installed on it. This player is involved as a client in the interactive
multiplayer game managing his score in the game.

Match Creator A user of the Table Me application that create and host a game,
managing the team’s scores from the mobile device. The host as a
player too, is able to use the smartwatch if participate in the game,
as well using the application in the phone (noting that in the
smartwatch will be only the personal score).

GCM Google Cloud Messaging a service from Google that provide push
notifications feature to the server and the player’s mobile devices.

JOL Table Me The server of the previous implementation of the Table Me
Server application where all the data is stored and requested of the users
and their games.

Table 1:Actors
3.2.1.2. Use case description

After the recollection and refinement of the user’s information and necessities, the use
cases were classified in the following categories depending on the phase that are

developed:
Phase Description

Menu options Requirements about displaying the profile information, match
history and leader board.

Game preparation Requirements about the process to prepare a game and notify
the players that will be involved in the game.

Connection Requirements about the connection between the server and the
mobile client, and the mobile client and the smartwatch.

28

In game Requirements about a current match with or without multiple
players, hosted by a user of the Table Me application.
Game end Requirements about the finishing phases of a game.

Based on the previous information the use cases stated for the implementation of the

Table 2: Phases of the Table Me application

system are the following:

ID Use case name Phase
UC-001 @ Synchronize wear data Initialization
UC-002 | Register device to the server Connection
UC-003 | Create a match Connection
UC-004 | Send notification to a device Game preparation
UC-005 | Select red team Game preparation
UC-006 | Select blue team Game preparation
UC-007 | Use GCM service for a token Connection
UC-008 | Receive challenge notification Game preparation
UC-009 | Show challenge notification Game preparation
UC-010 | Accept challenge In Game
UC-011 | Start match Game preparation
UC-015 | Add goal In game
UC-018 | Update score In game
UC-019 | Display score In game
UC-020 | Select winner Game end
UC-021 | Display winner or loser Game end
UC-024 | Show profile data Menu options
UC-025 | Show leader board Menu options
UC-026 | Show matches history Menu options
UC-027 | Notify player ready Game preparation
UC-028 | Register player ready In game
UC-030 | Register player decline In game
UC-031 | Create match Game preparation
UC-032 | Cancel match Game preparation
UC-035 | Reconnect wear Connection
UC-036 | Reconnect player Connection
UC-037 | Add auto goal In Game
UC-038 | Request user information Menu options
UC-039 | Request leader board Menu options
UC-040 | Request match history Menu options

Table 3: Use cases

e The use case diagram is in the following diagram: (Annex: Use case diagram)

e The total description of each use case is in the following file: (Annex: Use case
specification).

29

3.2.2. Requirements description

After defining the use cases, the requirements for the development of the scenarios
planned where collected and evaluated to check their correctness and priority. This section
has been done in the Software Requirement Specification (Annex: Software Requirement
Specification), where is a specification of each requirement and its dependencies.

From that, it was produced the requirement classification based in the FURPS+ model
[22] to organize their types. The main two groups are the functional requirements and
nonfunctional requirements, the correspondent specification of each one is done in the
following files:

e Functional requirements: (Annex: Functional requirement specification)

e Nonfunctional requirements: (Annex: Nonfunctional requirement specification)

3.2.3. Data model

The system already manages a data model that uses the server and the Table Me
application to share information. The relevant issue is how to use this model to represent
the data that will be sent to the smartwatch when the user requests his profile information,
his match history and the general leader board. Based on the previous model, it has been
design the following data model that will be used to organize and structure the responses
from the server to send the correspondent information to the smartwatch.

class Data Model

U=ser

name
wvictories: int

Histary Leader Board

losses: int
goals: int ———
1 1{- autogeoals: int 0.= 1

position: int
best position: int
best scare: int
GCM token: int

1.4

Match

red defense: Player
red attack: Flayer
blue defense: Player
blue attack: Player
total red score: int
total blue score: int
date: Date

30

Figure 21: Data Model

3.2.4. Programming language for the server side

For the implementation of this project’s server, it had been decided to be developed in
Node JS for the easy use of the Java Script language that allow thanks to the callback
based concurrency [49], the event based model used in server side and the ability to
encode and decode data in JSON format. Additionally, the technology of Socket 10 [33]
and Stream Socket can be managed in this environment. Moreover, it will use the library
of Socket 10 due that its multiplatform facilities with libraries for Android and Java
Script. Thanks to the benchmarks between the Long Polling technology using AJAX and
the Socket 10 implementation, it has brought to a clear window of which technology can
give to the architecture of the system a better performance through the gameplay
experience.

3.2.5. Architecture

The logical architecture of the system follows the structure of the proposed model shown
in the Figure 20. Based on that, the deployment of the system will be done in the
following way shown in the physical architecture:

deployment Physical Architecture /

JOL Serwver
“’:'Ldmid” wAndroidiears
JOL Table Me s Smartwatch
Serwer
[nrrPuson
- &] =]
Blugtoothiearable AR
awfP K AP
1 Tabl= M -
e brocket _—| 20 = Me TableMeWizar
8] L —
’ — -
wdavaSeripts s
Multiplayer Table Me i
Server -
: s
| ”
~”
I II
L s
i -
| use
] &
N #
otLISlEJO - -
1
Google Dedelopear Ser\.rer,’
|
| &
V£

Google Cloud
Messaging

Figure 22: Physical Architecture

The multiplayer Table Me Server will be deployed in Node JS. The deployment for the
mobile devices will be in an Android Application Package (APK) for the phones and for
the smartwatches.

Concerning the communication of the system it is important to remark that as said before,
the usage of the previous implementation of the Table Me application and the server
developed for it will be used, all the communication is managed by a Communication

31

Manager via HTTP request to the JOL Table Me Server, this is used for the storage of
permanent data such as matches results and retrieving profile information of any player.

For the multiplayer Table Me server the communication will be done using web sockets
with the implementation of Socket 10 using the libraries for Node JS in the server side
and Android for the client side. More over the usage of the Google Cloud Messaging
service to push notifications will be managed only by the server due that is the component
that knows all the players registered in the system, then the Table Me application will
receive the notification using the library provided in Google Play Services to receive a
notification as explained in 2.3.1.1. Notifications using Google Cloud Messaging.

Finally, the communication that will be used between the phone and the smartwatch will
be through the Bluetooth connection using the Wearable API for the communication. The
usage of this library is due that allow an effective communication for remote procedure
calls using the Message API, for functionalities in the mobile device; and for the
synchronization of heavy loads data with the Data API. The Channel API won’t be use
due that can generate memory overflow due that reserve a part of the smartwatch memory
to save a copy of the data sent from the phone, and is dedicatedly mostly for the transition
of files.

3.2.6. Features and technical aspects

The deployment and installation of the server will require for recommendation the Node
JS environment from version 4.4.4 onwards. After the installation it is required the
following libraries:

e Socket 10, for installation is necessary to type the following command “npm
install socket.io”.

e Google Cloud Messaging, for installation is necessary to type the following
command “npm install node-gcm”

For the deployment of and installation of the libraries for the Table Me application in
Android and Android Wear are done in the gradle build of the application adding the
following dependencies:

e Wearable API, compile ‘com.google.android.gms:play-services-wearable:8.3.0'

e Socket 10, for this library the application contains the version 0.7.0 for Android
that is compatible with the version 1.0 onwards of the JavaScript implementation.
This library was developed by Naoyuki Kanezawa, if a new version is needed can
be downloaded from Naoyuki repository:

o https://github.com/socketio/socket.io-client-java

And would require the following dependency in the gradle build, where “x” is the
version of the library:

o compile(‘io.socket:socket.io-client:x) {
exclude group: ‘org.json’, module: ‘json’

¥

Finally, for the interfaces developed for the smartwatch application has two layouts for the
different types of watches such as the square or the round ones. For this, it has been used

32

https://github.com/socketio/socket.io-client-java

watch stub views that allow to set which layout will be displayed if is used in a device
with a round or square screen.

3.2.6.1. Profile information on the smartwatch

After opening the application, the user can use a list of option to select about the user’s
profile information and the game. The profile option shows in a similar way as in the
Table Me application the basic information of the user. Firstly, the photo, the position in
the leader board inside a badge, two bars that indicate proportionally the number of
victories (green bar) and number of lost games (red bar). The at the end the name of the
user and his/her ELO score.

2 Profile <+ 3

® Leaderboard

& Achivements

BN ..
Figure 23: Showa player profile in the smartwatch screens

3.2.6.2. Gameplay on the smartwatch

After a user that will host a game organize and create the team, a notification is issued to
the participants of the match will receive a notification in their phones and to their
smartwatches if they have one. At the watch the following notification is displayed.

You have been Red: Andres , Marco

challenged!
Sweep to the left! Blue: Alex , Andrea Tap to Play

Figure 24: Notification displayed in the smartwatch for the players.

Then, when the user start playing the game, the screen with the buttons where the player
can interact with the score is provided, with a button to add a goal in the center, a dismiss
goal button at the left bottom and an auto goal button at the right bottom. The user can
interact with them and the score is displayed in the results displayed in top of the screen
with its respective colors of the team.

33

You Won! You Lost! | You Lost!

Figure 25: In game screens for the blue team and the read team, and the screens for victory and lose.

Finally, in each case the users of a team win or lose a match the following screens are
displayed in the smartwatches using a base badge with their goals scored.

3.2.6.3. Match history on the smartwatch

When the match history option is selected, the user is provided with a brief list of the last
ten matches that he/she was part of. Each match is signaled with a cross and the message
“Lost!” if the player lost that game, or a check and the message “Won!” if the player won
the game. If the player wants to know a more detailed information of the match, it is
possible to click an item on the list and will provide a screen with the background color of
the victorious team, the score, and the photo of the participants. If the user wants to see
the players profile information, he/she can click on the image and the profile information
will be displayed.

ry LLUuvuvIvVvuIlu
: X 3 LosT 6
O Achivements

X 6 LosT! 2
@ My games T i

v 4 6

Exit
N2 . LooTi o

Figure 26: Showa player’s match history in the smartwatch screens

34

3.2.6.4. Leader board on the smartwatch

When the leader board is selected a list of the ten first places in the leaderboard is loaded
and take between 3 to 4 seconds. After waiting, the list displays the basic information of
the player in the displayed position with his photo, name and position in a badge. If the
user wants to see the profile of the player in a certain position, he/she can select a player
in the list and it will show the basic profile information of the player.

2 Profile @ Marco Marengo
\9
' —>» =

® Leaderboard ¢——>

: Q Alessandro Izzo

. X
& Achivements LR
| .. fin] Dy

Figure 27: Showa player leader board in the smartwatch screens

35

4. Development of the Solutions

The solution modeled was based on the previous Table Me application, that was studied to
identify the main items that the new items will interact and the new functionalities in the
already implemented in the first application.

The following domain model (Annex: Domain Model) illustrate the whole solution for the
mobile application, the smartwatch application and the server. The next sections will
describe the individual implementation and behavior of the solutions on each device.

4.1. Server
olass Server /
Server
Game SocketlO NodelS
Gaogle Cloud Messaging
et inl o +iO
o + Socket T wintefacen
L SocketlD NodeJS:10
SocketlD Node S Sacket = 0 wintertacen
&+ =mitwoid “Google CloudMessaging

+ onEmmiterListener) : void

-7

trom) -
/" “zusen
KHT TPy -7
nServer

Figure 28: Multiplayer Server Class Diagram

As explained before the server uses the Socket 10 and the Google Cloud Messaging
libraries. The Socket 10 offers two interfaces to communicate via web sockets to a
singular client using socket or io.sockets.connected that are the set of active connected
sockets.

The server contains two important elements of the data model that are the ones that
intervene in the lockstep control of a match, the game and the device.

e Device, the device is the representation of a user of the Table Me application, this
is used following the implementation proposed by Google for the device
registration for the usage of Google Cloud Messaging. Additionally, is the soft
replica of a user from the JOL Table Me Server, this replica is destined for
multiplayer matches and pushing notifications following the architecture of the
game Colyseus[17].

e Game, an exact representation of a match from the Table Me application for the
phone, to control the score and the goals scored by the players, this is a soft
replica to control following the architecture peer to peer and for the game
Colyseus[17]. The game contains the score information of a match for each
player, knowing when someone score a goal or an auto goal, helping to keep track

36

of a match. Additionally, this instance contains attributes that allow to follow if at
least one player with a smartwatch wants to join a match and if the match has
ended. Finally, for the representation of the players the id is the only information
stored and the id of the web socket connection is stored for the players and the
host of the match.

4.1.2. Server event behavior

The implementation was done based on events as the Socket 1O library determine. The
server manages the events based on a key string. The events relevant for the multiplayer
server are the following:

Device registration (“dev_reg”), the event registers a device that has a new
Google Cloud Messaging token. The phone must send the player’s id from the
application, and the token retrieved from GCM. After receiving the data, the server
creates a new device if there is none existing with the same information. The
server checks if the user was registered before, in that case if the token changed
from the one registered before, the device is updated.

Send notification (“send_not”), after the user that host the match create it, a
request for sending the notification is received checking if the players are
registered and if they contain the GCM token to be able to push the notification of
a new game. After that revision, an instance of a game based on an id counter is
created and stored in a set of active games. The game id is returned to the host and
notified to the players inside the notification message. Finally, the server sends the
request to the service in a JSON object doing a retry of 10 times in case of error.

Set the match host (“set_host™), after the user that host the match create it, the
application notifies the server that the user will be the match host setting the web
socket id of the host in the game.

Register web sockets (“reg_socket™), after a player accept the challenge of a
game in the smartwatch, the application registers the player in the server,
initializing the game for multiplayer if at least one player with a smartwatch send
the registration request. After that, the game start sending the actual score of the
game (at the beginning on zeros), to all participants. This event is reused in case a
player reconnects to the server.

Adding and dismissing goals (“add_goal”), during a match the players and the
host will interact sending multiple commands to the server about the match
behavior, the command sent contains the id of the game, who did the command
and which type. The server searches if the game id is active and then verify who
did the action, updating the score and checking if a team won notifying the players
in each case. If a team win the game is removed from the active games and the
application in the players end the match.

Dismissing a game (“game_end”), if the match host dismiss a game that have not
finished yet, the players are notified so the application is closed in the
smartwatches.

Disconnection of a player or host(“disconnect™), if a player is disconnected is
removed from the array of player’s sockets and later on can rejoin the game by
registering the socket. However, if the host disconnects the game is finished.

37

Retrieve last match(“get _match”), if the match host minimize the application, the
service in the mobile device continues managing the game. If the host return to the

application, the data is updated with the match instance in the server.4.2. Mobile Client
4.2.1. Class diagram

class TableMe /

TableMe Mobile

aSemicen

BameService

- goaglaClisnt: GoagleApiClisnt
- messagelistener: MessageListenar

|
|
! |
! 1
! |
| v
I
| «GCMListenerS eni
- nodeListener: HodeListener | MyBiomListener Service
socket: Socket k= |
. L zendNatification) : vaid
Game Activity
\ CommunicationManager
- playerist: Playsr 7
\ - sodket: Socket T T ——— i L L N
\ - match: Mateh + getPlayerlist) : void N
N - gameOniatch: BroadeastReciever + sendMatch() : void >
- - + gethiatohesFonliatehi) : woid 3
use N T ~ i
\ i ~. - ba: Player
\ 1 S~ - rd: Player
| l, ~ - 12 Player
N S
\ 1 N
ausen i
N 1 s DashboardActivity
v
s \ N
\ - myPlayer Player
SendToDatalayerThread Ay 1
N]
dataMap: DataMap M 1
- path: Sting \]
googleClient: GaogleApiClient ﬂ—ﬁ—‘Socmm ndraid
T
- +ség t \V

ainteraces
Socket|D Android

ket

wintentS envicen

Registrationintert Service
«llfearableLidenarSenices

mitg) : void
+ on(EmmiterListener)
:Listener S

alnstancelDListenersermicen
:MylinstancelDListener Ser vice|

- Token: Sting
- socket: Socket
i) - woid

+ onTokenRefresh) : waid

tom)

Figure 29: Table Me Domain Diagram

The Figure 29 illustrate the domain diagram of the application for the mobile devices.
This diagram shows the developed items for this project and only the items used from the
previous version of the Table Me application. To see the complete diagram (Link here).

