

Pontificia Universidad JAVERIANA

Bogotá

Eigenvalues Of A Hessenberg-Toeplitz Matrix

Juanita Gasca Arango
Adviser: Johan Manuel Bogoya Ramírez
PhD in Mathematics

Acknowledgments

First of all, thanks to my family for their constant support, trust and for believing in me to carry out this work. Thanks to my adviser for sharing his work, his passion and for teaching me the importance and the beauty of this topic, as he sees it. Also, to the rest of my professors for their accompaniment in my professional development. Last but not least, I want to thank Juan Felipe and my friends that grew with me as mathematicians, specially Jhoan, Mileidy, Odette, David and Sebastian.

Contents

1 Introduction 5
2 Preliminary 10
2.1 Toeplitz matrix 11
2.2 Asymptotic analysis 12
2.3 Complex analysis 14
3 Main results 16
3.1 Inner eigenvalues 16
3.2 Extreme eigenvalues 18
4 A Key Example 25
4.1 Inner eigenvalues 25
4.2 Extreme eigenvalues 26
5 Behavior of Inner Eigenvalues 30
5.1 Toeplitz determinant 30
5.2 Contribution of λ to the asymptotic behavior of D_{n} 32
5.3 Contribution of 1 to the asymptotic behavior of D_{n} 34
5.4 Individual eigenvalues 39
6 Behavior of Extreme Eigenvalues 48
6.1 Location of eigenvalues 48
6.2 Determinant estimation 52
6.3 Individual eigenvalues 66

Chapter 1

Introduction

The $n \times n$ Toeplitz matrix generated by a complex-valued function $a \in L^{1}(\mathbb{T})$, on the complex unit circle \mathbb{T}, is the square matrix

$$
T_{n}(a)=\left(a_{j-k}\right)_{j, k=0}^{n-1},
$$

where a_{k} is the k th Fourier coefficient of a, that is,

$$
a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} a\left(1+\mathrm{e}^{i \theta}\right)+\mathrm{e}^{-i k \theta} \mathrm{~d} \theta=\frac{1}{2 \pi i} \int_{\mathbb{T}} a(t) t^{-(k+1)} \mathrm{d} t \quad(k \in \mathbb{Z})
$$

The function a is referred to as the symbol of the matrices $T_{n}(a)$.
Denote by H^{∞} the usual Hardy space of (boundary values of) bounded analytic functions over the unit disk \mathbb{D}. For a function $a \in C(\mathbb{T})$, let $\operatorname{wind}_{\lambda}(a)$ be the winding number of a about the point $\lambda \in \mathbb{C} \backslash \mathcal{R}(a)$ where $\mathcal{R}(a)$ stands for the range of a, and let $\mathcal{D}(a)$ be the set $\left\{\lambda \in \mathbb{C} \backslash \mathcal{R}(a): \operatorname{wind}_{a}(\lambda) \neq 0\right\}$. Let $\operatorname{sp} T_{n}(a)$ be the spectrum of a Toeplitz matrix by be the set $\left\{\lambda: \mathcal{D}_{n}(a-\lambda)=0\right\}$ where $\mathcal{D}_{n}(a-\lambda)$ is determinant of $T_{n}(a-\lambda)$, we say that spectrum may have canonical or skin distribution if $d_{H}\left(R(a), \operatorname{sp} T_{n}(a)\right) \rightarrow 0$ when $n \rightarrow 0$ (see Figure 1.1a) and Skeleton distribution if $d_{H}\left(R(a), \operatorname{sp} T_{n}(a)\right) \nrightarrow 0$ when $n \rightarrow 0$ (see Figure 1.1b) where d_{H} is the Haussdorff distance.

Figure 1.1: The pictures shows the range $\mathcal{R}(a)$ (blue color) for the symbol $a(t)=\frac{1}{t}\left(33-\left(t+t^{2}\right)\left(1+t^{2}\right)^{\frac{3}{4}}\right), \operatorname{sp} T_{128}(a)$ in Figure 1.1a and $\operatorname{sp} T_{512}$ in Figure 1.1b (orange color). The spectrum was calculated using MATLAB.

For a real-valued symbol a, the matrices $T_{n}(a)$ are all Hermitian, and in this case a number of results on the asymptotics of the eigenvalues of $T_{n}(a)$ are known; see, for example, [4, 5, 8-13, 15-18, 20]. If a is a rational function, in [6, 7, 14] describe the limiting behavior of the eigenvalues of $T_{n}(a)$. If a is a non-smooth symbol, in $[19,21]$ are devoted to the asymptotic eigenvalue distribution. If $a \in L^{\infty}(\mathbb{T})$ and $\mathcal{R}(a)$ does not separate the plane, in $[19,24]$ it is prove that the eigenvalues of $T_{n}(a)$ approximate $\mathcal{R}(a)$. Many of the results of the in cited above can also be found in [23, 25, 29].

In 1990, Widom [19] showed that if $\mathcal{R}(a)$ is a Jordan curve and a is smooth on \mathbb{T} minus a single point but not smooth on all of \mathbb{T}, then the spectrum of $T_{n}(a)$ has canonical distribution. He also raised the following intriguing conjecture, which is still an open problem:

The eigenvalues of $T_{n}(a)$ are canonically distributed except when a extends analytically to an annulus $r<|z|<1$ or $1<|z|<R$.

Reference [3] deals with asymptotic formulas for individual eigenvalues of Toeplitz matrices whose symbols are complex-valued and have a so-called Fisher-Hartwig singularity. These are special symbols that are smooth on \mathbb{T} minus a single point but not smooth on the entire circle \mathbb{T}; see $[23,25]$.

We consider here genuinely complex-valued symbols, in which case less is known. Dai, Geary, and Kadanoff [3] considered symbols of the form

$$
a(t)=\left(2-t-\frac{1}{t}\right)^{\gamma}(-t)^{\beta}=\frac{(-1)^{\beta+3 \gamma}}{t^{\gamma-\beta}}(1-t)^{2 \gamma} \quad(t \in \mathbb{T})
$$

where $0<\gamma<-\beta<1$. They conjectured that the eigenvalues $\lambda=\lambda_{j}^{(n)}$ satisfy

$$
\begin{equation*}
\lambda_{j}^{(n)} \sim a\left(n^{\frac{1}{n}(2 \gamma-1)} \mathrm{e}^{-\frac{1}{n} 2 \pi i j}\right) \quad(j=0, \ldots, n-1) \tag{1.1}
\end{equation*}
$$

and confirmed this conjecture numerically. Note that in (1.1) the argument of a can be outside of \mathbb{T}. This is no problem, since a can be extended analytically to a neighborhood of $\mathbb{T} \backslash\{1\}$ not containing the singular point 1.

(b)
(a)

Figure 1.2: Figura a Es la figura 1 y figura b es la otra

In the following work we will study eigenvalues of $T_{n}(a)$ for symbols of the form

$$
\begin{equation*}
a(t)=\frac{1}{t}(1-t)^{\alpha} f(t) \quad(t \in \mathbb{T}) \tag{1.2}
\end{equation*}
$$

where $0<\alpha<1$, which we will divide into two parts. Let W_{0} be any small open neighborhood of the origin in \mathbb{C}. In the first part we will study the eigenvalues outside of W_{0}, those will be called inner eigenvalues (red points in Figure 1.2a) and in the second part the eigenvalues inside of W_{0}, those will be called extreme eigenvalues (black points in Figure 1.2a). Those names are usual in Toeplitz operators literature, however the natural explanation of those names is that if we cut the cardioid by the origin point (see Figure 1.2a), stretched it to a line segment (see Figure 1.2b), the black points are located in the inner part of the segment, and the red points are located in the extremes of the segment.

According to [19], in our case the spectrum of $T_{n}(a)$ has canonical distribution, that is the Haussdorff distance between the spectrum of $T_{n}(a)$ and $\mathcal{R}(a)$ goes to zero when n goes to infinity. Note that when $\beta=\gamma-1$ and $f \equiv 1$ our symbol coincides with the one of [3].

This work consists of studying and complementing the papers [1], [2]. In Chapter 2 we give the preliminaries for understanding the following Chapters. In Chapter 3 we state the main results for each case of the eigenvalues (inner and extreme) giving a sketch of how to solve these and present the necessary tools to prove them. In Chapter 4 we give a key example when the symbol a equals $\frac{1}{t}(1-t)^{\frac{3}{4}}$ using the main results given on Chapter 3 .