The implementation for the mobile application is constituted mainly by the following
elements:

e Elements from the previous implementation:

o Match, representation of a match with the complete information of each
player retrieved from the JOL Table Me server.

o Communication Manager, manager of the HTTP request to the JOL Table
Me server to retrieve profile data, the history matches and the leader board.

o Dashboard Activity, activity that manage the layout of the home view of
the application for the user, allow to see profile information, leader board,
match history and create a new game. This activity is used to register the

device using the Google Cloud Messaging [6] service and sending the
information to the multiplayer server.

o Game Activity, activity that manages the layout for the player selection for
a game, the game management and the final results when a team wins. This
activity is in charge of multiple task for the creation of a match to be used

by the host and to notify the players. Additionally, direct the game score
based on the host and the player’s actions.

38

e New elements:

o My GCM Listener Service, a service that is initialize when a notification is
received from the Google Cloud Messaging [6] service, and the message
received has the game id and the participants of the game to inform the
player in the smartwatch. For this, first a brief notification is raised in the
phone and the Game Service is started to send a message to the smartwatch
to raise a notification with the complete information of the message.

My Instance ID Listener Service, a service that is activated when the
token from the Google Cloud Messaging [6] service using the Registration
Intent Service to register the token to the server.

O

Registration Intent Service, a service that register a device in the Google
Cloud Messaging service and sending the information to the multiplayer
server.

(@]

O

Wearable Listener Service, a service that is active when a message or a
data map is sent to the phone from the watch. This service receives the
remote calls and start the Game Service with the required feature to
execute depending on the message. In most, the service is used to receive
request for the profile information, leader board, and match history.

o Send to Data Layer Thread, a custom thread that send a data map using
the Data API from the phone to the smartwatch.

o Game Service, the main service that contains the features for the
communication with the smartwatch. This activity handles the information
transfer with the Message API for sending and receiving remote calls to the
smartwatch, and sending data with the Data API. The game service uses
the Communication Manager to retrieve data from the JOL Table Me
server for the profile, leader board and match history information.
Additionally, the serve manages the communication with the multiplayer
server for sending commands of a game. Concerning the game data, the
service has a soft instance of the match following the architecture of the
game Colyseus [17].

4.2.2. Mobile event behavior

The mobile implementation has two type of events received, from the smartwatch and
from the server using Socket 10.

e Socket 10 events
o On Game Service

= Update score (“add”), when the server sends a score update the data is
separated and sent to the smartwatch with only the total score. If a host is
using the smartwatch the event is received and a broadcast is sent to the
Game Activity to update the layout.

= A team won (“winner”), when a team wins the message is separated and is
checked if the current player of the device is part of the winners on the

39

message, then the message of victory or lose is sent directly to the
smartwatch.

» Game ended by the host(“res_game end”), if a game is closed by the
match host without finishing the game the smartwatch is notified to close
the application.

= Disconnect, if a player disconnects with the server a flag to reconnect is set.

= Reconnect, if a player reconnects with the server the web socket is
registered to the server.

o On Game Activity

»Sending notification response, after sending the request for pushing
challenge notifications to a set of players, the answer of the server is the
game id of the instance created in the server.

e Message API events

o Player ready, a player has accepted a challenge notification and wants to
join a game, then a web socket registration is sent to the server.

o Add or dismiss a goal, the type of command is received (add goal “+7”,
dismiss goal “-” or auto goal “a”), and is sent to the server with the id of
the current player.

o History detail, in the match history feature if the user requests the info of a
match, the application will retrieve the data of the players with the
Communication Manager, then sent in a data map to the smartwatch.

4.2.3. Sequence diagram of the behavior of the Game Service

The Game Service is the manager of the functionalities with the smartwatch and the Game
Activity manage the creation of a match, for this reason is necessary to do an emphasis of
the basic behavior of the implementation for each functionality. Based on the previous
explanation of the event behavior, the following diagrams illustrate the order how they are
invoked in each phase.

4.2.3.1. User registration with the GCM token

=d UserRegistration
D ashboardActivity «lntentServices «interfacexs «HTTP= «interfacexs
RegistrationintentSensice Sodet Senrer 1a
Player
T T T T T
| | | | | |
! open applicationg | | | | |
L | | | |
| | | |
| | | |
. | | | |
chedSenices]) | | | |
L ' I I I I
stanServicel) - | | |
| | |
| | |
connech) - | | |
i getToken() : : :	
L emitireg_dew) -	
L	
on(reg_dew) -	
L	
assert i	
wurite Obje o) -	
[Mexiztdew)] L	
T T T T	

o Ackors)

Figure 30: Device registration of the Google Cloud Messaging service token

40

When a user opens the application after logging in through the JOL Table Me server, the
Dashboard activity is displayed, at the beginning on the creation of this layout the device
registers to the Google Cloud Messaging service obtaining a token that is sent to the
server with the id of the user.

4.2.3.1. Send challenge notification

=d SendChallenge Notification
DrashboardActivity GameSenice Communicationhanager ainterfaces «HTTPx wGChn
Sodet Server GO
hdateh creator

T T T T T T
! | | | | | |
| start gamepy | | | | | |
La | | | | |
| | | | |
starbietivity() | ! ! ! !
L] | | | |
+ | | |
Iselm Blua teamp) ech : : : :
| | | | |
| | | | |
\ getPlayerlist]) - \ \ \
| | | |
| | | |
| e] | | |
| | | |
| T T | | |
pelect Read team() | | | | |
I | | | |
| | | | |
l getPlayerlisty | l l |
| - | | |
| | | |
| | | |
| < = | | |
| = | | |
! send_noty) ! ! !
| + -rt | |
| | | |
! ! anfzend_nof) ! !
I I = > I
| | |
| | |

H H send(message,tokens)
| | EIJ
T | T | |
| | | | | | |

o Actors)

Figure 31: Sequence diagram for sending a challenge notification to a player

The match creator from the Table 1:Actors is the actor in charge of creating a match with
the mobile device, after starting the Game Activity, the data of the teams is collected
through the Communication Manager and after the selection a request notification is sent
to the server with the key string “send not” and the server send a message with the game
id and the participants to the Google Cloud Messaging with the tokens of the players.

4.2.3.2. Receive Challenge Notification

el vaChallengeNotifioation
<Semicex hrzads aWearableListenersend cAndroid Wears wintefaces «HTTPs interzoes
GameSend SendToDataLayerThread ListenerSenvice Gamesetivity Socket Senver Sodet
Playsr
! T
i
i
|
essa |
|
|
|
|
startSendica) - |
> I
i
start) i
anDataChanged)
sendNotification()
Acoept challengag)
T
i
| o Wearable.Meszageapi) toop /
laccepeted==faise]
emilfreg_sedkel)
T
|
I G2 sodkety
ert
[aceept==tiug]
emitrgoal) L
T -
an(goaly
| i 1 i T 1
! i i i i i
o Actors)

Figure 32: Sequence diagram for receiving a challenge notification from Google Cloud Messaging and
showing it in the phone and the smartwatch

41

When a notification arrives from the Google Cloud Messaging, the service My GCM
Listener Service start and show a brief notification in the phone and send the message
through the Data API using Send to Data Layer Thread, to the smartwatch to raise a more
detailed notification in the watch. After the player from the Table 1:Actors, sees the
notification and accepts the challenge the Game Service start, then it proceeds to register
the web socket to the server and after that the player begins to receive updates from the
server.

4.2.3.3. In Game

42

=d InGama -

whndroid Wearn GameSenice winterfaces aHTTP» aintefaces i nAuctivity
G ameAativity Sodket Sernver Socket

! T

| |

|

: tapaddGealy |
-

T T T T
I I I I
I I I I
| | | |
| | | |
Wiearable MessageAPIn ' ' ' '
»>
| | | |
. | | | |
emittadd_goall | | | |
] 1 1 1
| | |
ontadd_goaly i | |
el | |
| |
| |
. increase)) ! '
[T [msert |
/ | I
[scare <6 || score2 <6] ' '
emitignal) ! :
|
_ ontgoal) |
- |
I
| |
T |
assert / i '
[zcprkd==6 || scorez==6] : :
emilminne) i |
=] |
|
- onfminner 3 !
L L |
| starlActivity() | |
t 1 >
L] LI I I I o
tapautoGoaly | ! ! ' ' '
| | | | |
| | | | |
Wearable MesssgeAPIQ L | | | i i
| | | |
) | | I I
emitadd_goall | | | |
bl | | |
| | |
antadd_goal) o | |
= | |
| |
| |
; Ineraass_auto() ' '
[i i
T |
assert / | |
[scare1 <8 || score2<6] ' '
| |
emit{goal) ! !
- I
|
|
_ ongeal) !
- |
| |
T I
: |
assert / | |
| |
[sdeofe1==5 || scoraz==8] | |
emiiwinnen ! '
-
|
I
o onfwinner 3 |
- |
T T |
| startetivityr) | |
‘|J | | | g |
H | | | |
tapbismissdoaly | | | | | |
I I I I I
I I I I I
Wiearable hessagearig | : : : :
»
| | | |
emittadd_goal) ! : : :
| | |
I I I
ontadd_goaly - | |
| |
| |
| |
decre asa() | |
[i i
" | |
emiligoal) i |
> I
|
- angoal) !
L L L] L] L] i
! [[[[[[
o Actors)

Figure 33: Sequence diagram for adding goals, auto goals and dismissing a goal during a match intthe
smartwatch

This phase is based in the interaction of the player with the smartwatch in the Game
Activity, tapping in the different options (add a goal, add an auto goal or dismiss a goal).
After a player tap on a button the smartwatch communicates with the phone to send a
command to the server to update the score. When a team wins the result is sent to the
server so every player is notified of a victory with the list of players that won the match.
In the case of dismissing a goal, the Match object take care of decrease properly the score
and as before the score is sent to be updated.

43

4.2.3.4. Show profile information

=d ShowProfile
e arlobbydctivity ProfileActivity «WfearablelistenarSenices wSenices wthread=
ListenerSenice GameSenioe SendTolatalayerThread
Player

open application(

P
L

F——1-—-

select profile in menu()

starthctivity()

-
-

Wearable Messagespi.sendMessager o
-

statSenvice)

getCurnentPlaven)
L

starti)

-
>
- anbataChanged) ‘J

- T '|F"| T T
! [| [[
from Actors)

Figure 34: Sequence diagram for showing the profile information in the smartwatch

When a player opens the application in the smart watch and select the profile option, the
phone is notified with a remote call using the Message API. After receiving the request,
the phone start the Game Service and send the current information of the player registered
in the device. All the relevant information (photo, name, elo and position) is sent through
the Data API to the smartwatch, finally is displayed to the user.

4.2.3.5. Show match history

=d ShowHistary /

‘e arLobbyActivity HistoryAetivity ‘e arablelistenerSe wSemices Communieal tionManager wthreads DetailHistornActivity
ListenerService BameSerice SendTolatalayerThread
Player
! T T T T T
! | I I I I |
! open application) | } } } } :
I | | | | 1
select matoh history in menug) ! } } } } :
I I I I 1
startAetivity() - 1 } } } I
o i i i |
I I I |
earable MessageApi sendmessage | | |
| | |
i i 1
stantSenvice() yl | I
= I |
| 1
gethatchesF ofiateh() | |
i 1
| 1
I |
fE——mmmm | 1
| 1
B I |
starin) - H
| |
- onDataChanged)) : :
o J | |
T T | |
pen mateh) i i i | I |
T | | 1 | 1
1 | | 1 | 1
I | | starthctivib)] I]
] T T T T
| | | | |
: } | - Wearable.MessagedpisendMessage()
- T f
| I | I
! ! stang
| | +
| I |
1 I 1
| I |
1 | 1
1 | 1
| I |
1 I 1
| I |
| i |

H anbatathange)
I
|
|
|
|

——

(o Astors)

Figure 35: Sequence diagram to show the match history in the smartwatch of the player of the device

When a player opens the application in the smart watch and select the match history
option, the phone with the Message APl as before. The application uses the
Communication Manager to retrieve the list of last ten games of the player. Then the score
is selected and sent through Data API to the smartwatch. After that, if the player wants to
see the detail of a match, the watch notifies with a remote call to the phone and the Game
Service will receive the request of the information of a specific match. With that, the

44

service searches the information of the player’s participant on the match and all the
relevant information of the four players (photo, name, elo and position) is sent to the
smartwatch.

4.2.3.6. Show leader board

=d Showleaderboard 7

wthreads
SendToDataLayerThread

Profilefctivity

Player

! start application()

select leaderboard in menu()

earable MessageApisendhlessage)

getPlayerlist)

L}
|
select player in leadar board)

.

(o Aotors)

T
1
|
1
i
|
I
i
I
|
i
1
|
I
i
I
|
i
1
|
1
i
|
I
i
1
|
i
1
|
I
i
I
|
i

ol

s |
T
1

R
3
&
R E S
—}

Figure 36: Sequence diagram for showing the leader board in the smartwatch

When a player opens the application and selects the leader board, the application is
notified via Message APl with a remote call and the Game Service start and retrieve the
list of players organizing them by the position and selecting the first ten players. The all
the relevant information (photo, name, elo and position) is sent to the smartwatch and
displayed in a list with the photo, the name and the position in a badge with a distinctive
color for the first three players. Moreover, if the player wants to see the profile
information in detail of a player on the leaderboard, after clicking it on the list, the profile
layout is displayed with the information of the specific player.

45

4.3. Wear Client
4.3.1. Class diagram
class Tableke Wear

Tablebde Wiaar

aiffearablelistenerSenicen Ga Aot wity
ListenerService

googleClient: GoogleApiClient

+ onlataChanged(: vaid - nodelistener: Modelistener
+ sendiWearNotificationd : waid - seored:int

- scorel; int

- socket

messagelistenar Meszagelistener

#
¥
;

Duetil Historyactivity ,0 Historyactivity

googleClient: GooglefpiClient
nodelistener. Modelistener
datalistenar. Datalistensr

7

- 4 aoogleClient: GoogleApiClient
-# nodelistener: MNodeListener
datalistener. Datalistener

T
| I s
i £ -
i e
I F r
] ’ ’
| wlEen
: B R4 Leaderboard fctivity
T / s P -
o ¥ ’ - gangleClient: GoogleApiClient
Pr?_lfIIeAc'tlwty ‘r-' uu;e» - nodelistener. NodeListener
googleClidnt: GooglespiClient # - datalistener Datalistener
nodelistertar: Modelistener ! ,/ ,"
datalistenir Datalistener ’/ Pl
— -
Fl
] 4 -~
1 S L 7
trUEEn Ay rlZEn
vy L e
Paths “,5/” wear Lobbctivity
Z0AL_PATH: int
WWIM_PATH: int
LOSE_FATH: int
READY_PATH: int
FAME_FATH: int
HISTORY_FATH: int
HISTORY_DETAIL_FATH: int
LEADER_FATH: int o
FIMISHED_FATH: int lpastivity
START_PATH: int
FROFILE_FATH: int
EMD_FATH: int

Figure 37: Table Me Wear Domain Diagram

The wear application for the smart watches was design to only deal with communication
management and a light processing load of work that will be done by the mobile
application. The application is directed by the Wear Lobby Activity that is the activity that
manages the home layout of the application, and the Listener Service that receive the
remote calls and information from the phone. Moreover, the communication relays only
on the Wearable API through the Bluetooth connection between the devices. To see the
complete class diagram, Annex: Class Diagram.

The next activities to be explain send a remote call through the Message API to invoke the
Game Service in the phone so it can send the requested data in a data map through the
Data API. Each activity creates an individual connection with the phone and receive the
information.

The following elements are the structure of the Wear client.

e Listener Service, a service that start when receive a data map through the Data
API, the service is dedicated to start the Game Activity when a match start or a
player accept a challenge and to rise a notification sent from the phone.

46

e Wear Lobby Activity, the home layout when the user opens the application with a
list with the options profile, match history, leaderboard, achievements and exit.
The user can select the options and it will be redirected to the activity with the
required information.

e Win Activity, activity that control a layout that shows when a team win or lose a
match with the final score.

e Profile Activity, activity that control a layout that shows the relevant information
(photo, name, elo and position) of a player. This activity is reused to show the
detail of any other player in the leader board or in the match history.

e Leader board Activity, activity that controls a layout that shows in a list the ten
first positions in the leaderboard with a photo, the name of the players and the
position in a badge. If the user clicks on any of the players in the list, a detail of the
selected player’s profile is shown.

e History Activity, activity that controls a layout that shows a list of the ten last
games played by the user. The list shows the score and an indicator if the user won
or lose the game

e Detail History Activity, If the player clicks to see the detailed score, an activity
will rise with the photos and positions of the teams and the score. Additionally, if
the user clicks the photo of any participant player it displays the profile
information of the selected player.

4.4, Tests

The applications were tested in every iteration of the development to assure the fulfillment
of the use cases and main objectives of the project. When the functionalities of the
application were finished, they were tested multiple times and the test were done
incrementally (every item developed was always re tested together with the previous items
to verify their behavior).

The following are the tests done during the development to ensure the completion of the
objectives.

4.4.1. Use case testing
Functionality ‘ Use Cases tested Description of tests

The tests performed were done by recovering the
profile information from the Table Me server, and
the communication with the smartwatch using the
Show profile data layer, when the application is open and closed
information | UC-001, UC-024, UC-038 | in the phone.
The tests performed were done by recovering the
list of players from the Table Me server and
organizing them by the position. Additionally, the
communication with the smartwatch using the data
Show leader | UC-001, UC-025, UC- | layer, when the application is open and closed in the
board 039, UC-024, UC-038 phone.

The tests performed were done by recovering the
Show match | UC-040, UC-026, UC- | list of matches of the player from the Table Me

47

history

001, UC-024, UC-038

server. Additionally, the communication with the
smartwatch using the data layer, when the
application is open and closed in the phone.

The tests performed were done in the Multiplayer

UC-003, UC-005, UC- |server sending multiple notifications to the
Challenge 006, UC-007, UC-002, | challenged players by a host, when the application
players UC-004, UC-008, UC-009 | is open and closed in the phone.
The tests performed were done in the Multiplayer
UC-010, UC-011, UC- | server and the application accepting and creating a
Start 018, UC-019, UC-031, | match with none active players up to four active
multiplayer | UC-027, UC-028, UC- | players, when the application is open and closed in
game 011, UC-032 the phone.
Manage a The tests performed were done in the Multiplayer
multiplayer | UC-015, UC-018, UC- | server sending multiple commands from different
game 019, UC-020 games at the same time.
The tests performed were done in the Multiplayer
server processing the final results of a match and in
Show final UC-018, UC-019, UC- | the application sending the results to the Table Me
results 021, UC-026 server.
The tests were performed connecting and
Android Wear | UC-001, UC-010, UC- | disconnecting the smartwatch during a match and in
Connection | 011, UC-015, UC-035 idle state when the user is in the menu.
The tests were performed connecting and
UC-036, UC-031, UC- |disconnecting the phone from internet during a
Server 032, UC-028, UC-030, | match and in idle state when de user is not using the
Connection | UC-018, UC-002 application or is in the dashboard.

Table 4: List of Use case testing performed.

4.4.2. User Interface Testing

The user interface in the smartwatch was validated via the lineaments given by Android
[21], following the rules described by them. With this the following metrics were applied
to verify each feature and screen to validate the usability.

e Design for big gestures [21]: in list menus as the home screen must display at
maximum 3 items big enough to cover the screen to be easily touched.

e Stream Cards [21]: for the notifications, they were prioritized to be queued when
a challenge arrives. If the player does not attend the notification the next one will
replace it. The notification can be reused for multiple games without dismissing it.

e Do one thing, really fast [21]: Each feature of the application has followed the
maximum amount of four touches and swipes to performed the functionality.

dismiss.

o Profile: Open application, touch profile, dismiss card.
o Leader board: Open application, touch leader board, dismiss card.
o Game history: Open application, touch game history, touch summary,

48

o Game: In game interaction, dismiss result card.

Design for the corner of the eye [21]: The application has summarized
information on each card to not keep the player too long in the application, so it
was decided to check at maximum to have five items per screen that fill the
interface that are easy to read.

o Profile: Photo, name, elo, classification.
o Leader board: List with photo and classification.

o Game history: List with indicator of victory or loss, score, text of victory or
loss.

=Game summary: Four photos and score.
o Game: Add goal button, add auto goal, remove goal, score.
=End game: result badge and text of victory or loss.

Don’t be a constant shoulder tapper [21]: The application only will notify when
the user is challenged vibrating just once per notification.

49

5. Conclusions

e The objective of creating a multiplayer version of the Table Me application was
totally fulfilled developing and adapting the main features of the Table Me
application, following the design lineaments of Android and the wuser’s
requirements.

e The implementation of the Peer to Peer server with lockstep without simulation
using Socket 10 to improve the communication allow to the application an easy to
use interface in real time to communicate the application with the server allowing
to not increment significantly the delay the communication between the items that
have a small traffic interaction.

e The communication performance given by the application using Android Wear
technology in the testing environment gave excellent results with a maximum
delay of 1 to 2 seconds to deliver the information to the smartwatch, this delay due
to the Bluetooth connection range and obstacles that can be between the devices.

e The APIs from the Wearable package used in the project to develop the
communication with the application were the Message API due to the easy usage
and the functionalities that provide to send appropriately remote procedure call
with the games commands (goals, dismiss goals, auto goals) adapting the Peer to
Peer server’s structure Finally, the Data API to synchronize large amounts data
(profile, leader board, match history) using Assets and supporting basic data types.

e The Android Wear application was design to not consume large amounts of energy
of the smartwatch during the operation during the game or when the user is
consulting information. For this reason, the application does not keep the screen on
until the user actively focusses the screen to use it, and the heavy load operations
are provided by the service in the phone that runs only when the user request
information through an interaction.

e The design of the application for the smartwatch was based on sketches previously
done by the group in the laboratory, and the last version fulfilled the final user’s
expectation giving enhanced and easy to use interfaces during the gameplay and
consulting the player information following the design lineaments of Android [21].

e The methodology used for the development of the project allowed to create an
organize and schedule to deliver the application and deliverables items to fulfill
the items to be developed with the approval of the final user on time.

e The Android wear technology is advancing faster, allowing different
functionalities to be used with the phone or a direct connection with internet, and
the basic channels of communications between the devices, offer the basic data
exchange and easy to use. It allows an easy and fast development of android wear
applications. However, the management of large amount of data to be exchanged
via Bluetooth can take too long and present inconsistent data. With the time when
the technology migrates to the usage of Wi-Fi or better connection with the
smartwatch allow a better network performance.

50

6. Bibliography

[1] “The Spiral Model > UltimateSDLC.com,” The Ultimate Guide to the SDLC, 13-Aug-
2011.

[2] Enrico Catalano, “Table Me - table soccer app on Behance.” [Online]. Available:
https://www.behance.net/gallery/31215047/TableMe-table-soccer-app. [Accessed: 10-
Apr-2016].

[3] “2359 Media: Mobile Application Development | Android for wearables: Opportunities
and Limitations of Watch Apps.” [Online]. Available:
http://2359media.com/2014/09/26/android-for-wearables-opportunities-and-limitations-
of-watch-apps/. [Accessed: 25-Apr-2016].

[4] “Sending and Syncing Data | Android Developers.” [Online]. Available:
http://developer.android.com/intl/es/training/wearables/data-layer/index.html.
[Accessed: 11-Apr-2016].

[5] “Wearable,” Google Developers. [Online]. Available:
https://developers.google.com/android/reference/com/google/android/gms/wearable/Wear
able. [Accessed: 11-Apr-2016].

[6] “Google Cloud Messaging: Overview,” Google Developers. [Online]. Awvailable:
https://developers.google.com/cloud-messaging/gcm. [Accessed: 10-Apr-2016].

[7] Dan Adrei, “How To Create a Server to Send Push Notifications with GCM to Android
Devices Using Python,” DigitalOcean. [Online]. Available:
https://www.digitalocean.com/community/tutorials/how-to-create-a-server-to-send-push-
notifications-with-gcm-to-android-devices-using-python. [Accessed: 10-Apr-2016].

[8] “Creating a Notification for Wearables | Android Developers.” [Online]. Available:
http://developer.android.com/intl/es/training/wearables/notifications/creating.html.
[Accessed: 10-Apr-2016].

[9] “MessageApi,” Google Developers. [Online]. Available:
https://developers.google.com/android/reference/com/google/android/gms/wearable/Mess
ageApi. [Accessed: 10-Apr-2016].

[10] “WearableListenerService,” Google Developers. [Online]. Available:
https://developers.google.com/android/reference/com/google/android/gms/wearable/Wear
ableListenerService. [Accessed: 11-Apr-2016].

[11] “Accessing Google APIs,” Google Developers. [Online]. Available:
https://developers.google.com/android/guides/api-client. [Accessed: 11-Apr-2016].

[12] Michael Hahn, “Data Layer Messages — Android Wear Docs 1.2 documentation.”
[Online]. Available: http://android-wear-docs.readthedocs.org/en/latest/sync.html.
[Accessed: 10-Apr-2016].

[13] “DataApi,” Google Developers. [Online]. Available:
https://developers.google.com/android/reference/com/google/android/gms/wearable/Data
Api. [Accessed: 10-Apr-2016].

[14] “Asset,” Google Developers. [Online]. Available:
https://developers.google.com/android/reference/com/google/android/gms/wearable/Asset
. [Accessed: 11-Apr-2016].

[15] Michael Hahn, “Data Layer DataMap Objects — Android Wear Docs 1.2
documentation.” [Online]. Available: http://android-wear-
docs.readthedocs.org/en/latest/data.html. [Accessed: 10-Apr-2016].

[16] “P2P.” [Online]. Available: http://wwz2.cs.fsu.edu/~jungkkim/P2P.html. [Accessed: 28-
Apr-2016].

51

[17] “A Distributed Architecture for Interactive Multiplayer Games, Ashwin R. Bharambe
Jeff Pang Srinivasan Seshan.” .

[19] “php - What are Long-Polling, Websockets, Server-Sent Events (SSE) and Comet? -
Stack Overflow.” [Online]. Available:
http://stackoverflow.com/questions/11077857/what-are-long-polling-websockets-server-
sent-events-sse-and-comet. [Accessed: 28-Apr-2016].

[20] “drewww/socket.io-benchmarking @ GitHub.” [Online]. Available:
http://drewww.github.io/socket.io-benchmarking/. [Accessed: 25-Apr-2016].

[21] “Design Principles for Android Wear | Android Developers.” [Online]. Available:
http://developer.android.com/intl/es/design/wear/principles.html. [Accessed: 25-Apr-
2016].

[22] “FURPS - Ingenieria Software.” [Online]. Available:
http://clases3gingsof.wikifoundry.com/page/FURPS. [Accessed: 28-Apr-2016].

[23] Dan Adrei, “How To Create a Server to Send Push Notifications with GCM to Android
Devices Using Python.”

[24] “Android Wear Book: Create an Advanced Wearable List View,” Home. .

[25] Dejan DBurovski, “Android Wear - Wearable Message Api.” [Online]. Available:
http://dejan.djurovski.net/2015/01/15/android-wear-wearable-message-api/. [Accessed:
10-Apr-2016].

[26] Paresh Mayani, “Android Wear - Part 4 - Simple notifications.” [Online]. Available:
http://www.technotalkative.com/android-wear-part-4-simple-notifications/. [Accessed:
10-Apr-2016].

[27] “Developer Guidelines,” Google Developers. [Online]. Available:
https://developers.google.com/nearby/developer-guidelines. [Accessed: 10-Apr-2016].
[28] E. Terpstra, “Building Multiplayer Games with Node.js and Socket.IO0,” Modern Web,

30-Sep-2013.

[29] “Android Wear Docs, michael Hahn.”

[30] “Ingenieria de requerimientos, Herramienta para Implementar LEL y Escenarios.” .

[31] S. Okamoto, M. Kamada, M. Kohana, and T. Yonekura, “Rapid Authoring of Web-
based Multiplayer Online Games,” in Proceedings of International Conference on
Information Integration and Web-based Applications & Services, New York, NY, USA,
2013, pp. 639:639-639:643.

[32] “ChannelApi,” Google Developers. [Online]. Available:
https://developers.google.com/android/reference/com/google/android/gms/wearable/Chan
nelApi. [Accessed: 11-Apr-2016].

[33] R. D. Richard K. Lomotey, “Efficient mobile services consumption in mHealth.”
[Online]. Available:
http://dl.acm.org/citation.cfm?id=2500279&CFI1D=599129620&CFTOKEN=16880902.
[Accessed: 10-Apr-2016].

[34] arungupta, “REST vs WebSocket Comparison and Benchmarks,” Miles to go 3.0 ..., 24-
Feb-2014.

[35] Lorie Pisicchio, “SSE vs Websockets,” Streamdata.io, 21-Apr-2015. .

[36] cjihrig, “Server-Sent Events in Node.js,” Colin J. Ihrig’s Blog, 08-Aug-2012. .

[37] Nodejs Hispano, “Introduccion a Socket.io #nodejs | Node.js Hispano.” .

[38] “Sending and Receiving Messages | Android Developers.” [Online]. Available:
http://developer.android.com/intl/es/training/wearables/data-layer/messages.html.
[Accessed: 10-Apr-2016].

[39] “Gem http://developer.android.com/intl/es/training/wearables/data-layer/index.html

Service,” Google Developers. [Online]. Available:

52

https://developers.google.com/android/reference/com/google/android/gms/gcm/GemLi
stenerService. [Accessed: 11-Apr-2016].

[40] “Il modello di comunicazione long-polling,” HTML.it. [Online]. Available:
http://www.html.it/pag/33600/il-modello-di-comunicazione-long-polling/. [Accessed: 11-
Apr-2016].

[41] “Simple Long Polling Example with JavaScript and jQuery.” [Online]. Available:
http://techoctave.com/c7/posts/60-simple-long-polling-example-with-javascript-and-
jquery. [Accessed: 11-Apr-2016].

[42] “Research of Web Real-Time Communication Based on Web Socket, by Qigang Liu,
Xiangyang Sun.” .

[43] “The Web Sockets APL” [Online]. Available: https://www.w3.org/TR/2009/WD-
websockets-20091222/. [Accessed: 11-Apr-2016].

[44] “WebSocket,” Wikipedia, the free encyclopedia. 01-Apr-2016.

[45] “Tecnologia Push,” Wikipedia, la enciclopedia libre. 26-Nov-2015.

[46] “Socket.IO JavaScript framework ready for real-time apps | InfoWorld.” [Online].
Available: http://www.infoworld.com/article/2607757/javascript/socket-io-javascript-
framework-ready-for-real-time-apps.html. [Accessed: 12-Apr-2016].

[47] “Real-Time Systems.” [Online]. Available:

https://users.ece.cmu.edu/~koopman/des_s99/real _time/. [Accessed: 25-Apr-2016].

[48] “Socket.IO — Introducing Socket.IO 1.0.” .

[49] “A Node.js speed dilemma: AJAX or Socket.I0? | CUBRID Blog.” [Online]. Available:
http://www.cubrid.org/blog/cubrid-appstools/nodejs-speed-dilemma-ajax-or-socket-io/.
[Accessed: 25-Apr-2016].

[50] “Android Wear,” Wikipedia, the free encyclopedia. 20-Apr-2016.

[51] “About | Node.js.” [Online]. Available: https://nodejs.org/en/about/. [Accessed: 28-Apr-
2016].

[52] “El Libro para Principiantes en Node.js» Un tutorial completo de node.js.” [Online].
Available: http://www.nodebeginner.org/index-es.html. [Accessed: 28-Apr-2016].

[53] “Understanding the Node.js Event Loop,” NodeSource, 21-Jan-2015. [Online].
Available: http://nodesource.com/blog/understanding-the-nodejs-event-loop/. [Accessed:
28-Apr-2016].

[54] “What is Spiral model- advantages, disadvantages and when to use it?” [Online].