In Chapter 5 we study the behavior of inner eigenvalues, prove on detail the main results and show that the conjecture (1.1) in the special case $\beta=\gamma-1$ is true for the inner eigenvalues. We will also give an asymptotic approximation for each individual eigenvalue incorporating two terms.

Similarly in Chapter 6 we study the behavior of extreme eigenvalues, prove on detail the main results and show that the problem to find the extreme individual eigenvalues of $T_{n}(a)$, as n goes to infinity, can be reduced to the solution of a certain equation in a fixed
complex domain not depending on n. In this sense our results extend to the complexvalue case the well known results of Parter [12] and Widom [19] for the real-value case. Moreover, we show that the conjecture (1.1) of Dai, Geary, and Kadanoff [3] is not true for the extreme eigenvalues.

In conclusion, in the Chapters 5 and 6 we obtain an univocal correspondence between eigenvalues and some elements of the domain corresponding to the extension of the symbol a, also for the inner eigenvalues there is a relationship with the nth root of unity (eigenvalues enumerable and uniformly distanced), and for the extreme eigenvalues there is a relationship with the zeros of an analytic function, thus is only necessary to find those zeros once.

For the eigenvalues of $T_{n}(a)$ regardless the case (inner or extreme), we will give an asymptotic approximation depending only on n and its respective relationships, therefore we can approximate the eigenvectors. It is important to note that no matter the values of n, because for example, in the conjecture (1.1) of Dai, Gearay and Kadanoff [3], the interested n is approximately the Avogadro number.

Chapter 2

Preliminary

In this chapter we mention some notions will be needing in this work.
Definition 2.1 (Hessenberg Matrix). Let A be an square $n \times n$ matrix.

- Upper Hessenberg matrix: A is said to be in upper Hessenberg form or to be an upper Hessenberg matrix if $a_{i, j}=0$ for all i, j with $i>j+1$.
- Lower Hessenberg matrix: A is said to be in lower Hessenberg form or to be an lower Hessenberg matrix if its transpose is an upper Hessenberg matrix, or equivalently, if $a_{i, j}=0$ for all i, j with $j>i+1$.

In this work, when we mention the Hessenberg matrix, we mean a lower Hessenberg matrix.

Definition 2.2 (Hausdorff Distance). Let X and Y be two non-empty subsets of a metric space (M, d). We define their Hausdorff distance $d_{H}(X, Y)$ by

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

where sup represents the supremum and inf the infimum.
Definition 2.3 (Hardy Space). The Hardy spaces (or Hardy classes) H^{p} are certain spaces of holomorphic functions on the unit disk or upper half plane satisfying

$$
\sup _{0 \leqslant r<1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r \mathrm{e}^{i \theta}\right)\right|^{p} \mathrm{~d} \theta\right)^{\frac{1}{p}}<\infty
$$

This class H^{p} is a vector space. The number on the left side of the above inequality is the Hardy space p-norm for f, denoted by $\|f\|_{H^{p}}$. It is a norm when $p \geqslant 1$, but not when $0<p<1$.

The space H^{∞} is defined as the vector space of bounded holomorphic functions on the disk, with the norm

$$
\|f\|_{H^{\infty}}=\sup _{|z|<1}|f(z)| .
$$

Theorem 2.4 (Lebesgue's Dominated Convergence Theorem). Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex-valued measurable functions on a measure space (S, Σ, μ). Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that $\left|f_{n}(x)\right| \leqslant g(x)$ for all numbers n in the index set of the sequence and all points $x \in S$. Then f is integrable and

$$
\lim _{n \rightarrow \infty} \int_{S}\left|f_{n}-f\right| \mathrm{d} \mu=0
$$

which also implies

$$
\lim _{n \rightarrow \infty} \int_{S} f_{n} \mathrm{~d} \mu=\int_{S} f \mathrm{~d} \mu
$$

2.1 Toeplitz matrix

Let $a \in L^{1}(\mathbb{T})$ be a symbol defined as in the Introduction with

$$
\begin{equation*}
a(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{2.1}
\end{equation*}
$$

where $a_{0} \neq 0$, and consider $c(z)=\frac{1}{a(z)}=\sum_{m=0}^{\infty} c_{m} z^{n}$ with $c_{0}=a_{0}^{-1}$.
Proposition 2.5 (Baxter-Schmidt Formula for Toeplitz determinants). If $n, r \geqslant 1$, then

$$
a_{0}^{-r} D_{n}\left(z^{-r} a\right)=(-1)^{r n} c_{0}^{-n} D_{r}\left(z^{-n} c\right)
$$

Proposition 2.6. Let a be a symbol defined as (2.1) and $b \in L^{1}(\mathbb{T})$ then

$$
T_{n}(a b)=T_{n}(a) T_{n}(b)
$$

The inverse of a Toeplitz matrix is not always a Toeplitz matrix, but the previous proposition shows that if $a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ then $T_{n}^{-1}(a)=T_{n}(c)$.

Let P_{n} be the projection in $\ell^{2}(\mathbb{C})$ defined by

$$
P_{n}:\left\{z_{0}, z_{1}, z_{3}, \ldots\right\} \longmapsto\left\{z_{0}, z_{2}, \cdots, z_{n-1}, 0, \ldots\right\} .
$$

Proposition 2.7 (Finite section method). Let X be $\ell^{2}(\mathbb{C})$ and a be a symbol defined as (2.1). If $T(a)$ is invertible, then the operators $T_{n}^{-1}(a) P_{n}$ converge strongly to $T^{-1}(a)$ in X

$$
\text { i.e. } \quad\left\|T_{n}^{-1}(a) P_{n} x-T^{-1}(a) x\right\| \longrightarrow 0 \quad \text { for all } \quad x \in X,
$$

where $T(a)$ is an infinite Toeplitz matrix.

By functional analysis theory [30], the reader can verify that ℓ^{2} is isomorphic to L^{2}, where the isomorphism is given by the Fourier Transform. The Propositions 2.5, 2.6 and 2.7 are classic and known results in the literature of the Toeplitz matrices, the proof can found in [29] and [22].

2.2 Asymptotic analysis

Definition 2.8. Let f and $\phi: D \subseteq \mathbb{C} \rightarrow \mathbb{C}$ be functions. We say that:

- $f=O(\phi)$ when $\left(z \rightarrow z_{0}\right)$, if $\forall U\left(z_{0}\right) \subseteq \mathbb{C} \exists A>0$ such that $|f(z)| \leqslant A|\phi(z)|$ for $z \in U$.
- $f=o(\phi)$ when $\left(z \rightarrow z_{0}\right)$, if $\forall \varepsilon>0 \exists U_{\varepsilon}\left(z_{0}\right) \subseteq \mathbb{C}$ such that $|f(z)| \leqslant \varepsilon|\phi(z)|$ for $z \in U_{\varepsilon}$.
- $f \sim \phi$ when $\left(z \rightarrow z_{0}\right)$, if $f(z)=\phi(z)(1+o(1))$.

Proposition 2.9 (Properties of o and O). Let f and $\phi: D \subseteq \mathbb{C} \rightarrow \mathbb{C}$ be functions.

- For k constant we have $k O(f)=O(f)$, similarly with o.
- $o(f)=O(f)$ but $O(f)=o(f)$ is not always true.
- $O(f)+o(f)=O(f)$.
- $f=O(1)$ in D if only if $|f|$ is bounded in D.
- $f=o(1)$ in $\left(z \rightarrow z_{0}\right)$ if only if $\lim _{z \rightarrow z_{o}} f(z)=0$.

Note that " $=$ " here is not usual equal, since, for example $o(1)=O(1)$ but $O(1) \neq o(1)$ because when $x \rightarrow \infty$, we have $\sin (x)=O(1)$ but $\sin (x) \neq o(1)$, however $\mathrm{e}^{-x}=o(1)$ and also $\mathrm{e}^{-x}=O(1)$.

Definition 2.10 (Piecewise). A piecewise function $C_{\mathrm{pw}}[a, b]$ is a continue function almost everywhere.