Available: http://istgbexamcertification.com/what-is-spiral-model-advantages-
disadvantages-and-when-to-use-it/. [Accessed: 28-Apr-2016].

[55] “Android Wear | Android Developers.” [Online]. Available:
https://developer.android.com/design/wear/index.html#Other. [Accessed: 05-Oct-2016]
[56] “Gaffer on Games | Deterministic Lockstep.” Available:
http://gafferongames.com/networked-physics/deterministic-lockstep/ [Accessed: 05-

Oct-2016].

[57] “Introduction | Understanding Model-View-Controller.” [Online]. Available:
https://stefanoborini.gitbooks.io/modelviewcontroller/content/. [Accessed: 05-Oct-2016].
[58] “WebSockets vs Server-Sent Events vs Long-polling.” [Online]. Available:
http://dsheiko.com/weblog/websockets-vs-sse-vs-long-polling/. [Accessed: 05-Oct-2016].

53

7. Appendixes

7.1. Software Requirement Specification

POLYTECHNIC OF TURIN

Faculty of Engineering
Master's Degree

in Computer Engineering

Software Requirement Specification

Andres Camilo Jimenez Vargas

October 2016

54

1.
2.

INEFOTUCTION ... bbbttt s et et bbbt b e e e e e 59

Process of development Of reqUIrEMENTSccoveiiiiiiiiieeeee e 60
2.1. Obtaining the use cases and reqUIrEMENTS..........cccververeiieere e 60
2.2. RefiNEMENt OF the USE CASESccviiieeiieie ittt 60
2.3. FUNCLIONAl FEQUITEMENTSeiiicie ettt ettt re e 60
2.4. Nonfunctional reqUITEMENTSccoiiiiiiieeiee e 60
2.5. Requirement identifiCatioNc.cceiieiiiie i 60
2.6. Requirement SPECIFICATIONcouiiiiiiiii e 61
2.7. Requirement PriofitiZAtIONcccueieerieieeiiee e ste e sne e sre e 61
2.8. Verification and Validation...........cccueiieiiiieiiee e e 62
2.9. Requirement traceabilitycocooieiiiii i 62
2.9.1 General traceabIlitycooveiiiiiii s 62
2.9.2. Individual traceabilitycceciiiieiiiie e 63

GlODAI DESCIIPLION ...ttt bbb 63
3.1 EXIErNal INEITACESeivi ittt e 63
3.1.1. User GraphiC INTEITACEcviieieiieie i 63
3.1.1.1 Profile information on the SMartWatCh...........cccooeieiiiiiininieeee e 63
3.1.1.2. Gameplay on the SMartWatChcccoiiiiiiii e 63
3.1.1.3. Match history on the SmartwatChccccoeviiieiicie e, 64
3.1.1.4. Leader board on the SMartwatChccccovveiirierieeie e 65
3.1.2. Software and Hardware INtErfaceccoviieieiieiiieie st 65
3.2. Application CharaCterizationcoeiiiiiinieieie e 66
3.3, USEr CharaCteriZationcccueieieieiie ittt sttt 66
KB o 1 o1] OSSR 66
3.5. Assumptions and dePeNTENCIES...........oiveiiiieii et 67
3.6. DOMAIN MOEL........oiiiiieeee et ne e 68
3.7. Requirement diStriDULION.c.coiiiiiicce e 68

55

Figure table

Figure 1: Original Karl Wiegers formula for requirement prioritization...............cc.ccocveevenenne. 61
Figure 2: Profile iNfOrMation...........ccooiiiiiii e 63
Figure 3: Notification on the SmMartWatCh............cccccooeiiiiiii s 64
Figure 4: In Game screens with victory and 10Se SCIreenscccccvevvevveeiievccieese e 64
Figure 5: Leader DOAId SCIEENuc i ittt sttt see e nnes 65
Figure 6: Requirement ClasSifiCatioN............ccoeiieiiiie i 69

56

Table 1: User characterization table
Table 2: Requirement classification

Table index

SPECITICALION ...ovveiecie e

57

1. Introduction

The Joint Open Lab (JOL), a research group of Telecom lItalia (TIM), developed an
application named Table Me for Android and 10S mobile devices, to manage a game of
table foosball. This document is done to describe the process of recollection and analysis
of the requirements for a distributed game version of the Table Me application using smart
watches, the application will be developed for Android mobile devices and Android Wear
devices.

For the correct way to structure and implement this solution is necessary to control the
requirements that the system needs based on the user’s necessities and the previous scope
of the Table Me application done before. The requirements are the base of the
development process of the system, for this reason these must be analyzed in an adequate
way to identify correctly the features of the application and the restrictions that this and
the projects are attach.

Therefore, this can be used as a manual for the development of the project, this will allow
to do the appropriate evaluation of the punctual functionalities that must be in the
application, develop a prioritization to know the order of the implementation of the
features, and finally trace all the dependencies of the system.

The present will have a scope of the following characteristics:
e Description of the process followed for the requirement recollection and analysis.

e Description of the prioritization process of the requirements to determine the
functionalities to implement.

e Description of the process for obtaining the use cases.
e The domain model of the Server, the Android and the Android Wear applications.

59

2. Process of development of requirements

2.1. Obtaining the use cases and requirements

The recollection of the use cases and the requirements was done based on the description
of the game given by Marco Marengo, Cecchi Gian Luca and Alessandro 1zzo
knowledgeable people that through a series of reunions had explain application
functionality and the desired features to be implemented with the Android Wear
technology. Additionally, the usage of the actual working application in the testing
version on the Google Play Store. From this was developed a description of the main
features and their principal elements.

2.2. Refinement of the use cases

For the refinement of the use cases, every time a set of use cases were developed, the
application was presented to Marco Marengo and from that, all the feedback was
implemented in the application and corrected in the use case and requirement
specification. Additionally, with the guidance Marco Marengo, Cecchi Gian Luca and
Alessandro 1zzo and the usage of the Table Me application, it is possible to concrete the
scenarios when and where the application will be in use.

2.3. Functional requirements

Based on the description of the application’s features, the experience acquires form the
presentations and the use cases that have been developed the functional requirements of
the system. Where are specified the characteristics that the project must include for the
completion.

2.4. Nonfunctional requirements

Based on the presentations of the application and the design decision taken, it has been
developed the nonfunctional requirements of the system. These describe the attributes and
restriction that the project must achieve to be accepted by the client.

2.5. Requirement identification

The identification was done through the use cases based on the description of the
application. Based on these, the application’s flow was described in the assert or failure
situations and from that the requirements were identified contemplating the lineaments of
the previous Table Me application. Thanks to this process it was able to classify the
requirements adequately easing the requirement specification.

60

2.6. Requirement specification
The attributes used for the specification of the requirement were:

e ID: Unique deification of the requirement.
e Description: Definition of the requirement.

e State: Shows the phase of progress of the requirement in the following
classification: Proposed, Validated, Implemented.

e Priority: priority of each requirement that is based on the modified formula of
Karl Wiegers, that give a score that if is greater than 1 has more priority.

e Type: Functional or Nonfunctional.

e Relations: Show the relation of the requirement with the other requirements and
the use cases, these can be of dependence or realization.

2.7. Requirement prioritization

The prioritization of the requirements was estimated based on the formula of Karl
Wiegers. The method is described in the following way (All the measures are done from 1
to 9):

e Benefit: relative benefit of the implementation of the requirement.
e Penalization: relative penalization if the requirement is not implemented.

e Cost: calculation of the relative cost, based in the following factors: complexity,
design and code reuse, and documentation needed.

e Risk: relative risk based on the technic complexity and the feasibility needed.

It is necessary to remember that these indicators are subjective to the person involved in
the development and implementation of the project.

The formula of Wiegers is the following:
Value 96
(% cost * cost weight + U risk « risk weight)

Figure 38: Original Karl Wiegers formula for requirement prioritization

Where the value is the sum of the benefit and the penalization in percentage. The cost
weight and the magnitude assigned to each item, in this case there has been assigned the
same magnitude to both for this their value is 1.

In conclusion, it has been decided for the project’s requirement prioritization to use this
measurement where the higher calcification shows the most complex and costly
requirements to implement.

61

2.8. Verification and validation

The verification of the requirements was done through the reunions with Marco Marengo,
Cecchi Gian Luca and Alessandro Izzo and the presentations of the application refining
the requirements.

The validation of the requirements was done using a checklist by the Construx Software
Builders that verify the following attributes.

Is unique?

Is explanatory?

Is consistent?

Is feasible?

Has correct references?

Is precise and not ambiguous?

Us atomic?

Is traceable?

Is a declaration of a necessity and not a solution?
Is it necessary?

Show how to execute it?

2.9. Requirement traceability

2.9.1 General traceability

The traceability of the requirements is developed through different tools that were used to
perform the follow up, identification of requirements and the dependencies to help the
development of the application and the integration with the previous Table Me
application.

The tools used to manage the traceability of the requirements are the following:

Use cases: the use cases are used for the identification of the requirements,
moreover are necessary to establish the information flow in the different scenarios.

Prioritization table: The table of requirements prioritization to identify easily the
order of implementation of which requirements must be implemented in the
correct way achieving the essential functionalities of the system. (Annex:
Prioritization Table)

Realization Matrix: This matrix is used to identify the relations between the
requirements and use cases, so in the same way in a graphic way identify the
dependencies between requirements and how to find the prerequisites between
them.

62

o Annex: Realization Matrix for functional requirements.

2.9.2. Individual traceability

The individual traceability of the requirements is done by the attributes that allow to
identify the relations of dependency and implementation through the system.

The attributes of each requirement to be traced are the following:

e Use case relations: the use case where the requirement was obtaining, and has a
relation that implements it.

e Requirement relations: The requirements that are associated and dependent to
the requirement.

3. Global Description

3.1. External interfaces
3.1.1. User Graphic Interface

3.1.1.1 Profile information on the smartwatch

After opening the application, the user can use a list of option to select about the user’s
profile information and the game. The profile option shows in a similar way as in the
Table Me application the basic information of the user. Firstly, the photo, the position in
the leader board inside a badge, two bars that indicate proportionally the number of
victories (green bar) and number of lost games (red bar). The at the end the name of the
user and his/her ELO score.

2 Pprofile < 3

® Leaderboard

& Achivements

0 s
Figure 39: Profile information

3.1.1.2. Gameplay on the smartwatch

63

After a user that will host a game organize and create the team, a notification is issued
to the participants of the match will receive a notification in their phones and to their
smartwatches if they have one. At the watch the following notification is displayed.

TableMe Wear The Teams

You have been Red: Andres , Marco

challenged!

Sweep to the left! Blue: Alex , Andrea Tap to Play

Figure 40: Notification on the smartwatch

Then, when the user start playing the game, the screen with the buttons where the player
can interact with the score is provided, with a button to add a goal in the center, a dismiss
goal button at the left bottom and an auto goal button at the right bottom. The user can
interact with them and the score is displayed in the results displayed in top of the screen
with its respective colors of the team.

0 0 0 | 0

You Won! You Lost! | You Lost!

Figure 41: In Game screens with victory and lose screens

Finally, in each case the users of a team win or lose a match the following screens are
displayed in the smartwatches using a base badge with their goals scored.

3.1.1.3. Match history on the smartwatch

When the match history option is selected, the user is provided with a brief list of the
last ten matches that he/she was part of. Each match is signaled with a cross and the
message “Lost!” if the player lost that game, or a check and the message “Won!” if the
player won the game. If the player wants to know a more detailed information of the

64

match, it is possible to click an item on the list and will provide a screen with the
background color of the victorious team, the score, and the photo of the participants. If
the user wants to see the players profile information, he/she can click on the image and
the profile information will be displayed.

&) —TTTTSTOOTT
X 3 LosT 6 G
& Achivements 8 fz/'-s
X 6 LOST! 2 L)) w
@ Mygames t
v 4 6
Exit
N . LooT o

3.1.1.4. Leader board on the smartwatch

When the leader board is selected a list of the ten first places in the leaderboard is
loaded and take between 3 to 4 seconds. After waiting, the list displays the basic
information of the player in the displayed position with his photo, name and position in
a badge. If the user wants to see the profile of the player in a certain position, he/she can
select a player in the list and it will show the basic profile information of the player.

£ Profile @ Marco Marengo (.
Y / -
—
Y s
® Leaderboard +——> _ _,
)@‘ Alessandro Izzo
& Achivements 7
- . fie) DeIny

Figure 42: Leader board screen

3.1.2. Software and Hardware interface

The Android mobile application is able to deploy on mobile devices that have a
distribution from Android 5.0 (Lollipop) to Android 4.1 (Jelly bean). And for the Android
Wear application that have a distribution from Android 4.4 (KitKat) to Android 5.0
(Lollipop). The application can be used in smart watches with round screen or rectangular

65

screen. Finally, the server can be deployed in a computer that has installed Node JS and
had installed Socket 10, and Google Cloud Messaging plugins for Node JS.

3.2. Application characterization

The final system must allow the following characteristics:

e The server application must support multiple client connections in multiple
matches.

e The server application must allow to create multiple matches.

e A client through the TableMe application can create a game notifying the server
and the involved players allowing them to use their smartwatches if they have any.

e The match host and the players can help to manage a game’s score.

e Every player with a smartwatch can score a goal, dismiss a goal or score an auto
goal.

e All the players and the host will be notified in real time from the server.

e The host of the game will see the progress of the game in the user graphic interface
of a match from the previous TableMe application.

3.3. User characterization

User Description Privileges Previous knowledge
type
Player A player can enter e Connect to a match. The user must have the

to a game is has a
smartwatch, the
notification is

application in the mobile
device, in the smartwatch.
Additionally, know how to

Score goals, dismiss
goals and score auto

displayed on the goals. play table foosball.
watch and can be e Win a match.
opened from it.

Host The host is a user e Control all the scores of The wuser must have the
that creates a all the players. application in the mobile
game from the device. Additionally, know
TableMe o Create a match. how to play table foosball.
application e Finish a match.

inviting to play
other players.

Table 5: User characterization table

3.4. Restrictions

For the development of the project are the following restrictions:
66

e Language restriction:

o The clients must be implemented in Android for the Android mobile and
Android Wear devices.

o The server must be implemented in Java Script using the platform Node JS.

e Programming restriction: The project will be implemented using the Object
Oriented paradigm for software development.

e Connection restriction:

o The server must admit multiple user connection simultaneously for multiple
matches.

o The mobile client must connect to a single server that host the matches.

o The match will be alive until the match host finish the game or it gets
disconnected.

e Game restriction:

o The system must implement a table foosball match rules with four players,
following the lineaments stipulated by the previous TableMe application.

e Architecture restriction:

o The system must develop following the Client/Server architecture for the
communication for between the server and the mobile devices.

o The system must use the Colyseus multiplayer game architecture for the
implementation of the game instances in the clients and the server.

e Persistent restrictions:

o The server application must persist the devices registered with a new
Google Cloud Messaging token.

o The server will not use a data base for the persistency.
o The persistency will be done through normal files.

e User interface restrictions:
o The interfaces of the system will be in English.

3.5. Assumptions and dependencies

The following dependencies are considerate for the development and execution of the
system:

e The server used in the previous TableMe application will provide information of
the user’s profile, and match history. Additionally, the leaderboard of the players.

e The mobile devices used must be connected to internet.

e The mobile devices may or not have a smartwatch paired.

67

e The requirements of the system are formulated by Marco Marengo though
presentations of the application and the guideline of the previous Table Me
application.

The following assumptions are considered for the development and execution of the
system:

e The mobile and smartwatch devices where the application is installed can execute
the application.

3.6. Domain Model

The domain model of the application is represented in the following diagram: and
specified in the following document: Annex: Domain Model

3.7. Requirement distribution.

Based on the process of identification of requirements, it has been stipulated that the
following classification of requirements must be divided in different functionalities and
phases of the game and the application. The following diagram shows the classification of
the requirements:

68

|
Classification
|
| |
| |

Functional Nonfunctional
| |
— Menu Options |~ Implementation
| |
| Game | Interf:
L Preparation | ntertace
| |
— Connection |— Performance
| |
— In Game — Compatibility
| |
L GameEnd L— Reliability
|
— Scalability
|
L Usability

Figure 43: Requirement classification

The following table shows a brief explanation of the different categories of
requirements defined above.

Type Classification Description

Functional Menu options Requirements about displaying the profile information,
match history and leader board.

Game preparation | Requirements about the process to prepare a game and
notify the players that will be involved in the game.

Connection Requirements about the connection between the server
and the mobile client, and the mobile client and the
smartwatch.

In game Requirements about a current match with or without
multiple players, hosted by a user of the TableMe
application.

69

Game end

Requirements about the finishing phases of a game.

Non-
functional

Interface Requirements that allow the flow between the
application information and the user.

Usability Requirements that provide the system’s way to use for
the users.

Performance Requirements of the performance expected from the
applications.

Compatibility Requirements of the compatibility dependencies needed
to deploy and execute the system.

Reliability Requirements that allow support in failure cases.

Scalability Requirements that guide the system on how must grow

as the user grow too.

Implementation

Requirements of the system implementation.

Table 6: Requirement classification specification

70

7.2 Use Case Specification

POLYTECHNIC OF TURIN

Faculty of Engineering
Master's Degree

in Computer Engineering

Use case Specification

Andres Camilo Jimenez Vargas

October 2016

71

Index

UC-035 ReCONNECT WEAI DEVICEoiveeivieiieciieiieeie ettt sttt st 73
UC-036 RECONNECE PIAYETcvieieeeie ettt sttt sra e 73
UC-038 Request USEr INFOMMALION...........coiiiiiieiieeiesie et s 74
UC-039 Request MAtCh NISTOMYccviiieiicc e 74
UC-040 Request [eader DOAIMooeeiiiiiiieiieese e 75
UC-001 SYNChronize WEar Gata............c.civerueiieiieeieiie e et se e see s sae e ta e snee e e e 75
UC-002 Register deViCe 10 the SEIVELcuv et 76
UC-003 Create @ MALCHcoveiiieiieciesieeee ettt bbbt bbb ene e 76
UC-004 Send Notification t0 @ AEVICEveveiieieeieiie e 77
UC-005 SelECt rAU TEAIM.....c.viiiiti ittt sttt sb b b sbeene e 77
UC-006 SeleCt DIUE tBAM.....eiii ettt nreeeeenee e 78
UC-007 Use GCM SErvice fOr @ tOKENoiiiiiiiiiicisieiee e 78
UC-008 Receive challenge NOtIFICAtIONc.cceiiiiiiiiiiiicee e 79
UC-009 Show challenge NOtIfICAtIoNccoueiieiiiie e 79
UC-010 ACCEPL CNAIIENGE ...t 80
UC-011 STAt MALCH ...ttt n et sbe e ene e 81
UC-015 IMABNAGE SCOTEeeeniieitiieitie ettt ettt ettt ettt e st e et e e steesbeeanbeesbeeanbeesneeanbeeaseeanseens 81
UC-018 UPALE SCOTEveevreriectieite et st e cte ettt et s et s e be et e s aeesraeseaseesbaebeaneesreesneenre e 82
UC-019 DiSPIAY SCOIEveeererieeieeiteeiestee e eteereesie e e ssee e eeesseesseesteaneesseeseaseesseanseaneesseenseaneenns 83
UC-020 SEIECE WINNEE ...ttt sttt nee st e b e ene e 83
UC-021 DiSplay WINNEE OF IOSEc..eieeieieieeiesieeesieseesieeeesieeie e saaessesseesseeeeaneesseessesneees 84
UC-024 ShoW Profile data...........ccceeiiiiieiiiei et 84
UC-025 ShoW 1€a0EID0AITcoiiieiicie et 85
UC-026 ShoW MatChes NISTOMYccviiieiiieiecie sttt 85
UC-027 NOLITY Player FEAAYcciiiiiiiiieieie e 86
UC-028 Register Player rEAAYccveiiiiiieiie ittt sae e e e e 86
UC-030 Register player dECHNEc.oiieiiee et 87
UC-031 Create MACRociii e e e et 87
UC-032 CanCel MALCHccuieieciccieee ettt e e e sraenneenee e 88

72

Name of the use
case:

UC-035 Reconnect Wear Device

Author: Andres Camilo Jimenez Vargas

Creation date: 17/04/2016

Notes: Modification 17/04/2016
date:

Scenarios:

Basic Path 1.The wear device is disconnected

Conventions: 2.The server is notified from the disconnection.

Mobile 3.Wait for reconnection.

application. 4.1. If connected

Wear application.

4.1.1. Register device in the server and

restore the game's

Server. . .

information.

4.2. If not connected.

4.2.1. Wait for connection.
Basic Path 1.The wear device is disconnected
Conventions: 2.The server is notified from the disconnection.
Mobile 3.Wait for reconnection.
application. 4.1. If connected

Wear application.

Server.

Restrictions

4.1.1. Register device in the server and
information.

4.2. If not connected.
4.2.1. Wait for connection.

restore the game's

Invariant
(Approved)

Invariant
(Approved)

A wear device has been disconnected from the mobile.

The user is in a current game.

Name of the use
case:

UC-036 Reconnect Player

Author:

Andres Camilo Jimenez Vargas

Creation date:

Modification
date:

17/04/2016

26/04/2016

73

Notes:

Scenarios:

Basic Path 1. Prepare the mobile device for reconnection.
Conventions: 2.1. If reconnected

Mobile 2.1.1. Register device and restore the score of the game.
application. 2.2. if not connected.

Wear application.

Server.

2.2.1. Waiting for connection event.

Restrictions

Invariant
(Approved)

A player has disconnected from the server

Name of the use
case:

UC-038 Request user information

Author:

Andres Camilo Jimenez Vargas

Creation date: 28/04/2016 Modification 28/04/2016
date:

Notes:

Scenarios:

Basic Path 1. The user request a wear synchronization.

Conventions: 2. Request the user update to the JOL Table Me server

Mobile 3. Receive server answer

application. 4. Send information to synchronize

Wear application.

Server.

Restrictions

Invariant A user paired the wear device

(Approved)

Name of the use
case:

UC-039 Request match history

Author:

Andres Camilo Jimenez Vargas

Creation date: 28/04/2016 Modification 28/04/2016
date:

Notes:

Scenarios:

74

Basic Path
Conventions:

Mobile
application.

Wear application.

Server.

1. The user request a wear synchronization.

2. Request the match history to the JOL Table Me server
3. Receive server answer

4. Send information to synchronize

Restrictions

Invariant
(Approved)

The user paired the wear device

Name of the use
case:

UC-040 Request leader board

Author:

Andres Camilo Jimenez Vargas

Creation date: 28/04/2016 Modification 28/04/2016
date:

Notes:

Scenarios:

Basic Path 1. The user request a wear synchronization.

Conventions: 2. Request the leader board to the JOL Table Me server

Mobile 3. Receive server answer

application. 4. Send information to synchronize

Wear application.

Server.

Restrictions

Invariant The user paired wear device

(Approved)

Name of the use
case:

UC-001 Synchronize wear data

Author:

Andres Camilo Jimenez Vargas

Creation date: 19/11/2005 Modification 28/04/2016
date:

Notes:

Scenarios:

Basic Path 1. Open the application.

75

Conventions:

Mobile
application.

Wear application.

Server.

2. Search for Bluetooth connected nodes.
3. Compile all user information and put it in a data map.
4. Send information to the wear device.

Restrictions

Pre-condition
(Proposed)

The player opened the application.

Name of the use
case:

UC-002 Register device to the server

Author:

Andres Camilo Jimenez Vargas

Creation date: 20/11/2005 Modification 24/02/2016
date:

Notes:

Scenarios:

Basic Path 1. Send a token request to the GCM service.

S 2. Receive a JSON response and extract the token.
Conventions: 3. Send to the server the token given by the GCM service.
Mobile
application.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

The user opens the application at least once before.

Name of the use
case:

UC-003 Create a match

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:

Scenarios:

Basic Path 1. The user presses the button to start a new game.

Conventions:

2. A new instance of the game is instantiated.
3. UC-006 Select blue team.

76

Mobile
application.
Wear application.
Server.

4, UC-005 Select red team.
5. UC-011 Start Match.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

The user has registered to the server.

The user synchronized data with the wear application.

Name of the use
case:

UC-004 Send notification to a device

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:
Scenarios:
Basic Path 1. Receive the teams in the match.

. 2. UC-031 Create match.
C t : e))

onventions 3. Send the notification to all team players using GCM service.

Mobile
application.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

All the players must be registered on the server.

Name of the use
case:

UC-005 Select read team

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:
Notes:
Scenarios:
Basic Path 1. The mobile application sends a request to the server to retrieve the

77

Conventions:

list of opponents.

. 2. The player clicks the button of the defense position of red team.
Mobile . .
application 3. The player se_lects the player in the list. N
W I'. fi 4. The player clicks the button of the offense position of red team.
S ear application. g - g player selects the player in the list.
erver. 6. UC-011 Start match.
Restrictions
Pre-condition All the players must be registered on the server.
(Approved)
Name of the use
case: UC-006 Select blue team
Author: Andres Camilo Jimenez Vargas
Creation date: 09/03/2016 Modification 09/03/2016
date:
Notes:
Scenarios:
Basic Path 1. The mobile application sends a request to the server to retrieve the
S list of opponents.
Conventions: 2. The player clicks the button of the defense position of blue team.
Mobile 3. The player selects the player in the list.
application. 4. The player clicks the button of the offense position of blue team.
Wear application. 5. The player selects the player in the list.
Server. 1. UC-011 Start match.

Restrictions

Pre-condition
(Approved)

All the players must be registered on the server.

Name of the use
case:

UC-007 Use GCM service for a token

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:

Scenarios:

78

Basic Path

=

Get the instance id of the application.

Conventions: 2. Send a token request to the GCM service with the id of the

application.

Mobile 3. Retrieve the token.

application. 4. UC-002 Register device to the server.

Wear application.

Server.

Restrictions

Pre-condition The user opens the application.

(Approved)

Post-condition A unique token for the device from the GCM service.

(Approved)

Name of the use

case: UC-008 Receive challenge notification

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016

date:

Notes:

Scenarios:

Basic Path 1. The notification is received in the mobile.

Conventions: 2. The; r_nopﬂe sends a message to the wear application with the
notification.

Mobile 3. UC-009 Show challenge notification.

application.

Wear application.

Server.

Restrictions

Pre-condition The server sends a notification to the GCM service to the

(Approved) teams.

Name of the use

case: UC-009 Show challenge naotification

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016

date:
Notes:

79

Scenarios:

Basic Path
Conventions:

Mobile
application.

Wear application.

Server.

=

B w

Receive the message from the mobile in a listener with the game id.
Prepare to start the game of the contender in an intent with the game
id.

Create the notification with the data provided from the mobile.

Rise the notification in the wear device.

UC-010 Accept challenge.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

Pre-condition
(Approved)

The user synchronized with the wear application.

The mobile received the notification from the GCM service.

The mobile sent a message to the wear device with the
notification.

Name of the use
case:

UC-010 Accept challenge

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:

Scenarios:

Alternate 1. The user sweeps the notification to the left for the link to open the
S game.

nventions:

Conventions 2. The user taps the button to open the game.

Mobile 3. UC-029 Send decline game.

application. 4. Close the activity.

Wear application.

Server.

Basic Path 1. The user sweeps the notification to the left for the link to open the
N game.

Conventions: 2. The user clicks the button to start the game.

Mobile 3. UC-027 Notify player ready.

application. 4. A new activity rises and wait for the opponent to be ready.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

Pre-condition

All players must be registered on the server

The challenge notification was shown.

80

(Approved)

Name of the use
case:

UC-011 Start Match

Author:

Andres Camilo Jimenez Vargas

Creation date: 09/03/2016 Modification 09/03/2016
date:
Notes:
Scenarios:
Basic Path 1. Create a game instance with the teams.
S 2. UC-004 Send notification to device.
Conventions: 3. Receive the game id from the server.
Mobile
application.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

The match creator selected all team’s players.

All players are registered in the server.

Name of the use
case:

UC-015 Manage Score

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 26/04/2016
date:
Notes:
Scenarios:
Basic Path 1. The player clicks the button to score a goal, dismiss or auto goal.
Conventions: 2. The wear application sends a message to the phone to inform a goal
or auto goal.
Mobile 3. UC-018 Update score.
application. 4. The mobile application receive the score updated with the game id.
Wear application. 5. The mobile application sends the score to the wear device.
Server. 6. UC-021 Display score.

81

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

A match already started.

All players are registered in the server.

Name of the use
case:

UC-018 Update score

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 24/02/2016
date:
Notes:
Scenarios:
Alternate 1. Receive a goal or auto goal notification with the id of whom scored
. it.
C tions: ; .
onventions 2. Search the game instance.
Mobile 3. Send to the registered sockets the score of the game.
application. 4. Check if no one has score six point.
Wear application. 5. UC-018 Display score.
Server. 6. UC-020 Select winner.
Basic Path 1. Receive a goal or auto goal notification with the id of whom scored
e it.
Conventions: 2. Search the game instance.
Mobile 3. Send to the registered sockets the score of the game.
application. 4. Check if no one has score six point.
Wear application. 5. UC-018 Display score.

Server.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

Post-condition
(Approved)

Pre-condition
(Approved)

A match has already started.
A user scored a goal.
All the related devices are notified of the score.

Game id.

82

Name of the use
case:

UC-019 Display score

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:

Scenarios:

Basic Path 1. Receive an updated score from the mobile.

Conventions: 2. Update the user interface.

Mobile

application.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

A match has already started.

The mobile application sent a message with the updated score
to the wear application.

Name of the use
case:

UC-020 Select winner

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 24/02/2016
date:
Notes:
Scenarios:
Basic Path 1. A user scored six points.
Conventions: 2. Send a message to the mobiles notifying to each player if it is has
won or lost the match.
Mobile 3. Finish the game instance.
application. 4. UC-021 Display winner or loser.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

A match has already started.

A player scored a goal.

83

Name of the use
case:

UC-021 Display winner or loser

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 24/02/2016
date:
Notes:
Scenarios:
Basic Path 1. The mobile receive the information of the winner or the loser.
P 2. The mobile save the match in a history
Conventions: .]] . .
3. The mobile send a message to the wear device with the information.
Mobile 4. The wear device receives information and display it in the user
application. interface.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

A match has already started.

The mobile sent the information of a winner or loser of the

match.

Name of the use
case:

UC-024 Show profile data

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:
Scenarios:
Basic Path 1. The player clicks the option of profile in the menu.
Conventions: 2. The wear application checks the persisted data of the profile.

' 3. The wear application shows a new screen with the profile data.
Mobile
application.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

The user synchronized the wear application.

84

Name of the use
case:

UC-025 Show leaderboard

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:
Notes:
Scenarios:
Basic Path 1. The player clicks the button in the menu to see the leader board.
Conventions: 2. The wear application sends the request to the mobile application.
' 3. The mobile application sends the request to the server application.
Mobile 4. UC-034 Send latest leader board
application. 5. Receive the leader board.
Wear application. 6. Display the list of players of the leader board.
Server.
Restrictions
Pre-condition The player registered in the server.
(Approved)
Name of the use
case: UC-026 Show matches history
Author: Andres Camilo Jimenez Vargas
Creation date: 24/02/2016 Modification 09/03/2016
date:
Notes:
Scenarios:
Basic Path 1. The player clicks the option of match history in the menu.
Conventions: 2. The wear application checks the persisted data of the match history.
' 3. The wear application shows a new screen with the list of matches
Mobile organized from the newest to the oldest.
application.

Wear application.

Server.

Restrictions

Pre-condition
(Approved)

The user synchronized the wear application.