Proposition 2.11 (Riemann Lebesgue's lemma). Let $q \in C_{p w}[a, b]$ then

$$
Q(x)=\int_{a}^{b} \mathrm{e}^{i x t} q(t) \mathrm{d} t=o(1), \quad(x \rightarrow \infty)
$$

Theorem 2.12. Let $\beta>0, \delta>0, v \in C^{\infty}[0, \delta], v^{(s)}(\delta)=0$ for all $s \geqslant 0$. Then, as $n \rightarrow \infty$,

$$
\int_{0}^{\delta} \theta^{\beta-1} v(\theta) \mathrm{e}^{i n \theta} \mathrm{~d} \theta \sim \sum_{s=0}^{\infty} \frac{a_{s}}{n^{s+\beta}},
$$

where

$$
\begin{equation*}
a_{s}=\frac{v^{(s)}(0)}{s!} \Gamma(s+\beta) i^{s+\beta} \tag{2.2}
\end{equation*}
$$

and $\Gamma(z)=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} d t$ is Euler's Gamma function.

Proof. Since $v \in C^{\infty}[0, \delta]$ we can replace $v(\theta)$ with its Taylor's series centered on 0 then

$$
\int_{0}^{\delta} \theta^{\beta-1} \sum_{s=0}^{\infty} \frac{v^{(s)}(0) \theta^{(s)}}{s!} \mathrm{e}^{i n \theta} \mathrm{~d} \theta=\sum_{s=0}^{\infty} \frac{v^{(s)}(0)}{s!} \int_{0}^{\delta} \theta^{s+\beta-1} \mathrm{e}^{i n \theta} \mathrm{~d} \theta .
$$

This equality is true by the dominated convergence Theorem 2.4. Now

$$
\int_{0}^{\delta} \theta^{s+\beta-1} \mathrm{e}^{i n \theta} \mathrm{~d} \theta=\int_{0}^{\infty} \theta^{s+\beta-1} \mathrm{e}^{i n \theta} \mathrm{~d} \theta-\int_{\delta}^{\infty} \theta^{s+\beta-1} \mathrm{e}^{i n \theta} \mathrm{~d} \theta
$$

Using the Riemann Lebesgue's lemma (2.11) when $n \rightarrow \infty$ we have $\int_{\delta}^{b} \theta^{s+\beta-1} \mathrm{e}^{i n \theta} \mathrm{~d} \theta=o(1)$ then $\int_{\delta}^{\infty} \theta^{s+\beta-1} \mathrm{e}^{i n \theta} \mathrm{~d} \theta=o(1)$. Taking the variable change $-\tau=i n \theta$, we get

$$
\int_{0}^{\infty} \theta^{s+\beta-1} \mathrm{e}^{i n \theta} \mathrm{~d} \theta=\left(\frac{-1}{i n}\right)^{\beta+s}, \quad \int_{0}^{\infty} \tau^{s+\beta-1} \mathrm{e}^{-\tau} d \tau=\left(\frac{i}{n}\right)^{\beta+s} \Gamma(s+\beta),
$$

thus

$$
\int_{0}^{\delta} \theta^{\beta-1} \sum_{s=0}^{\infty} \frac{v^{(s)}(0) \theta^{(s)}}{s!} \mathrm{e}^{i n \theta} \mathrm{~d} \theta=\sum_{s=0}^{\infty} \frac{1}{n^{\beta+s}} \frac{v^{(s)}(0)}{s!} \Gamma(s+\beta) i^{\beta+s} .
$$

Corollary 2.13. Using the same hypothesis of theorem 2.12, we get

$$
\int_{0}^{\delta} \theta^{\beta-1} v(\theta) \mathrm{e}^{-i n \theta} \mathrm{~d} \theta \sim \sum_{s=0}^{\infty} \frac{\bar{a}_{s}}{n^{s+\beta}} .
$$

For more properties of the order symbol, or the proof of Proposition 2.11, we refer the reader to [28].

2.3 Complex analysis

Proposition 2.14. Let f be an analytic function at z_{0} and $f(z)=f\left(z_{0}\right)+O\left(\left|z-z_{0}\right|\right)$ then

$$
f\left(z_{0}+\Delta z\right)=f\left(z_{0}\right)+O(|\Delta z|) \quad(\Delta z \rightarrow 0)
$$

Theorem 2.15 (Rouché). For any two complex-valued functions f and g holomorphic inside some region K with closed and simple contour ∂K, if $|g(z)|<|f(z)|$ on ∂K, then f and $f+g$ have the same number of zeros inside K, where each zero is counted as many times as its multiplicity.

Theorem 2.16 (Maximum modulus Principle). Let f be a complex holomorphic function on some connected open subset D of \mathbb{C}. If z_{0} is a point in D such that

$$
\left|f\left(z_{0}\right)\right| \geqslant|f(z)|
$$

for all z in a neighborhood of z_{0}, then the function f is constant on D.

Corollary 2.17 (Maximum Modulus Principle). Let D be an open subset and bounded in $\mathbb{C}, f: \bar{D} \rightarrow D$ be continuous in \bar{D} and holomorphic in D, then

$$
\sup \{|f(z)|: z \in \bar{D}\}=\sup \{|f(z)|: z \in \partial D\}
$$

Chapter 3

Main results

In this chapter we propose the necessary conditions that must be satisfied by the symbol a to be able to find the inner and extreme eigenvalues (i.e solve $D_{n}(a-\lambda)=0$). For each case the conditions may be different because of the nature of the problem since in the particular case of extreme eigenvalues we have the condition of non-differentiability at 1 . Also we will give a sketch of how to solve each case.

3.1 Inner eigenvalues

Properties 3.1. Let $a(t)=\frac{1}{t} h(t)$ be a symbol, where $a \in C(\mathbb{T})$ then:

1. $h(t)=(1-t)^{\alpha} f(t)$, where $\alpha \in[0, \infty) \backslash \mathbb{Z}$ and $f \in C^{\infty}(\mathbb{T})$;
2. $h \in H^{\infty}$ and $h_{0} \neq 0$;
3. h has an analytic extension to an open neighborhood W of $\mathbb{T} \backslash\{1\}$ not containing the point 1 ;
4. $\mathcal{R}(a)$ is a Jordan curve in \mathbb{C}, $\operatorname{wind}_{\lambda}(a)=-1$ for each $\lambda \in \mathcal{D}(a)$, and $a^{\prime}(t) \neq 0$ for every $t \in \mathbb{T} \backslash\{1\}$.

Here h_{0} is the zeroth Fourier coefficient of h.
For the farthest from zero eigenvalues, we study the eigenvalues of $T_{n}(a)$ for symbols a that satisfy the Properties 3.1.

Let $D_{n}(a)$ denote the determinant of $T_{n}(a)$. Thus, the eigenvalues λ of $T_{n}(a)$ are the solutions of the equation $D_{n}(a-\lambda)=0$. The assumptions imply that $T_{n}(a)$ is a Hessenberg matrix. This circumstance together with the Baxter-Schmidt Formula 2.5 for Toeplitz determinants allows us to express $D_{n}(a-\lambda)$ as a Fourier integral. The value of this integral mainly depends on λ and a power of the singularity of $(1-t)^{\alpha}$ at the point 1. Let W_{0} be a small open neighborhood of zero in \mathbb{C}. We show that for every point $\lambda \in \mathcal{D}(a) \cap\left(a(W) \backslash W_{0}\right)$ there exists a unique point $t_{\lambda} \notin \overline{\mathbb{D}}$ such that $a\left(t_{\lambda}\right)=\lambda$. After exploring the contributions of λ and the singular point 1 to the Fourier integral, we get the following asymptotic expansion for $D_{n}(a-\lambda)$.

Theorem 3.1 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for every small open neighborhood W_{0} of zero in \mathbb{C} and every $\lambda \in \mathcal{D}(a) \cap\left(a(W) \backslash W_{0}\right)$,

$$
\begin{equation*}
D_{n}(a-\lambda)=\left(-h_{0}\right)^{n+1}\left(\frac{1}{t_{\lambda}^{n+2} a^{\prime}\left(t_{\lambda}\right)}-\frac{f(1) \Gamma(\alpha+1) \sin (\alpha \pi)}{\pi \lambda^{2} n^{\alpha+1}}+R_{1}(n, \lambda)\right) \tag{3.1}
\end{equation*}
$$

where $R_{1}(n, \lambda)=O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)$ as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$ and here $\alpha_{0}=\min \{\alpha, 1\}$.

The first term in brackets is the contribution of λ, while the second is the contribution of the point 1 .