85

Name of the use
case:

UC-027 Notify player ready

Author:

Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:
Notes:
Scenarios:
Basic Path 1. Receive the message from the wear application.
Conventions: 2. Attach to the message the game id a_nd t.he player's id.
3. Send the message to the server application.
Mobile
application.
Wear application.
Server.
Restrictions
Pre-condition All players are registered in the server.
(Approved)
Pre-condition Wear application sent that the player is ready to play.
(Approved)
Name of the use
case: UC-028 Register player ready
Author: Andres Camilo Jimenez Vargas
Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:
Scenarios:
Basic Path 1. The server application receives a player register request.
Conventions: 2. The; server application searches the game and the player of the

registration.
Mobile 3. The server application set in ready the player.
application. 4. If all players are ready.
Wear application. 5. Start match.
Server.
Alternate 1. The server application receives a player register request.
Conventions: 2. The_ server application searches the game and the player of the

registration.
Mobile 3. The server application set in ready the player.
application. 4. If not all players are ready.
Wear application. 5. Wait for the other players to be ready to start the match.

Server.

86

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

Pre-condition
(Approved)

Pre-condition
(Approved)

All players registered in the server.
Game id.
Player id.

A match was created.

Name of the use
case:

UC-030 Register player decline

Author:

Andres Camilo Jimenez Vargas

Creation date:

24/02/2016 Modification 07/05/2016

date:

Notes:

Scenarios:

Basic Path
Conventions:

Mobile
application.

Wear application.

Server.

1. A player decline a game.
2. Notify host
3. UC-032 Cancel match

Restrictions

Invariant
(Approved)

Invariant
(Approved)

A game challenge was sent to a set of players

All players are registered

Name of the use
case:

UC-031 Create match

Author: Andres Camilo Jimenez Vargas

Creation date: 24/02/2016 Modification 09/03/2016
date:

Notes:

Scenarios:

87

Basic Path
Conventions:

Mobile
application.

Wear application.

Server.

1. A new game instance is created with a unique id.
2. All information of the teams is stored in the game instance.
3. Wait for the player to be ready.

Restrictions

Pre-condition
(Approved)

Pre-condition
(Approved)

All players must be registered in the server.

A notification request arrived from a mobile application.

Name of the use
case:

UC-032 Cancel match

Author:

Andres Camilo Jimenez Vargas

Creation date:

24/02/2016 Modification
date:

07/05/2016

Notes:

Scenarios:

Basic Path
Conventions:

Mobile
application.

Wear application.

Server.

1. Send message to finish game to players.
2. Send message to finish game to host.

Restrictions

Invariant
(Approved)

Invariant
(Approved)

All players are registered

A player declines a game

88

7.3 Functional Requirement Document

POLYTECHNIC OF TURIN

Faculty of Engineering
Master's Degree

in Computer Engineering

Functional Requirements Specification

Andres Camilo Jimenez Vargas

October 2016

89

Index

REQ-001 Send profile information mobile.............cccocovviiieii i 92
REQ-002 Save match history mobileccccoveiiiiiieceee e 92
REQ-003 Send match history mobile ..o 92
REQ-004 Send leader board Mobilecoovv i 93
REQ-005 Request [eader DOArdcocooviieiiiiieiceee e 93
REQ-006 SNOW PrOfHEoouiiiiiece e 93
REQ-007 Show matCh NISTOrYooiiiiiieice s 94
REQ-008 Show leader DOArdccoooviieiieiiie e 94
REQ-009 Select blue offense Player..........cccvecvieeiieii i 95
REQ-010 Get GCM TOKENoveviciiiiiieiciece e 95
REQ-011 Send regiStrationcccciveiueiiieieeie et 95
REQ-012 REQISIEr HEVICEc.veevieieieiie ettt 96
REQ-013 Create MatChccveiiiieiieie et 96
REQ-014 Select red defines Player.........ccoviieiieieieieseeee e 96
REQ-015 REtrEVE PIAYEIS ..o 97
REQ-016 Send NotifiCation MEQUESTeeirieieieie et 97
REQ-017 Select blue defines playerccooeoeiieiieiccccecce e 98
REQ-019 SaVe game FEQUESTeeeiiieeiiie ettt snne e 98
REQ-020 Send NOtification t0 FISE........c.eciiiiieiirieiie ettt sree e re e 98
REQ-021 Rise NOtifiCation iN WEAK...........coueiviiirieiieeiree ettt ere e 99
REQ-022 JOIN QAME WEAK ...ttt sttt 99
REQ-023 Start game WEATccueiiieiiiieiiere et 99
REQ-024 Ready Player WEAKcccoiiiiiiiieieie ettt 100
REQ-025 Ready player mobile ... 100
REQ-026 Start game SEIVEccviiiiieiiiresieese et 101
REQ-027 Manage game DY id........ccccveiiiiiieiii e 101
REQ-028 Add gOal WEAKeeeiiiiiiieiie ettt 101
REQ-029 Subtract goal WEATcceeiiiiiieie e 102
REQ-030 Send SCOre UPAate WEAKcccveeiiieiiieiiie i estie e see e sree e 102
REQ-031 Send score update MoDIle ..o 103
REQ-032 Update SCOre reCEIVEA SEIVENcueieieieieriesie st 103
REQ-033 Send SCOre UPUALEocveieiriiiiieiieiieieie ettt 103

REQ-034 Receive updated SCore mobilecccoooviieiiiieiicce e 104

REQ-035 Send update SCOIE WEAKccveveieerieeiesieesieeiesieeseeeeeseeseeseesaeesseenne e 104
REQ-036 Display UPAate WEANccceiiriiieieieiesie sttt 104
REQ-037 Identify WIinner player SEIVETcoooeiiiiriienisieeeee s 105
REQ-038 Notify Mmobile WINNET ..o 105
REQ-039 Notify Mmobile [0Scc.ooiiiiiiieeeee s 105
REQ-040 Receive WInNer MODIIEcc.coviiiiiiiec et 106
REQ-041 SENU WINNET WEAKccvviiieeiriecieecteeereesteesiteesteesreesraesbeesbeesneesaeesreesrees 106
REQ-042 Display WINNEr WEAKcccueiuieieiieiieeieseesteeee s sie e e sae e e esne e 106
REQ-043 Display 0S8 WEAK............coeiiiiiieieiie et 107
REQ-044 RELUIM NOIMEc.viiviiciiecieee ettt 107
REQ-045 DENY QAMEeiiiiiiiiieiiieie e 108
REQ-046 DENY JAME SEIVETeeiiiiiiieeieeresie ettt 108
REQ-047 Deny challenge mobile SEIVENcccoiviiiiiiiiieieeeee s 108
REQ-048 ReCeiVe 10S8 MODIIE........ccviiiiiiieiie et 108
REQ-049 SENU 0SB WEAKccveeiriiiieeciie sttt sree st sree et e sre e sreesbeenbees 109
REQ-050 Select red offense Player.........cooveieeiieiciiece e 109
REQ-052 Recognize Wear CONNECIONccveiuieieiieeiesieseesie e seesre e sae e 109
REQ-053 Recognize wear diSCONNECLIONccveieiieeiieeieieesie e sve e s 110
REQ-054 Notify server wear diSCONNECTIONcceiveririeriiniiieiee s 110
REQ-057 NOtify reCONNECTION WEAKccviieieiiieiie et 110
REQ-058 Notify score connection mobile............ccooeiiiiiiiinieiiieeeee e 111
REQ-059 Notify score reconnection Mobile...........cccooiiiiiiiiiiiiice e 111
REQ-079 Send auto gOalc.covveiiiieiece e e 111
REQ-080 ReqUESE Profile........ccueeiiieiiieece et 112
REQ-081 Request MatCh NSOyccccviiiiieiicie e 112

91

REQ-001 Send profile information mobile

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The mobile application must send the profile
information to the wear application.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-080 Request profile

Realization:
Type of element: Requirement
Realization: Use case: UC-001

REQ-002 Save match history mobile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must store the match history
of each created.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-026 Start game server

Realization:
Type of element: Requirement
Realization: Use case: UC-021

REQ-003 Send match history mobile

«Functio
nal»

State: Difficulty: Medium | Priority: 0.4
finished

Description: The mobile application must send the match
history to the wear application.

Dependencies:

92

Type of element: Requirement

Dependency: Requirement: REQ-081 Request match history

Realization:
Type of element: Requirement
Realization: Use case: UC-001

REQ-004 Send leader board mobile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send the latest leader
board to the wear application.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-005 Request leader board

Realization:
Type of element: Requirement
Realization: Use case: UC-025

REQ-005 Request leader board

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The mobile application must request the latest
leader board to the server

Realization:
Type of element: Requirement
Realization: Use case: UC-025

REQ-006 Show profile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to a player to show

93

the profile information of the player.

Dependencies:
Type of element: Requirement

Dependency: Requirement: REQ-001 Send profile information
mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-024

REQ-007 Show match history

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to a player to show
the match history of the player.

Dependencies:
Type of element: Requirement

Dependency: Requirement: REQ-003 Send match history mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-026

REQ-008 Show leader board

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to a player to show
the latest leader board.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-004 Send leader board mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-025

94

REQ-009 Select blue offense player

«Funct
ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the match creator
to select the player of the blue team that will play in offense
position.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-013 Create match

Realization:
Type of element: Requirement
Realization: Use case: UC-006

REQ-010 Get GCM token

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must use the GCM service to
retrieve the token of the device.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-011 Send registration

Realization:
Type of element: Requirement
Realization: Use case: UC-007

REQ-011 Send registration

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The mobile application must register the device with
the token in the server.

Realization:
Type of element: Requirement
Realization: Use case: UC-002

95

REQ-012 Register device

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The server application must store the token and the
id of the registered devices.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-010 Get GCM token

Realization:
Type of element: Requirement
Realization: Use case: UC-002

REQ-013 Create match

«Funct
ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the match creator
to create a new match.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-016 Send notification request
Requirement: REQ-011 Send registration
Requirement: REQ-023 Start game wear
Requirement: REQ-026 Start game server
Requirement: REQ-015 Retrieve players

Realization:
Type of element: Requirement
Realization: Use case: UC-003

REQ-014 Select red defines player

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must allow the match creator

96

select the player of the red team that will play in defines position.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-013 Create match

Realization:
Type of element: Requirement
Realization: Use case: UC-005

REQ-015 Retrieve players

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must retrieve from the
server a list of players.

Realization:
Type of element: Requirement
Realization: Use case: UC-005

REQ-016 Send notification request

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must allow the match creator
send the notification request of the challenge to the players to
start the game.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-009 Select blue offense player
Requirement: REQ-011 Send registration
Requirement: REQ-050 Select red offense player
Requirement: REQ-014 Select red defines player
Requirement: REQ-017 Select blue defines player

Realization:
Type of element: Requirement
Realization: Use case: UC-011

97

REQ-017 Select blue defines player

«Funct
ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the match creator
select the player of the blue team that will play in defines
position.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-013 Create match

Realization:
Type of element: Requirement
Realization: Use case: UC-006

REQ-019 Save game request

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must store the game request
with the information of each team.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-026 Start game server
Requirement: REQ-016 Send notification request
Requirement: REQ-013 Create match

Realization:
Type of element: Requirement
Realization: Use case: UC-031

REQ-020 Send notification to rise

98

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the wear
application when a challenge notification arrives.

Dependencies:

Type of element: Requirement
Requirement: REQ-019 Save game request
Requirement: REQ-026 Start game server
Requirement: REQ-021 Rise notification in wear

Realization:
Type of element: Requirement
Realization: Use case: UC-008

REQ-021 Rise notification in wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must rise a notification to
accept the challenge.

Realization:
Type of element: Requirement
Realization: Use case: UC-009

REQ-022 Join game wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must start the game when a
player clicks the button on the challenge notification.

Realization:
Type of element: Requirement
Realization: Use case: UC-010

REQ-023 Start game wear

99

«Funct
ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must notify the wear device
to start the game.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-022 Join game wear

Realization:
Type of element: Requirement
Realization: Use case: UC-011

REQ-024 Ready player wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must notify the mobile
application that the player is ready

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-022 Join game wear

Realization:
Type of element: Requirement
Realization: Use case: UC-027

REQ-025 Ready player mobile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the server that
the player is ready

Dependencies:

Type of element: Requirement

100

Dependency: Requirement: REQ-022 Join game wear

Realization:
Type of element: Requirement
Realization: Use case: UC-027

REQ-026 Start game server

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must start a game when at
least the host or any player is ready

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-022 Join game wear

Realization:
Type of element: Requirement
Realization: Use case: UC-018

REQ-027 Manage game by id

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must manage a game based
on the game id and the player’s id.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-026 Start game server

Realization:
Type of element: Requirement
Realization: Use case: UC-018

REQ-028 Add goal wear

«Funct

State: finished Difficulty: Hard Priority: 0.6

101

ional»

Description: The wear application must allow the player add a
goal in a match.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-030 Send score update wear

Realization:
Type of element: Requirement
Realization: Use case: UC-018

REQ-029 Subtract goal wear

«Funct
ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The wear application must allow the player subtract
a goal in a match.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-030 Send score update wear

Realization:
Type of element: Requirement
Realization: Use case: UC-015

REQ-030 Send score update wear

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The wear application must send the score to be
updated to the mobile application.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-031 Send score update mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-018

102

REQ-031 Send score update mobile

«Functio
nal»

State: Difficulty: Medium Priority: 0.5
finished

Description: The mobile application must send the score to be
updated to the server.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-033 Send score update

Realization:
Type of element: Requirement
Realization: Use case: UC-018

REQ-032 Update score received server

«Funct

State: finished Difficulty: Medium Priority: 0.5

ional»

Description: The server application must update the score when it
receives a request to be updated.

Realization:
Type of element: Requirement
Realization: Use case: UC-018

REQ-033 Send score update

«Funct

State: finished Difficulty: Medium Priority: 0.5

ional»

Description: The server application must send to the players wear
application the updated score.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-032 Update score received server

Realization:

103

Type of element: Requirement
Realization: Use case: UC-018

REQ-034 Receive updated score mobile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.4

Description: The mobile application must receive the updated
score from the server.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-032 Update score received server

Realization:
Type of element: Requirement
Realization: Use case: UC-019

REQ-035 Send update score wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send to the wear
application the updated score.

Realization:
Type of element: Requirement
Realization: Use case: UC-019

REQ-036 Display update wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must display the updated score
in the player's game screen.

Dependencies:
Type of element: Requirement

Dependency: Requirement: REQ-035 Send update score wear

104

Requirement: REQ-026 Start game server

Realization:
Type of element: Requirement
Realization: Use case: UC-019

REQ-037 Identify winner player server

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must identify a winner when
a player scores six points.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-038 Notify mobile winner
Requirement: REQ-026 Start game server

Realization:
Type of element: Requirement
Realization: Use case: UC-020

REQ-038 Notify mobile winner

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The server application must notify the mobile
application when a player won the game.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-040 Receive winner mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-020

REQ-039 Notify mobile lose

105

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The server application must notify the mobile
application when a player lost the game.

Realization:
Type of element: Requirement
Realization: Use case: UC-020

REQ-040 Receive winner mobile

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The mobile application must receive the server's
notification of a winner.

Realization:
Type of element: Requirement
Realization: Use case: UC-021

REQ-041 Send winner wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send a winner
notification to the wear application.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-040 Receive winner mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-021

REQ-042 Display winner wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must display the winner layout
if the player won the game.

106

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-041 Send winner wear

Realization:
Type of element: Requirement
Realization: Use case: UC-021

REQ-043 Display lose wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must display the loser layout if
the player lost the game.

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-039 Notify mobile lose

Realization:
Type of element: Requirement
Realization: Use case: UC-021

REQ-044 Return home

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The wear application must allow the user return
home when the game ends.

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-043 Display lose wear
Requirement: REQ-042 Display winner wear

Realization:
Type of element: Requirement
Realization: Use case: UC-034

107

REQ-045 Deny game

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The wear application must allow to deny a challenge
when a notification had risen.

Realization:
Type of element: Requirement
Realization: Use case: UC-010

REQ-046 Deny game server

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send a challenge deny
to the server.

Realization:
Type of element: Requirement
Realization: Use case: UC-030

REQ-047 Deny challenge mobile server

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The server application must deny a challenge when a
mobile application notifies it.

Realization:
Type of element: Requirement
Realization: Use case: UC-030

REQ-048 Receive lose mobile

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.3

Description: The mobile application must receive the server's
notification of a loser.

Realization:

Type of element: Requirement

108

Realization: Use case: UC-021

REQ-049 Send lose wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must send a loser notification
to the wear application.