Now, here are our main results. Put $\omega_{n}:=\exp \left(\frac{-2 \pi i}{n}\right)$, for each n there exist integers n_{1} and n_{2} such that $\omega_{n}^{n_{1}}, \omega_{n}^{n-n_{2}} \in a^{-1}\left(W_{0}\right)$ but $\omega_{n}^{n_{1}+1}, \omega_{n}^{n-n_{2}-1} \notin a^{-1}\left(W_{0}\right)$. Recall that $a\left(t_{\lambda}\right)=\lambda$.

Theorem 3.2 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for every small open neighborhood W_{0} of the origin in \mathbb{C} and every j between n_{1} and $n-n_{2}$,

$$
\begin{equation*}
t_{\lambda_{j, n}}=n^{\frac{\alpha+1}{n}} \omega_{n}^{j}\left(1+\frac{1}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\right) \omega_{n}^{2 j}}\right)+R_{2}(n, j)\right), \tag{3.2}
\end{equation*}
$$

where $R_{2}(n, j)=O\left(\frac{1}{n^{\alpha_{0}+1}}\right)+O\left(\frac{\log n}{n^{2}}\right)$ as $n \rightarrow \infty$, uniformly with respect to j in $\left(n_{1}, n-n_{2}\right)$. Here $\alpha_{0}=\min \{\alpha, 1\}$ and

$$
C_{1}=\frac{f(1) \Gamma(\alpha+1) \sin (\alpha \pi)}{\pi} .
$$

Formula (3.2) proves conjecture (1.1) in the special case $\beta=\gamma-1$. It shows that as n increases, the point $t_{\lambda_{j, n}}$ is close to $n^{\frac{\alpha+1}{n}} \omega_{n}^{j}$. Finally, we apply a at both sides of (3.2) to obtain the following expression for $\lambda_{j, n}$.

Theorem 3.3 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for every small neighborhood W_{0} of zero in \mathbb{C} and every j between n_{1} and $n-n_{2}$,

$$
\begin{equation*}
\lambda_{j, n}=a\left(\omega_{n}^{j}\right)+(\alpha+1) \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \frac{\log n}{n}+\frac{\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\right) \omega_{n}^{2 j}}\right)+R_{3}(n, j), \tag{3.3}
\end{equation*}
$$

where C_{1} is as in Theorem 3.2 and $R_{3}(n, j)=O\left(\frac{1}{n^{\alpha_{0}+1}}\right)+O\left(\frac{\log n}{n^{2}}\right)$ as $n \rightarrow \infty$, uniformly with respect to j in $\left(n_{1}, n-n_{2}\right)$.

We remark that we wrote down only the first few terms in the asymptotic expansions but that our method is constructive and would allow us to get as many terms as we desire. Clearly, conjecture (1.1) corresponds to the first term in the asymptotic expansion (3.2).

Figure 3.1 illustrates Theorem 3.3. We present another simulation graphic and error tables made with MATLAB software to show that incorporating the second term of the expansion (3.2) (= third term in (3.3)) reduces the error to nearly one tenth.

3.2 Extreme eigenvalues

We take the multi-valued complex function $z \mapsto z^{\beta}(\beta \in \mathbb{R})$ with the branch specified by $-\pi<\arg z^{\beta} \leqslant \pi$. Let $B\left(z_{0}, r\right)$ be the set $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$.

Properties 3.2. Let symbols $a(t)=\frac{1}{t}(1-t)^{\alpha} f(t)$ where $a \in C(\mathbb{T})$ then:

Figure 3.1: (Refer [2]) The picture shows a piece of $\mathcal{R}(a)$ for the symbol $a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}}$ (solid line) located "far" from zero. The dots are $\operatorname{sp} T_{4096}(a)$ calculated by MATLAB. The crosses and the stars are the approximations obtained by using 2 and 3 terms of (3.3), respectively.

1. The function f is in H^{∞} with $f(0) \neq 0$ and for some $\varepsilon>0, f$ has an analytic continuation to the region

$$
K_{\varepsilon}:=B(1, \varepsilon) \backslash\{x \in \mathbb{R}: 1<x<1+\varepsilon\}
$$

and is continuous in $\hat{K}_{\varepsilon}:=\overline{B(1, \varepsilon)} \backslash\{x \in \mathbb{R}: 1<x \leqslant 1+\varepsilon\}$. Additionally, $f_{\varphi}(x):=f\left(1+x+\mathrm{e}^{i \varphi}\right)$ belongs to the algebra $C^{2}[0, \varepsilon)$ for each $-\pi<\varphi \leqslant \pi$.
2. Let $0<\alpha<1$ be a constant and take

$$
-\alpha \pi<\arg (1-z)^{\alpha} \leqslant \alpha \pi \text { when }-\pi<\arg (1-z) \leqslant \pi
$$

3. $\mathcal{R}(a)$ is a Jordan curve in \mathbb{C} and $\operatorname{wind}_{\lambda}(a)=-1$ for each $\lambda \in \mathcal{D}(a)$.

For the extreme eigenvalues, we study the eigenvalues of $T_{n}(a)$ for symbols a that satisfy the Properties 3.2.

Note that, in general, $\lim _{\varphi \rightarrow 0^{+}} f_{\varphi}(x) \neq \lim _{\varphi \rightarrow 0^{-}} f_{\varphi}(x)$, thus f cannot be continuously extended to the ball $B(1, \varepsilon)$. Without loss of generality, we assume that $f(1)=1$.

Figure 3.2: (Refer [1]) The behavior of the function $a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}}$ near the point $t=1$.

Before we go further, we need to give the required understanding to the symbol a near
to the point $t=1$. For $0 \leqslant x \leqslant \varepsilon$ take

$$
\begin{aligned}
a_{+}(x) & :=\lim _{\delta \rightarrow 0^{+}} a\left(1+x \mathrm{e}^{i \delta}\right), & a_{-}(x) & :=\lim _{\delta \rightarrow 0^{-}} a\left(1+x \mathrm{e}^{i \delta}\right), \\
\gamma_{+} & :=a_{+}([0, \varepsilon]), & \gamma_{-} & :=a_{-}([0, \varepsilon]) .
\end{aligned}
$$

The Figure 3.2 shows the situation. Note that γ_{+}and γ_{-}are very close to the lines $\arg z=\mp \alpha \pi$, respectively, but they are not the same. In Chapter (5) we will prove that if $\lambda \in \mathcal{D}(a)$ is bounded away from 0 , then a can be extended bijectively to a certain neighborhood of $\mathbb{T} \backslash\{1\}$ not containing the point 1 , but if λ is arbitrarily close to 0 the situation is much more complicated. The map $z \mapsto z^{\alpha}$ transforms the real negative semiaxis into the lines $\arg z= \pm \alpha \pi$ generating bijectivity limitations to a, see Figure 3.2. Moreover, Lemma 5.1 tell us that a maps $\mathbb{C} \backslash \overline{\mathbb{D}}$ into $\mathcal{D}(a)$. Let $\rho<\sup \left\{|a(z)|: z \in K_{\varepsilon}\right\}$ be a positive constant and consider the regions $S_{0}:=B(0, \rho) \backslash \mathcal{D}(a)$ and $S:=\mathcal{D}(a) \cap B(0, \rho)$, which we split as follows (see Figure 3.3 right): S_{1} is the subset of S enclosed by the curves $\rho \mathbb{T}, \mathcal{R}(a)$, and γ_{-}, including γ_{-}only; S_{2} is the subset of S enclosed by the curves $\rho \mathbb{T}, \mathcal{R}(a)$, and γ_{+}, including γ_{+}only; and S_{3} is the open subset of S enclosed by the curves $\rho \mathbb{T}, \gamma_{-}$, and γ_{+}. We thus have

$$
S=S_{1} \cup S_{2} \cup S_{3}
$$

It is easy to see that, for every sufficiently large n, we have no eigenvalues of $T_{n}(a)$ in S_{0}. Since $\operatorname{wind}(a-\lambda)=0$ for each $\lambda \in S_{0}$, the operator $T(a-\lambda)$ must be invertible and the Finite Section Method od Proposition 2.7 is applicable, which means that for every sufficiently large n the matrix $T_{n}(a-\lambda)$ is invertible and hence, λ is not an eigenvalue of $T_{n}(a)$. The regions S_{1}, S_{2}, and S_{3} will be our working sets for λ. In [1] Bogoya, Grudsky and Malysheva raised the following conjecture:

For every sufficiently large $n, T_{n}(a)$ has no eigenvalues in S_{3}.
We will prove this conjecture for the cases $\frac{1}{2}<\alpha<1$ and $0<\alpha<\frac{1}{2}$ with $|\arg \lambda|>\frac{\pi}{2}$ (see Theorem 6.6).