Realization:
Type of element: Requirement
Realization: Use case: UC-021

REQ-050 Select red offense player

«Funct
ional»

State: finished Difficulty: Hard Priority: 0.6

Description: The mobile application must allow the user select the
player of the red team that will play in offense position.

Dependencies:
Type of element: Requirement

Dependency: Requirement: REQ-013 Create match

Realization:
Type of element: Requirement
Realization: Use case: UC-005

REQ-052 Recognize wear connection

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must recognize when the
wear device is connected to the mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-035

109

REQ-053 Recognize wear disconnection

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must recognize when the
wear device is disconnected of the mobile device

Realization:
Type of element: Requirement
Realization: Use case: UC-035

REQ-054 Notify server wear disconnection

«Funct
ional»

State: finished Difficulty: Easy Priority: 0.4

Description: The mobile application must notify the server when
the wear device is disconnected

Dependencies:
Type of element: Requirement

Dependency: Requirement: REQ-053 Recognize wear
disconnection

Realization:
Type of element: Requirement
Realization: Use case: UC-036

REQ-057 Notify reconnection wear

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify to the wear the
score of the game when a wear device is connected to the mobile

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-052 Recognize wear connection
Requirement: REQ-053 Recognize wear disconnection

Realization:

110

Type of element: Requirement
Realization: Use case: UC-036

REQ-058 Notify score connection mobile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the actual score
of a game to any participant player that connect in the server

Dependencies:

Type of element: Requirement

Dependency: Requirement: REQ-057 Notify reconnection wear
Requirement: REQ-034 Receive updated score mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-038

REQ-059 Notify score reconnection mobile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must notify the actual score
of a game to any participant player that reconnect in the server

Realization:
Type of element: Requirement
Realization: Use case: UC-024
Use case: UC-025
Use case: UC-026

REQ-079 Send auto goal

«Funct
ional»

State: finished Difficulty: Hard Priority:0.6

Description: The wear application must allow the player to score
an auto goal in a match.

Dependencies:

111

Type of element: Requirement

Dependency: Requirement: REQ-030 Send score update wear

Realization:
Type of element: Requirement
Realization: Use case: UC-015

REQ-080 Request profile

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must request the latest user
profile to the server

Realization:
Type of element: Requirement
Realization: Use case: UC-024

REQ-081 Request match history

«Funct
ional»

State: finished Difficulty: Medium Priority: 0.5

Description: The mobile application must request the latest user
match history to the server

Dependencies:
Type of element: Requirement
Dependency: Requirement: REQ-002 Save match history mobile

Realization:
Type of element: Requirement
Realization: Use case: UC-026

112

7.4. Non Functional Requirement Documents

POLYTECHNIC OF TURIN

Faculty of Engineering
Master's Degree

in Computer Engineering

Non Functional Requirements
Specification

Andres Camilo Jimenez Vargas

October 2016

113

Index

L USADIIIEY e 115
1.1.REQ-064 Interface design bY GOOGIE........ccoceeieiiriieieeieniee e 115
2. PEITOIMMANCEoviiiieieie bbbt e bbb enean 115
2.1. REQ-066 Connection time MODIle...........cccoviiiriiiie e 115
2.2. REQ-067 NOtification GCM.........covviiiiiieiieieesie e 115
2.3.REQ-068 Receive inCOMING CONNECLIONSccvevierieerieiieseesieeie e eee e 115
2.4. REQ-069 Game arChiteCIUIE.........ccueiieieiie it 115
2.5. REQ-070 GCM arChiteCtUIecccveiieeieiie it 116
B USADIIITY . 116
3.1. REQ-071 MANUALoooiiieiieeee ettt 116
Yot 1 - o1 1] SO P S 116
4.1. REQ-072 Players CONNECIEMcccevveiieieiie et 116
ST O] 1] 0T U] o1 1) SRS 116
5.1.REQ-073 Wear compatibDilityccccoveiiiiiiiieiecc e 116
5.2. REQ-074 Mobile compatiDIitycccoooiiiiiiiiieisee e 117
B. REIIADIIITYoeieieecec e 117
6.1. REQ-075 PIAYEI TECOVETcuiiiieiiieiee sttt 117
7. IMPIEMENTALION ... 117
7.1. REQ-076 Server implementation.............coveieieeieneniseseeeee e 117
7.2. REQ-065 Application integrationcccccvveviiieseeie e 117
8L INLEITACE ... e 118
8.1. REQ-077 Design interfaces round WEArcccceeeevueiieiiere e 118
8.2. REQ-078 Design interfaces SQUAre WEAcccveveerveieeieesieeieseesieseesveesnas 118
8.3. REQ-060 Interface Menu Stccooveeiieiiee e 118
8.4. REQ-061 Interface profile WEAr............ccoviiiiiiiieieie e 118
8.5. REQ-062 Interface NIStOrY WEANcccoiiriiiiieieiese e 119
8.6. REQ-063 Show leader board WEArcccooveverieieeieee e 119

114

1. Usability

1.1. REQ-064 Interface design by Google

«Usabil State: finish Difficulty: Medium Priority: 0.4

Ity» Description: The wear application must follow the user interface

design rules form google.

2. Performance

2.1. REQ-066 Connection time mobile

«Perfor State: finish Difficulty: Medium Priority: 0.5

mance» Description: The connection of the mobile application with the

server must be done in a try during from 1 to 10 seconds

2.2. REQ-067 Notification GCM

«Perfor State: finish Difficulty: Medium Priority: 0.5

mance» Description: The notification of the creation of a game must be

done in a try during 1 to 10 seconds.

2.3.REQ-068 Receive incoming connections

«Perfor State: finish Difficulty: Medium Priority: 0.5

mance» — — . . .
Description: The server application must receive any incoming

connections to an existing game in progress.

2.4. REQ-069 Game architecture

«Perfor State: finish Difficulty: Medium Priority: 0.5

mance»

Description: The server application must save the instances of the

115

devices connected in a persistent way following the architecture
of Ashwin R. Bharambe, Jeff Pang and Srinivasan Seshan
proposed for a multi player game.

2.5. REQ-070 GCM architecture

«Perfor State: finish Difficulty: Medium Priority: 0.5
mance» Description: The server application must save the GCM tokens
from the users following the architecture proposed by Google in
the google Cloud Messaging implementation.
3. Usability

3.1. REQ-071 Manual

«Usabil State: finish Difficulty: Medium Priority: 0.5
ity» Description: The application must provide a user manual for the
wear application usage.
4. Scalability

4.1. REQ-072 Players connected

«Scala

State: finish Difficulty: Medium Priority: 0.5

bility»

Description: The server application must provide support to
multiple games conformed by maximum 5 players connected
playing simultaneously.

5. Compatibility

5.1.REQ-073 Wear compatibility

«Comp

State: finish Difficulty: Medium Priority: 0.4

116

atibility Description: The wear application must be compatible to android
» wear devices from Kit Kat version to the actual version Lollipop

5.2. REQ-074 Mobile compatibility

«Comp State: finish Difficulty: Medium Priority: 0.5
atibility

»

Description: The mobile application must be compatible to
android devices from Jelly Bean version to the actual version
Lollipop

6. Reliability

6.1. REQ-075 Player recover

«Reliab State: finish Difficulty: Medium Priority: 0.5
ility»

Description: The system must recover the score of a game of a
player that reconnect to a game.

7. Implementation

7.1. REQ-076 Server implementation

«Imple State: finish Difficulty: Medium Priority: 0.5
mg?]t?t' Description: The server application must be implemented using
node js.

7.2. REQ-065 Application integration

«Imple State: finish Difficulty: Hard Priority: 0.7
mgrr:iatl Description: The wear and mobile application must be integrated
with the latest version of the Table Me application

117

8. Interface

8.1. REQ-077 Design interfaces round wear

«Interf State: finish Difficulty: Medium Priority: 0.5

ace» Description: The wear application must design the interfaces for

the round smartwatches

8.2. REQ-078 Design interfaces square wear

«Interf State: finish Difficulty: Medium Priority: 0.5

ace» Description: The wear application must design the interfaces for

the square smartwatches

8.3. REQ-060 Interface menu list

«Interf State: finish Difficulty: Medium Priority: 0.5

ace» Description: The wear application must show as home page list of

main features to choose

8.4. REQ-061 Interface profile wear

«Interf State: finish Difficulty: Medium Priority: 0.5

ace» Description: The wear application must show after click the

profile item in the list the user's facebook logo, the victories and

118

loses and the elo.

8.5. REQ-062 Interface history wear

«Interf State: finish Difficulty: Medium Priority: 0.5

ace» Description: The wear application must show after click the

history item in the list the list of matches of the user with detailed
information

8.6. REQ-063 Show leader board wear

«Interf State: finish Difficulty: Medium Priority: 0.5
ace»

Description: The wear application must show after click the
leader board item in the list, the latest leader board updated.

119

7.5. Requirement priorization

ID Benefit |Penalization |Total value |Value %|Cost [Cost % |Risk |Risk % |Priority |Complexity
REQ-065 Application integration 9 9 18 1.7 9| 1.8 3] 0.7 | 0.713 [Hard
REQ-013 Create match 8 9 17 1.6 8| 1.6 4 0.9 | 0.668 [Hard
REQ-050 Select red offense player 8 9 17 1.6 7| 1.4 5| 1.1 | 0.663 [Hard
REQ-009 Select blue offense player 8 9 17 1.6 7| 1.4 5| 1.1 | 0.663 [Hard
REQ-079 Send auto goal 8 9 17 1.6 7] 1.4 5| 1.1 | 0.663 [Hard
REQ-028 Add goal wear 8 7 15 1.5 8| 1.6 3| 0.7 [0.647 |Hard
REQ-029 Subtract goal wear 8 7 15 1.5 8| 1.6 3[0.7 [0.647 |Hard
REQ-023 Start game wear 9 9 18 1.7 7] 1.4 6 1.3 [0.646 |Hard
REQ-017 Select blue defense player 7 9 16 1.5 7| 1.4 5[1.1 [0.624 |Hard
REQ-075 Player recover 7 8 15 1.5 8| 1.6 4| 0.9 | 0.590 |Medium
REQ-014 Select red defense player 6 9 15 1.5 7| 1.4 5| 1.1 | 0.585 |Medium
REQ-022 Join game wear 8 8 16 1.5 7] 1.4 6| 1.3 | 0.574 |Medium
REQ-024 Ready player wear 8 8 16 1.5 7] 1.4 6| 1.3 | 0.574 |Medium
REQ-025 Ready player mobile 8 8 16 1.5 7] 1.4 6| 1.3 | 0.574 |Medium
REQ-026 Start game server 8 9 17 1.6 7] 1.4 7| 1.5 | 0.564 |Medium
REQ-027 Manage game by id 9 9 18 1.7 8| 1.6 7| 1.5 | 0.559 |Medium
REQ-037 Identify winner player server 7 8 15 1.5 6| 1.2 7| 1.5 | 0.534 |Medium
REQ-052 Recognize wear connection 7 8 15 1.5 6| 1.2 7] 1.5 | 0.534 |Medium
REQ-053 Recognize wear disconnection 7 8 15 1.5 6| 1.2 7] 1.5 | 0.534 |Medium
REQ-059 Notify score reconnection mobile 8 8 16 1.5 7] 1.4 7] 1.5 | 0.531 |Medium
REQ-069 Game architecture 6 6 12 1.2 5] 1.0 6| 1.3 [0.505 |Medium
REQ-068 Receive incoming connections 6 6 12 1.2 5| 1.0 6| 1.3 [0.505 |Medium
REQ-020 Send notification to rise 7 5 12 1.2 5[1.0 6[1.3 [0.505 |Medium
REQ-066 Connection time mobile 6 7 13 1.3 6 1.2 6[1.3 [0.503 |Medium
REQ-067 Notification GCM 6 7 13 1.3 6 1.2 6[1.3 [0.503 |Medium
REQ-016 Send notification request 7 6 13 1.3 6 1.2 6[1.3 [0.503 |Medium
REQ-045 Deny game 7 6 13 1.3 6| 1.2 6| 1.3 [0.503 |Medium
REQ-046 Deny game server 7 6 13 1.3 6| 1.2 6| 1.3 [0.503 |Medium
REQ-047 Deny challenge mobile server 7 6 13 1.3 6| 1.2 6| 1.3 [0.503 |Medium
REQ-058 Notify score connection mobile 8 5 13 1.3 6| 1.2 6| 1.3 [0.503 |Medium
REQ-002 Save match history mobile 9 4 13 1.3 6| 1.2 6| 1.3 [0.503 |Medium
REQ-076 Server implementation 5 9 14 1.4 7] 1.4 6| 1.3 [0.502 |Medium
REQ-004 Send leader board mobile 7 7 14 1.4 7| 1.4 6| 1.3 | 0.502 |Medium
REQ-034 Receive updated score mobile 6 8 14 1.4 6| 1.2 7] 1.5 | 0.499 |Medium
REQ-003 Send match history mobile 7 7 14 1.4 6| 1.2 7] 1.5 | 0.499 |Medium
REQ-061 Interface profile wear 7 8 15 1.5 7] 1.4 7] 1.5 | 0.498 |Medium
REQ-062 Interface history wear 7 8 15 1.5 7] 1.4 7] 1.5 | 0.498 |Medium
REQ-006 Show profile 8 8 16 1.5 8| 1.6 7| 1.5 | 0.497 |Medium
REQ-007 Show match history 8 8 16 1.5 8| 1.6 7| 1.5 | 0.497 |Medium
REQ-008 Show leader board 8 8 16 1.5 8| 1.6 7| 1.5 | 0.497 |Medium
REQ-063 Interface leader board wear 8 8 16 1.5 8| 1.6 7| 1.5 | 0.497 |Medium
REQ-073 Wear compatibility 5 6 11 1.1 6| 1.2 5[1.1 [0.467 |Medium
REQ-074 Mobile compatibility 5 6 11 1.1 6| 1.2 5[1.1 | 0.467 |Medium
REQ-015 Retrieve players 7 6 13 1.3 7| 1.4 6| 1.3 | 0.466 |Medium
REQ-042 Display winner wear 6 7 13 1.3 7] 1.4 6| 1.3 | 0.466 |Medium

120

REQ-043 Display lose wear 6 7 13 1.3 7] 1.4 6| 1.3 | 0.466 [Medium
REQ-049 Send lose wear 6 7 13 1.3 7] 1.4 6 1.3 | 0.466 [Medium
REQ-031 Send score update mobile 6 7 13 1.3 7] 1.4 6 1.3 | 0.466 [Medium
REQ-032 Update score received server 6 7 13 1.3 7| 1.4 6 1.3 | 0.466 [Medium
REQ-057 Notify reconnection wear 7 6 13 1.3 7| 1.4 6 1.3 | 0.466 [Medium
REQ-080 Request profile 7 6 13 1.3 7] 1.4 6[1.3 | 0.466 [Medium
REQ-081 Request match history 7 6 13 1.3 7| 1.4 6 1.3 | 0.466 [Medium
REQ-041 Send winner wear 5 7 12 1.2 6] 1.2 6 1.3 | 0.465 [Medium
REQ-010 Get GCM token 6 6 12 1.2 6 1.2 6[1.3 | 0.465 [Medium
REQ-019 Save game request 6 6 12 1.2 6| 1.2 6| 1.3 | 0.465 [Medium
REQ-036 Display update wear 6 6 12 1.2 6 1.2 6[1.3 | 0.465 [Medium
REQ-060 Interface menu list 6 6 12 1.2 6] 1.2 6[1.3 | 0.465 [Medium
REQ-064 Interface design by Google 6 6 12 1.2 6 1.2 6 1.3 | 0.465 [Medium
REQ-021 Rise notification in wear 7 5 12 1.2 6 1.2 6[1.3 | 0.465 [Medium
REQ-033 Send score update 6 8 14 1.4 7| 1.4 7| 1.5 | 0.465 [Medium
REQ-035 Send update score wear 6 7 13 1.3 6 1.2 7| 1.5 | 0.463 [Medium
REQ-072 Players connected 6 4 10 1.0 4] 0.8 6] 1.3 | 0.461 (Medium
REQ-030 Send score update wear 6 7 13 1.3 7 1.4 7| 1.5 | 0.432 [Easy
REQ-005 Request leader board 7 5 12 1.2 7] 1.4 6 1.3 | 0.430 [Easy
REQ-001 Send profile information mobile 7 4 11 1.1 6 1.2 6| 1.3 | 0.426 [Easy
REQ-012 Register device 5 6 11 1.1 6| 1.2 6| 1.3 | 0.426 |Easy
REQ-038 Notify mobile winner 5 6 11 1.1 6 1.2 6 1.3 | 0.426 [Easy
REQ-039 Notify mobile lose 5 6 11 1.1 6 1.2 6 1.3 | 0.426 [Easy
REQ-077 Design interfaces round wear 6 4 10 1.0 6] 1.2 5| 1.1 | 0.424 [Easy
REQ-078 Design interfaces square wear 6 4 10 1.0 6] 1.2 5| 1.1 | 0.424 [Easy
REQ-070 GCM architecture 5 6 11 1.1 5[1.0 7] 1.5 | 0.423 [Easy
REQ-054 Notify server wear disconnection 7 6 13 1.3 7] 1.4 8| 1.7 | 0.402 [Easy
REQ-011 Send registration 5 6 11 1.1 7] 1.4 6] 1.3 [0.395 [Easy
REQ-040 Receive winner mobile 5 5 10 1.0 6] 1.2 6| 1.3 | 0.387 [Easy
REQ-048 Receive lose mobile 5 5 10 1.0 6 1.2 6 1.3 | 0.387 [Easy
REQ-044 Return home 4 4 8 0.8 5[1.0 5(1.1 | 0.372 [Easy
REQ-071 Manual 4 4 8 0.8 4| 0.8 7| 1.5 | 0.334 [Easy
Total 1034 503 460