Figure 3.3: (Refer [1]) The bijectivity regions of the symbol a near to the point $t=1$.

In order to simplify our calculations, throughout the Chapter (5) we use the parameter

$$
\begin{equation*}
\Lambda:=(n+1) \lambda^{\frac{1}{\alpha}} \tag{3.5}
\end{equation*}
$$

divided in to two cases: $m \leqslant|\Lambda| \leqslant M$ for certain constants $0<m<M<\infty$ (depending only on the symbol a) and $|\Lambda| \rightarrow 0$, and the case $|\Lambda| \rightarrow \infty$ including the situation where λ is bounded away from zero. Throughout the Chapter (6), let ψ be the argument of λ, δ a small positive constant (see Figure 3.2), and consider the sets

$$
\begin{aligned}
& R_{1}:=\{\lambda \in S: \alpha(\pi-\delta) \leqslant \psi<\alpha \pi\} \\
& R_{2}:=\{\lambda \in S:-\alpha \pi<\psi \leqslant-\alpha(\pi-\delta)\}
\end{aligned}
$$

The following are main results.
Theorem 3.4 (Refer [1]). Let a be the symbol (1.2) satisfying the Properties 3.2. A point $\lambda \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$ is an eigenvalue of $T_{n}(a)$ if and only if there exists numbers m, M (depending only on the symbol a) satisfying $0<m \leqslant|\Lambda| \leqslant M$, and

$$
\frac{2 \pi i}{\alpha} \mathrm{e}^{i \psi\left(\frac{1}{\alpha}-1\right)} \mathrm{e}^{\Lambda}=\int_{0}^{\infty} \mathrm{e}^{-|\Lambda| v} b(v, \psi) \mathrm{d} v+\Delta_{1}(\lambda, n)
$$

where

$$
b(v, \psi):=\frac{\mathrm{e}^{-i \alpha \pi}}{v^{\alpha}-\mathrm{e}^{i(\psi-\alpha \pi)}}-\frac{\mathrm{e}^{i \alpha \pi}}{v^{\alpha}-\mathrm{e}^{i(\psi+\alpha \pi)}}
$$

$\psi=\arg \lambda$, and $\Delta_{1}(\mu, n)$ is a function defined for $\mu \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$ and satisfying $\Delta_{1}(\mu, n)=O\left(\frac{1}{n^{\alpha}}\right)$ as $n \rightarrow \infty$ uniformly in μ.

The previous Theorem 3.4 is important when doing numerical experiments, but using a change of variable and doing some rotations, we can re-write it in terms of Λ alone with the disadvantage of having complex integration paths.

Corollary 3.5 (Refer [1]). Let a be the symbol (1.2) satisfying the Properties 3.2. A point $\lambda \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$ is an eigenvalue of $T_{n}(a)$ if and only if there exists positive numbers m, M (depending only on the symbol a) satisfying $m \leqslant|\Lambda| \leqslant M$, and

$$
\frac{2 \pi i}{\alpha} \mathrm{e}^{\Lambda}=\int_{C} \mathrm{e}^{-\Lambda u} \beta(u) \mathrm{d} u+\Delta_{2}(\lambda, n),
$$

where

$$
\beta(u):=\frac{1}{u^{\alpha} \mathrm{e}^{i \alpha \pi}-1}-\frac{1}{u^{\alpha} \mathrm{e}^{-i \alpha \pi}-1},
$$

the integration path C is the straight line from 0 to $\infty \mathrm{e}^{-i \frac{3}{4} \pi}$ if $\lambda \in S_{1}$ or the straight line from 0 to $\infty \mathrm{e}^{i \frac{3}{4} \pi}$ if $\lambda \in S_{2}$, and $\Delta_{2}(\mu, n)$ is a function which is defined for any $\mu \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$ and satisfies $\Delta_{2}(\mu, n)=O\left(\frac{1}{n^{\alpha}}\right)$ as $n \rightarrow \infty$ uniformly in μ.

Remember that there are many ways to go to infinity in the complex plane. The symbol $\infty \mathrm{e}^{-i \frac{3}{4} \pi}$ means that we go to infinity in the direction of the argument of $\frac{3}{4} \pi$, and similarly for $\infty e^{i \frac{3}{4} \pi}$

To get the eigenvalues of $T_{n}(a)$ from the previous corollary we proceed as follows. Consider the function

$$
\begin{equation*}
F(\Lambda):=\frac{2 \pi i}{\alpha} \mathrm{e}^{\Lambda}-\int_{C} \mathrm{e}^{-\Lambda u} \beta(u) \mathrm{d} u \tag{3.6}
\end{equation*}
$$

where C and β are as in Corollary 3.5. Consider the complex sets

$$
\hat{S}_{\ell}:=\left\{\Lambda=(n+1) \lambda^{\frac{1}{\alpha}}: \lambda \in S_{\ell} \quad \text { and } \quad m \leqslant|\Lambda| \leqslant M\right\} \quad(\ell=1,2,3)
$$

For each sufficiently large n, the function F is analytic in $\hat{S}_{1} \cup \hat{S}_{2}$. We can think of Δ_{2} as a function of Λ with parameter n which, for each sufficiently large n, will be analytic in $\hat{S}_{1} \cup \hat{S}_{2}$ also. Let $\lambda_{1}^{(n)}, \ldots, \lambda_{n}^{(n)}$ be the eigenvalues of $T_{n}(a)$, then according to Corollary 3.5 , if $\lambda_{j}^{(n)} \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$, the corresponding $\Theta_{j}^{(n)}:=(n+1)\left(\lambda_{j}^{(n)}\right)^{\frac{1}{\alpha}} \in \hat{S}_{1} \cup \hat{S}_{2}$ will be a zero of $F(\cdot)-\Delta_{2}(\cdot, n)$.

Theorem 3.6 (Refer [1]). Under the same assumptions as in Theorem 3.4, consider the function F in (3.6) and suppose that $\Lambda_{j}(1 \leqslant j \leqslant k)$ are its roots located in $\hat{S}_{1} \cup \hat{S}_{2}$ with $F^{\prime}\left(\Lambda_{j}\right) \neq 0$ for each j. We then have

$$
\lambda_{j}^{(n)}=\left(\frac{\Lambda_{j}}{n+1}\right)^{\alpha}\left(1+\Delta_{3}\left(\Lambda_{j}, n\right)\right),
$$

where $\Delta_{3}(\Lambda, n)=O\left(\frac{1}{n^{\alpha}}\right)$ as $n \rightarrow \infty$ uniformly in Λ.
The previous theorem gives us a simple method to get the extreme eigenvalues of $T_{n}(a)$. To approximate $\lambda_{j}^{(n)}$, for every sufficiently large n, we only need to calculate numerically (see Table 4.2) the extreme zeros Λ_{j} of F once.

Chapter 4

A Key Example

The symbol studied by Dai, Geary, and Kadanoff [3] was

$$
a(t)=\left(2-t-\frac{1}{t}\right)^{\gamma}(-t)^{\beta}=(-1)^{3 \gamma+\beta} t^{\beta-\gamma}(1-t)^{2 \gamma}
$$

where $0<\gamma<-\beta<1$. In the case $\beta=\gamma-1$, this function a becomes our symbol with $\alpha=2 \gamma$, we omit the constant $(-1)^{4 \gamma-1}$, because it is just a rotation. The conjecture of [3] is that

$$
t_{\lambda_{j, n}} \sim n^{(2 \gamma+1) n^{-1}} \exp \left(\frac{-2 \pi i j}{n}\right) .
$$

Consider the symbol

$$
a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}} \quad(t \in \mathbb{T}) .
$$

4.1 Inner eigenvalues

Expansions (3.2) and (3.3) prove this conjecture when λ is bounded away from zero, giving us an error bound and a mathematical justification.

The results are valid outside a small open neighborhood W_{0} of the origin, now we take $W_{0}=B_{1 / 5}(0)$ be the disk of radius $\frac{1}{5}$ centered at zero. Table 4.1 shows the data
of numerical computations. It reveals that the maximum error of (3.2) with one term is reduced by nearly 10 times when considering the second term; see also Figure 3.1.

n	256	512	1024	2048	4096
(3.2) with 1 term	1.6×10^{-2}	8.1×10^{-3}	4.1×10^{-3}	2.1×10^{-3}	1.0×10^{-3}
(3.2) with 2 terms	1.7×10^{-3}	4.5×10^{-4}	1.2×10^{-4}	3.2×10^{-5}	8.7×10^{-6}
(3.3) with 1 term	5.1×10^{-2}	2.8×10^{-2}	1.5×10^{-2}	8.3×10^{-3}	4.4×10^{-3}
(3.3) with 2 terms	1.5×10^{-2}	7.9×10^{-3}	4.1×10^{-3}	2.1×10^{-3}	1.0×10^{-3}
(3.3) with 3 terms	1.4×10^{-3}	4.3×10^{-4}	1.3×10^{-4}	3.7×10^{-5}	1.1×10^{-5}

Table 4.1: (Refer [2]) The table shows the maximum error obtained with those different formulas for the eigenvalues of $T_{n}\left(\frac{1}{t}(1-t)^{\frac{3}{4}}\right)$ for different values of n. The data was obtained by comparison with the solutions given by MATLAB, taking into account only the eigenvalues with absolute value greater than or equal to $\frac{1}{5}$.

4.2 Extreme eigenvalues

The Theorem 3.4 and Corollary 3.5 show that the conjecture is false when $\lambda \rightarrow 0$.

Figure 4.1: (Refer [1]) Left: The norm of $F\left((n+1)(\cdot)^{\frac{1}{\alpha}}\right)$ for $n=512$. We see 3 zeros corresponding to 3 consecutive extreme eigenvalues. Right: the 16 zeros of F closest to zero.

In order to approximate the extreme eigenvalues of $T_{n}(a)$, we worked with the function F in Theorem 3.6. See Figure 4.1.

The symbol $a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}} \quad(t \in \mathbb{T})$ satisfies the properties $1-3$ with $\alpha=\frac{3}{4}$ and $f(t)=1$. According to [19] the eigenvalues of $T_{n}(a)$ must approximate (in the Hausdorff metric) $\mathcal{R}(a)$ as n increases. See Figure 4.2 (right). In this case the Fourier coefficients can be calculated exactly as $a_{k}=(-1)^{k+1}\binom{3 / 4}{k}$.

$-5.4682120370856014060824201941002 \pm 5.7983682817148888207896459067784 i$
$-6.5314428236842426830338089371926 \pm 12.367528740074554797742518382959 i$
$-7.2146902524700029142376134506139 \pm 18.766726622277519575303569592433 i$
$-7.7391832574277648348440150030617 \pm 25.107047817964583436614118399184 i$
$-8.1801720679740042575992012537452 \pm 31.419065936016327475853819485556 i$
$-8.5727223117580707859817744737871 \pm 37.714934295174649424694165724166 i$
$-8.9360890295369466170427530738561 \pm 44.000518944333248611110872372448 i$
$-9.2820006335018468357176990494608 \pm 50.279021560318150412713405426181 i$

Table 4.2: (Refer [1]) The 16 zeros of F closest to zero with 32 decimal places (see Figure 4.1 right).

Let $\lambda_{1}^{(n)}, \ldots, \lambda_{n}^{(n)}$ be the eigenvalues of $T_{n}(a)$ numbered counterclockwise starting from the closest one to zero with positive imaginary part. See Figure 4.2 (left). Note that when f is real-valued, then the eigenvalues of $T_{n}(a)$ as well as the zeros of F come in conjugated pairs. Let $\Lambda_{1}, \ldots, \Lambda_{n}$ be the zeros of F, and take

$$
\hat{\lambda}_{j}^{(n)}:=\left(\frac{\Lambda_{j}}{n+1}\right)^{\alpha} \quad(j=1, \ldots, n)
$$

be the approximated eigenvalues obtained from the zeros of F. Finally let $\varepsilon_{j}^{(n)}$ and $\hat{\varepsilon}_{j}^{(n)}$ be our individual and relative individual errors, respectively, i.e.

$$
\varepsilon_{j}^{(n)}:=\left|\lambda_{j}^{(n)}-\hat{\lambda}_{j}^{(n)}\right| \quad \text { and } \quad \hat{\varepsilon}_{j}^{(n)}:=\frac{\left|\lambda_{j}^{(n)}-\hat{\lambda}_{j}^{(n)}\right|}{\left|\lambda_{j}^{(n)}\right|}
$$

See Figure 4.3 and Tables 4.3 and 4.4. The data was obtained with Wolfram Mathematica.

Figure 4.2: (Refer [1]) Range of $a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}}$ (black curve) and spectrum of $T_{n}(a)$ (blue dots) for $n=512$ (left) and $n=64$ (right).

Figure 4.3: (Refer [1]) Range of $a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}}$ (black curve), a few extreme exact and approximated eigenvalues $\lambda_{j}^{(512)}$ (blue dots) and $\hat{\lambda}_{j}^{(512)}$ (orange stars), respectively.

In the following chapters we are going to complete the details of prove the results used in this chapters (Refer [1] and [2]).

n	128	256	512	1024	2048	4096
$\varepsilon_{1}^{(n)}$	$4.39 \cdot 10^{-3}$	$1.28 \cdot 10^{-3}$	$3.58 \cdot 10^{-4}$	$9.16 \cdot 10^{-5}$	$1.82 \cdot 10^{-5}$	$1.79 \cdot 10^{-6}$
$\varepsilon_{2}^{(n)}$	$1.20 \cdot 10^{-2}$	$3.51 \cdot 10^{-3}$	$9.81 \cdot 10^{-4}$	$2.51 \cdot 10^{-4}$	$4.99 \cdot 10^{-5}$	$4.92 \cdot 10^{-6}$
$\varepsilon_{3}^{(n)}$	$2.28 \cdot 10^{-2}$	$6.66 \cdot 10^{-3}$	$1.86 \cdot 10^{-3}$	$4.77 \cdot 10^{-4}$	$9.48 \cdot 10^{-5}$	$9.36 \cdot 10^{-6}$
$\varepsilon_{4}^{(n)}$	$3.64 \cdot 10^{-2}$	$1.07 \cdot 10^{-2}$	$2.99 \cdot 10^{-3}$	$7.65 \cdot 10^{-4}$	$1.52 \cdot 10^{-4}$	$1.50 \cdot 10^{-5}$
$\varepsilon_{5}^{(n)}$	$5.27 \cdot 10^{-2}$	$1.55 \cdot 10^{-2}$	$4.33 \cdot 10^{-3}$	$1.11 \cdot 10^{-3}$	$2.20 \cdot 10^{-4}$	$2.18 \cdot 10^{-5}$
$\varepsilon_{6}^{(n)}$	$7.16 \cdot 10^{-2}$	$2.10 \cdot 10^{-2}$	$5.89 \cdot 10^{-3}$	$1.51 \cdot 10^{-3}$	$3.00 \cdot 10^{-4}$	$2.96 \cdot 10^{-5}$
$\varepsilon_{7}^{(n)}$	$9.29 \cdot 10^{-2}$	$2.73 \cdot 10^{-2}$	$7.65 \cdot 10^{-3}$	$1.96 \cdot 10^{-3}$	$3.89 \cdot 10^{-4}$	$3.84 \cdot 10^{-5}$
$\varepsilon_{8}^{(n)}$	$1.16 \cdot 10^{-1}$	$3.43 \cdot 10^{-2}$	$9.61 \cdot 10^{-3}$	$2.46 \cdot 10^{-3}$	$4.89 \cdot 10^{-4}$	$4.83 \cdot 10^{-5}$

Table 4.3: (Refer [1]) The error $\varepsilon_{j}^{(n)}$ for the 8 eigenvalues of $T_{n}(a)$ closest to zero and with positive imaginary part. Here $a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}}$.