121

7.6. Installation Manual
Installation Manual

1.Server on Node JS:

The deployment and installation of the server will require for recommendation the Node
JS environment from version 4.4.4 onwards. After the installation it is required the
following libraries:

e Socket 10, for installation is necessary to type the following command “npm
install socket.i0”.

e Google Cloud Messaging, for installation is necessary to type the following
command “npm install node-gcm”

For the update process of the information for the usage of the Google Cloud Messaging
service. In this step is necessary to access to the Google Console Developer using the
following procedure in the link. There you need to fill in with the name of the project in
the console and the name of the package “it.telecomitalia.tableme”. Finally, it will create
automatically the Server APl Key and the Sender Id, this information must be updated in
the server at the index.js with the API Key and in the application in the Quick references
class updating the server id.

After that the server will deploy using the file system creating two folders, Config to save
the data of the games ids, and Devices, where all the users that connect to the server will
be registered.

2.Android application and Android Wear:

For the deployment of and installation of the libraries for the Table Me application in
Android and Android Wear are done in the gradle build of the application adding the
following dependencies:

e Wearable API, compile ‘com.google.android.gms:play-services-
wearable:8.3.0'

e Socket 10, for this library the application contains the version 0.7.0 for
Android that is compatible with the version 1.0 onwards of the JavaScript
implementation. This library was developed by Naoyuki Kanezawa, if a new
version is needed can be downloaded from Naoyuki repository:

o https://github.com/socketio/socket.io-client-java

And would require the following dependency in the gradle build, where “x” is
the version of the library:
o compile(‘io.socket:socket.io-client:x) {

exclude group: 'org.json’, module: 'json’

¥

Important: If any changes are performed to the gradle of the app or the wear
modules, it is necessary to update them with the same information. To be able to be
compatible between the phone and the smartwatch, the gradles must provide the same

122

https://developers.google.com/mobile/add?platform=android&cntapi=gcm&cntapp=Default%20Demo%20App&cntpkg=gcm.play.android.samples.com.gcmquickstart&cnturl=https:%2F%2Fdevelopers.google.com%2Fcloud-messaging%2Fandroid%2Fstart%3Fconfigured%3Dtrue&cntlbl=Continue%20with%20Try%20Cloud%20Messaging
https://github.com/socketio/socket.io-client-java

configurations for the android part such as compile Sdk version, build tools version,
signing configs, default config, build types and dex options.

Finally, for the interfaces developed for the smartwatch application has two layouts for the
different types of watches such as the square or the round ones. For this, it has been used
watch stub views that allow to set which layout will be displayed if is used in a device
with a round or square screen.

2.1. Profile information on the smartwatch

After opening the application, the user can use a list of option to select about the user’s
profile information and the game. The profile option shows in a similar way as in the
Table Me application the basic information of the user. Firstly, the photo, the position in
the leader board inside a badge, two bars that indicate proportionally the number of
victories (green bar) and number of lost games (red bar). The at the end the name of the
user and his/her ELO score.

2 Profile < »

® Leaderboard

& Achivements

& ..
2.2. Gameplay on the smartwatch

After a user that will host a game organize and create the team, a notification is issued to
the participants of the match will receive a notification in their phones and to their
smartwatches if they have one. At the watch the following notification is displayed.

You have been Red: Andres, Marco

challenged!
Sweep to the left! Blue: Alex , Andrea Tap to Play

Then, when the user start playing the game, the screen with the buttons where the player
can interact with the score is provided, with a button to add a goal in the center, a dismiss
goal button at the left bottom and an auto goal button at the right bottom. The user can

123

interact with them and the score is displayed in the results displayed in top of the screen
with its respective colors of the team.

0 0 0 0

You Lost!

You Won! You Lost!

Finally, in each case the users of a team win or lose a match the following screens are
displayed in the smartwatches using a base badge with their goals scored.

2.3. Match history on the smartwatch

When the match history option is selected, the user is provided with a brief list of the last
ten matches that he/she was part of. Each match is signaled with a cross and the message
“Lost!” if the player lost that game, or a check and the message “Won!” if the player won
the game. If the player wants to know a more detailed information of the match, it is
possible to click an item on the list and will provide a screen with the background color of
the victorious team, the score, and the photo of the participants. If the user wants to see
the players profile information, he/she can click on the image and the profile information
will be displayed.

@'j LLUuvCIvVuIl v

X 3 LOST! 6
@ Achivements

X 6 LosT! 2
@ Mygames <“—* *

v’ 4 6

Exit
\7 Ao o

2.4. Leader board on the smartwatch

124

When the leader board is selected a list of the ten first places in the leaderboard is loaded
and take between 3 to 4 seconds. After waiting, the list displays the basic information of
the player in the displayed position with his photo, name and position in a badge. If the
user wants to see the profile of the player in a certain position, he/she can select a player
in the list and it will show the basic profile information of the player.

2 Profile @ Marco Marengo
e
k ‘—’ o

\
® Leaderboard ¢——>

@ Alessandro 1zzo

]

o
& Achivements ¥

B .. & Danny

125

7.1.

A0Sy yaew isanbay Le0-0o3y

ajuod ;sanbay 080034

1e0f oine puag pL0-D3H

Aol UoiIaUU03al a103s ANOK 50-93Y

8)|Q0L UOJIAUU0I 81095 ANON §50-D3H

Jeaam UoaauunIal ANON £50-D3H

UORIBUU0IS|P IEAM 1883 ANOK #50-D3x

UojIaUU0Is|p JeaMm BZ|UADIEY £G0-DTH

UopIauuod team aZiufiodray 750-03y

lake|d asuayo pal 108185 050-03:

JESM 850 PUSS 6F0-D3H

a|qow as0] asalay §r0-H3s

1an8s 8||gow abua|ieya Auag L r0-D3y

Jasas allel Auad 9r0-03s

awel Auad Spo-D3y

a0y wniay vr0-D3y

Jeain aso) Ae|dsiq £p0-934

Jeam auuss AedSI0 Zr0-D3e

JEam Jauup PUSS |r0-D3 s

aIgoL JauUlw asaday 0F0-H3H

850] 8]I00W ANON BED-DIH

JauUm BI0oL ANGR 8E0-D3H

Jaaas 1aAeld Jauum ANUap| FE0-D3H

Jeasn glepdn Aejdsiq 9E0-D3Y

Jeam a103s ajepdn puag SE0-H3 Y

a0 81038 pajepdn asaaay #E0-D3H

alepdn 81035 pUas £E0-D3N

1a/AIas pasadal a100s alepdn ZE0-93Y

alIqow sjepdn 81038 PUAS LED-D3N

Jeam alepdh 81025 PUSS DEOD-D3Y

Jeanm |e0f JIEIONS BE0-D3Y

Jean |20l PRy 8Z0-D3H

g el afeuew A70-n3y

James swel pels 9z0-03y

algow Jadkeld ipeay 57003y

Jeasw Jake|d Apeay ¢E0-03

Jeanm awel pels cz0-03d

Jean awel Uor ZZ0-H3-

JE8M U] UOREIRNOU BS1Y LE0-03M

BS 0} UoREILRoU pUss 020034

Eanbal awed ares B LO-O3Y

18AE|d BsUBLEP 8N|Y 108185 £ L0-D3y

jsanbal UOREIWOU PUaS g L0-D3S

s1adeld amansy 5 10-034

Jghe|d asualap paljaees § L0-D3Y

Yajew ajeald £ L0-H3y

a0/kap J8jsiiay 7 1093y

uopessifial puasg |LL0-D3S

Usxo} WoD 89 010-D34

Jake|d 8suau0 an|y 198185 B00-D3y

pleod Japea| Mous 800-03y

A0ISIY YaLEL MOUS £00-D3H

ajuoad MoYs 9o0-03d

hieng Japea| jsanbay 500-03y

840w PIEDY JBPES| PUBS ¥00-D3H

(100U AIISIY Yajew puss £00-034

Ao AIDISIY Yajel ases Z00-93H

8)|0ouw uoeLIoU) 8juold puas L00-D3d

Tttt

T

T

T
Tttt

T

Relational Matrix of Functional Requirements

.

T

UC-001 Synchronize wear data

UC-002 Register device to the server

UC-003 Create a match

UC-004 Send notification to a device

UC-005 Select read team

UC-006 Select blue team

UC-007 Use GCM service for ataken

UC-008 Receive challenge notification

UC-009 Show challenge notification

UC-010&ccept challenge

UC-011 Skart Match

UC-015 Manage Score
UC-018 Update score

UC-021 Display winner or loser

UC-019 Display score
UC-020 Select winner

UC-024 Show profile data
UC-025 Show leadetboard
UC-026 Show matches history

UC-027 Notify player ready

UC-028 Reqister player ready

UC-030 Register player decline

UC-031 Create match

UC-032 Cancel match

UC-035 Reconnect Wear Device

UC-036 Reconnect Player

UC-038 Request user information
UC-039 Request match history

UC-040 Request leader board

126

7.7. Domain Model

waoepaqup

BuiBessa poid 1Be0s

srmg
HdLLH

plon: (BuspsrpepwWEO 4+

PloAiBWE 4+

ar
waaepaqui

i
sagpmupr

SrapoN piaog

ey

ey muawapor
w0l

Bus el
Bumg ‘ql

sapag

r oy
Wi sapos

w1 smep
iUy
1 Zpadasoe
1 pedance
Wi tem)zaloes
15 "ze0ss
W1 e zeI008
un szaioas

Wy ey paisas
Wiz Leens

plos: Qysayagump Luo +

[Ty ————
£BOUBSIBUBISMAIBIUEISU[H

P19n : QueESURONpUES

+

S3IAIBS IBURIEW A AN
caopuagIAUIEIND 9 »

sakely e
16e1d 1P
ey eq
il pq

Bums qlawes

|PoBopejappal
|£0B o3ne e aniq
|EoEonE 2Pz N
Ju1 cm1005jappal
W1 w1005 Tge mnig
r sossjzRTaNIg

1 cmi0os pa

Jopos qepes

Buus ‘s L assnn

[

“201B SHUBUI

sately aade|ghu

WP Eoqyseqn

PIoA : QUOIFAOISOIEIIBE
plon: Quojeppuas 4+

plon: Dysiiafiejgjab +

Pron: QuaAEIdIZE +

JBBEUBWUG IES URLIWIO3

GousprswwIue +

= PloAIRIWE 4+
[

asepaup

A

pibupuy DIFEN20g

saieg rpeied

Apngryaueg

Plo | DREBUPNIEIEQUS +
pron: Qpasmoaysbessapuo +

e
wsa|agIauaEIa|qEIER

WAl 006 ualaa(Ba0E -
Bumg yed -
depieieq depriEp -

sy sz eRgol pURg
apeai

1 =i Eng

uoiEn

jopog qamas
JBuBEIIRON dBNEEITEROY
Jauzsabesapy ausE T brsaL
Wl dEBo0s JuBl|251B008

sarnssaweg
w«aamag

I3uBaBEssA 15 URISTabEsAW

Jopos
Jup sgaioas
i iiaies

Jaussapoy JzuagErEpoy
Jusi2idveiBoos usli2sBoob

Ayngavaueg

TSUREI] JeUSETIEER -
sausEnspoN dsumsIapOU -
Wy 00 JuBIIR(BeoE -

AUARIIEH

-

TEUSEMEEG 1R RELIRER
Jauspapon sRuzsapl
wangidwalBoos JusigeiBoad

iyngavpiaquepeal

1 HLvd au3

Wi CHLYE T11408d
W HLYdTLEYLS
W1 CHLYd a3HEINL
W HLY S H3aYET
1 HLvd L30T ANOLSIH
W HLvd AHOLSIH
1 H w3
W HLvd AQY3Y
W HLvd 3507
L HLYS NI

Wi CHLYd W09

suEd

e

R

WwaigdvaBeos Jus12818008

A noeiye

TSUSEIEIE] eUSEITEED
IBUBSEBON I3 UBETEpOL
adyaIBooag qua|gagBoct

Ao R0

Pl DUOHESLONIEBMPUES 4
pron: QpaBueygeieque +

T o,

Ay gvdaqet Eay,

1ea pEIaeL

sornss smumiEn
qere e

[—

127

7.8. Use Case Diagram

<iprpe
v
\
\
\
X gz |, |
N s 0N
\
\
\
\
\

.......

128

/sesegasnon

7.9. Class Diagram Table Me

plon : (ysalaguag Jue +

[BOIA IS JBURJS] |ROURLSU Y
B0AGITUREI] | FUEREU[

ploa : (MOREIURONPURS +

30IAIBG JAURS Wy
BILE SIRURE T IS

Jafed Bl -

Jailelg opl

e EQ

el cpyg

funps qaweb
UEA[00q Ui

Ui ealioqne e Al
Wi e onET 2R R
U1 cealiTonETETAN|]
i ceefToneTRpTa0g -
Wi E0asTjEp pal

U1 RI00S HE ARG -

TR T e T}

Wi aleas pal -

UTIRETL R T

[oy

1pog Japos -

Bumg uao] - wasn LTI R TR IITITE) 1T
il = plon: (Hwa +
B01A G IR Uo RS BEY:: =
LELIE 400G pI0IPUY Q4208
LELL TR

_1__/ waﬂm,ro;

Jaie|d ade| ghw
13 30RYIEIPECIA IRAIRAYISEIpEOIGUDNELS Bayw

fpanaypieogyseq:

proa: (uyageguo 428 jaje et
PO QUaEpypuas

proa: (erpade) et

pioa: (ade|q1af

4+ + 4+

JABRUEUD IR 3T

plbapuy Ol 205
1 \

I AN
| \
| Y
LEE \
\ A
!
! \
| \
| LI
\ A
A}
J \
|
|
]
i
lenaagpEeapeng (yaeuoawel -
el tysjew -
R0 s -
JEXTIEERER TETE-I]
fyagoaweg

pron: (pabiueyelequo +
pron: Qpanaoayafiesapue +

a01AI9g 13U
B0 |AJ3 SIRUALE 3| JEIE R

ey Boog quangeboet -
Bums :yjed
depyeieq cdepeiep -

e B e
KQERI

=l

Ty

|1q0W 3E|geL

Jp0S ER0E -
JBUREMAPAY 3UAEMEpOL
lauasabiessay) dausgabesaw -
a7 dyaiioos ua)qabook

BIAIBGALIELY
LELIITER)

/ BpEIaeL S5

129