n	128	256	512	1024	2048	4096
$\hat{\varepsilon}_{1}^{(n)}$	$3.63 \cdot 10^{-2}$	$1.71 \cdot 10^{-2}$	$8.18 \cdot 10^{-3}$	$3.50 \cdot 10^{-3}$	$1.17 \cdot 10^{-3}$	$1.94 \cdot 10^{-4}$
$\hat{\varepsilon}_{2}^{(n)}$	$6.54 \cdot 10^{-2}$	$3.16 \cdot 10^{-2}$	$1.47 \cdot 10^{-2}$	$6.31 \cdot 10^{-3}$	$2.10 \cdot 10^{-3}$	$3.48 \cdot 10^{-4}$
$\hat{\varepsilon}_{3}^{(n)}$	$9.48 \cdot 10^{-2}$	$4.58 \cdot 10^{-2}$	$2.13 \cdot 10^{-2}$	$9.13 \cdot 10^{-3}$	$3.04 \cdot 10^{-3}$	$5.05 \cdot 10^{-4}$
$\hat{\varepsilon}_{4}^{(n)}$	$1.24 \cdot 10^{-1}$	$6.00 \cdot 10^{-2}$	$2.80 \cdot 10^{-2}$	$1.20 \cdot 10^{-2}$	$3.99 \cdot 10^{-3}$	$6.62 \cdot 10^{-4}$
$\hat{\varepsilon}_{5}^{(n)}$	$1.54 \cdot 10^{-1}$	$7.43 \cdot 10^{-2}$	$3.46 \cdot 10^{-2}$	$1.48 \cdot 10^{-2}$	$4.94 \cdot 10^{-3}$	$8.19 \cdot 10^{-4}$
$\hat{\varepsilon}_{6}^{(n)}$	$1.84 \cdot 10^{-1}$	$8.87 \cdot 10^{-2}$	$4.13 \cdot 10^{-2}$	$1.77 \cdot 10^{-2}$	$5.89 \cdot 10^{-3}$	$9.77 \cdot 10^{-4}$
$\hat{\varepsilon}_{7}^{(n)}$	$2.14 \cdot 10^{-1}$	$1.03 \cdot 10^{-1}$	$4.80 \cdot 10^{-2}$	$2.05 \cdot 10^{-2}$	$6.84 \cdot 10^{-3}$	$1.13 \cdot 10^{-3}$
$\hat{\varepsilon}_{8}^{(n)}$	$2.44 \cdot 10^{-1}$	$1.17 \cdot 10^{-1}$	$5.47 \cdot 10^{-2}$	$2.34 \cdot 10^{-2}$	$7.80 \cdot 10^{-3}$	$1.29 \cdot 10^{-3}$

Table 4.4: (Refer [1]) Relative individual error $\hat{\varepsilon}_{j}^{(n)}$ for the 8 eigenvalues of $T_{n}(a)$ closest to zero and with positive imaginary part. We worked here with $a(t)=\frac{1}{t}(1-t)^{\frac{3}{4}}$.

Chapter 5

Behavior of Inner Eigenvalues

5.1 Toeplitz determinant

Lemma 5.1 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for each $\lambda \in \mathcal{D}(a)$ and every $n \in \mathbb{N}$, and with $[\cdot]_{n}$ denoting the nth Fourier coefficient,

$$
\begin{equation*}
D_{n}(a-\lambda)=(-1)^{n} h_{0}^{n+1}\left[\frac{1}{h(t)-\lambda t}\right]_{n} \tag{5.1}
\end{equation*}
$$

Proof. We get the entries of the matrices $T_{n}(a-\lambda)$ and $T_{n+1}(h-\lambda t)$, and the relationship between them. For $k \in \mathbb{N}$ we have

$$
\begin{gathered}
a_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} a\left(\mathrm{e}^{i \theta}\right) \mathrm{e}^{-i k \theta} \mathrm{~d} \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(\mathrm{e}^{i t \theta}\right) \mathrm{e}^{i \theta(k+1)} \mathrm{d} \theta=h_{k+1}, \\
{[h(t)-\lambda t]_{k}=h_{k}-\frac{\lambda}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{i \theta(1-k)} \mathrm{d} \theta= \begin{cases}h_{k}-\lambda, & k=1 \\
h_{k}, & k \neq 1 .\end{cases} }
\end{gathered}
$$

Remember that $T_{n}(a-\lambda)$ and $T_{n+1}(h-\lambda t)$ are Hessenberg matrices, thus $a_{-k}=0$
$\forall k \geq 0$. So

$$
T_{n+1}(h-\lambda t)=\left[\begin{array}{lllll|l}
h_{0} & 0 & 0 & \cdots & 0 & 0 \tag{5.2}\\
\hline h_{1}-\lambda & h_{0} & 0 & \cdots & 0 & 0 \\
h_{2} & h_{1}-\lambda & h_{0} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
h_{n-1} & h_{n-2} & h_{n-3} & \cdots & h_{0} & 0 \\
h_{n} & h_{n-1} & h_{n-2} & \cdots & h_{1}-\lambda & h_{0}
\end{array}\right]
$$

and

$$
T_{n}(a-\lambda)=\left[\begin{array}{lllll}
h_{1}-\lambda & h_{0} & 0 & \cdots & 0 \\
h_{2} & h_{1}-\lambda & h_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{n-1} & h_{n-2} & h_{n-3} & \cdots & h_{0} \\
h_{n} & h_{n-1} & h_{n-2} & \cdots & h_{1}-\lambda
\end{array}\right]
$$

Note that $T_{n+1}(h-\lambda t)$ is non-singular, because $h_{0} \neq 0$, and applying the Cramer's rule to the system $A X=B$ for $A=T_{n+1}(h-\lambda t), X=A^{-1}$, and $B=I_{n+1}$, we can take the 1 st row and $(n+1)$ th column to get:

$$
\begin{equation*}
\left[T_{n+1}^{-1}(h-\lambda t)\right]_{(n+1,1)}=(-1)^{n+2} \frac{D_{n}(a-\lambda)}{D_{n+1}(h-\lambda t)} . \tag{5.3}
\end{equation*}
$$

We claim that $h(t)-\lambda t$ is invertible in H^{∞}. To see this, we must show that $h(t) \neq \lambda t$ for all $t \in \overline{\mathbb{D}}$ and each $\lambda \in \mathcal{D}(a)$. Let λ be a point in $\mathcal{D}(a)$. For each $t \in \mathbb{T}$ we have $h(t) \neq \lambda t$ because $\lambda \notin \partial \mathcal{D}(a)=\mathcal{R}(a)$. By assumption, $\operatorname{wind}_{\lambda}(a)=-1$ for $\lambda \in \mathcal{D}(a)$, as $\mathcal{R}(a-\lambda)$ is a translation of $\mathcal{R}(a)$ thus

$$
\begin{aligned}
\operatorname{wind}_{0}(a)=-1 & =\operatorname{wind}_{0}(a-\lambda)=\operatorname{wind}_{0}\left(\frac{1}{t} h(t)-\lambda\right)=\operatorname{wind}_{0}\left(\frac{1}{t}(h(t)-\lambda t)\right) \\
& =\operatorname{wind}_{0}\left(\frac{1}{t}\right)+\operatorname{wind}_{0}(h(t)-\lambda t)=-1+\operatorname{wind}_{0}(h(t)-\lambda t)
\end{aligned}
$$

It follows that $\operatorname{wind}_{0}(h(t)-\lambda t)=0$, which means that the origin does not belong to the inside domain of the curve $\{h(t)-\lambda t: t \in \mathbb{T}\}$. As $h \in H^{\infty}$, this shows that $h(t) \neq \lambda t$ for
all $t \in \mathbb{D}$ and proves our claim. Using the Proposition 2.6, we have that if b is invertible in H^{∞}, then $T_{n+1}^{-1}(b)=T_{n+1}(1 / b)$. Thus, the $(n+1,1)$ entry of the matrix $T_{n+1}^{-1}(h(t)-\lambda t)$ is in fact the nth Fourier coefficient of $(h(t)-\lambda t)^{-1}$,

$$
\left[T_{n+1}^{-1}(h(t)-\lambda t)\right]_{(n+1,1)}=\left[\frac{1}{h(t)-\lambda t}\right]_{n} .
$$

Inserting this in (5.3) we get

$$
D_{n}(a-\lambda)=(-1)^{n+2} D_{n+1}(h(t)-\lambda t)\left[\frac{1}{h(t)-\lambda t}\right]_{n}=(-1)^{n} h_{0}^{n+1}\left[\frac{1}{h(t)-\lambda t}\right]_{n}
$$

which completes the proof.
Expression (5.1) says that the determinant $D_{n}(a-\lambda)$ can be expressed as the Fourier integral

$$
D_{n}(a-\lambda)=(-1)^{n} h_{0}^{n+1} \int_{-\pi}^{\pi} \frac{\mathrm{e}^{-i n \theta}}{h\left(\mathrm{e}^{i \theta}\right)-\lambda \mathrm{e}^{i \theta}} \frac{\mathrm{~d} \theta}{2 \pi},
$$

which is our starting point to find an asymptotic expansion for the eigenvalues of $T_{n}(a)$. There are two major contributions to this integral. The first comes from λ, when it is close to $\mathcal{R}(a)$, and the second results from the singularity at the point 1 . We will analyze them in separate sections.

5.2 Contribution of λ to the asymptotic behavior of D_{n}

Defining

$$
b(z, \lambda):=\frac{1}{h(z)-\lambda z},
$$

we have

$$
\begin{equation*}
b_{n}(\lambda)=\int_{-\pi}^{\pi} b\left(\mathrm{e}^{i \theta}, \lambda\right) \mathrm{e}^{-i n \theta} \frac{\mathrm{~d} \theta}{2 \pi} . \tag{5.4}
\end{equation*}
$$

From (5.1) we conclude that

$$
\begin{equation*}
D_{n}(a-\lambda)=(-1)^{n} h_{0}^{n+1} b_{n}(\lambda) . \tag{5.5}
\end{equation*}
$$

Lemma 5.2 (Refer [2]). Let a be the symbol satisfying the Properties 3.1, such that $\mathcal{R}(a)$ is a Jordan curve in \mathbb{C}. Let W_{0} be a small open neighborhood of zero in \mathbb{C}. Assume that h has an analytic extension to an open neighborhood W of $\mathbb{T} \backslash\{1\}$ in \mathbb{C} not containing the point 1 and that $a^{\prime}(t) \neq 0$ for every $t \in \mathbb{T} \backslash\{1\}$. Then, for each $\lambda \in \mathcal{D}(a) \backslash W_{0}$ sufficiently close to $\mathcal{R}(a)$, there exists a unique point t_{λ} in $W \backslash \overline{\mathbb{D}}$ such that $a\left(t_{\lambda}\right)=\lambda$. Moreover, the point t_{λ} is a simple pole for b.

Proof. Without loss of generality, we may assume that the extension of a to W is bounded. As $h \in H^{\infty}$, this extension must map $W \backslash \overline{\mathbb{D}}$ to $\mathcal{D}(a) \cap a(W)$ so $\operatorname{wind}_{\lambda}(a) \neq 0$. As the range of a has no loops, we have $a^{\prime}(t) \neq 0$ for all $t \in \mathbb{T}$.

Consider the set $S:=\left\{t \in \mathbb{T}: a(t) \notin W_{0}\right\}$ we will show that it is compact. We know that \mathbb{T} is compact, then $a(\mathbb{T})$ is compact, now $\mathcal{R}(a)$ is closed thus $\mathcal{R}(a) \backslash W_{0}$ is closed, furthermore S is compact.

For every $t \in S$, there exists an open neighborhood V_{t} of t in \mathbb{C} with $V_{t} \subset W$ such that $a^{\prime}(t) \neq 0$ for each $t \in V_{t}$. Thus, there is an open set U_{t} such that $t \in U_{t} \subset V_{t}$ and a is a conformal map (and hence bijective) from U_{t} to $a\left(U_{t}\right)$. As S is compact, we can take a finite sub-cover from $\left\{U_{t}\right\}_{t \in S}$, say $U:=\bigcup_{i=1}^{M} U_{t_{i}}$. It follows that a is a conformal map (and hence bijective) from $U \supset S$ to $a(U) \supset a(S)$; see Figure 5.1. The lemma then, holds for every $\lambda \in a(U) \cap\left(\mathcal{D}(a) \backslash W_{0}\right)$. Finally, since $a^{\prime}\left(t_{\lambda}\right) \neq 0$, the point t_{λ} must be a simple pole of b, moreover

$$
\lim _{t \rightarrow t_{\lambda}} \frac{t-t_{\lambda}}{t(a(t)-\lambda)}=\lim _{t \rightarrow t_{\lambda}} \frac{1}{(a(t)-\lambda)+t a^{\prime}(t)}=\frac{1}{t_{\lambda} a^{\prime}\left(t_{\lambda}\right)} \neq 0
$$

Now using that t_{λ} is a simple pole of b, we split b as follows:

$$
\begin{equation*}
b(z, \lambda)=\frac{1}{z(a(z)-\lambda)}=\frac{1}{t_{\lambda} a^{\prime}\left(t_{\lambda}\right)\left(z-t_{\lambda}\right)}+f_{0}(z, \lambda) \tag{5.6}
\end{equation*}
$$

Here f_{0} is analytic with respect to z in W and uniformly bounded with respect to λ in $a(W) \backslash W_{0}$. We calculate the Fourier coefficients of the first term in (5.6)

$$
b_{n}(\lambda)=\frac{1}{t_{\lambda} a^{\prime}(\lambda)} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\mathrm{e}^{-i n \theta}}{\left(\mathrm{e}^{i \theta}-t_{\lambda}\right)} \mathrm{d} \theta+\mathcal{I}
$$

Figure 5.1: (Refer [2]) The map a over the unit circle.
where

$$
\mathcal{I}:=\int_{-\pi}^{\pi} f_{0}\left(\mathrm{e}^{i \theta}, \lambda\right) \mathrm{e}^{-i n \theta} \frac{\mathrm{~d} \theta}{2 \pi} .
$$

Then

$$
\begin{equation*}
b_{n}(\lambda)=\frac{-1}{t_{\lambda}^{n+2} a^{\prime}\left(t_{\lambda}\right)}+\mathcal{I} \tag{5.7}
\end{equation*}
$$

The first term in (5.7) times $(-1)^{n} h_{0}^{n+1}$ is the contribution of t_{λ} to the asymptotic expansion of $D_{n}(a-\lambda)$; see (5.5). The function f_{0} has a singularity at $z=1$ and we use this fact to expand \mathcal{I} in the following Section.

5.3 Contribution of 1 to the asymptotic behavior of D_{n}

In this Section, we will show that the value of \mathcal{I} in (5.7) depends mainly on the singularity at the point 1 . Let us write $b(\theta, \lambda)$ and $f_{0}(\theta, \lambda)$ instead of $b\left(\mathrm{e}^{i \theta}, \lambda\right)$ and $f_{0}\left(\mathrm{e}^{i \theta}, \lambda\right)$, respectively. Let $\left\{\phi_{1}, \phi_{2}\right\}$ be a smooth partition of unity over the segment $[-\pi, \pi]$, see Figure 5.2, which means that $\phi_{1}, \phi_{2} \in C^{\infty}[-\pi, \pi], \phi_{1}(\theta)+\phi_{2}(\theta)=1$ for all $\theta \in[-\pi, \pi]$, the support of ϕ_{1} is contained in $[-\pi,-\varepsilon] \cup[\varepsilon, \pi]$, and the support of ϕ_{2} is in $[-\delta, \delta]$, where $0<\varepsilon<\delta$ are small constants. By pasting segments $[-\pi, \pi]$ in both directions, we can continue ϕ_{1} and ϕ_{2} to the entire real line \mathbb{R}, and we will think of these two functions in

Figure 5.2: (Refer [2]) Partition of unity over the segment $[-\pi, \pi]$
that way.

Lemma 5.3 (Refer [2]). For every sufficiently small positive δ, we have

$$
\begin{equation*}
\mathcal{I}=\int_{-\delta}^{\delta} \phi_{2}(\theta) b(\theta, \lambda) \mathrm{e}^{-i n \theta} \frac{\mathrm{~d} \theta}{2 \pi}+Q_{1}(n, \lambda), \tag{5.8}
\end{equation*}
$$

where $Q_{1}(n, \lambda)=O\left(\frac{1}{n^{\infty}}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$.
Proof. Using the partition of unity $\left\{\phi_{1}, \phi_{2}\right\}$, we write $\mathcal{I}=\mathcal{I}_{1}+\mathcal{I}_{2}$ where

$$
\mathcal{I}_{1}:=\int_{\varepsilon}^{2 \pi-\varepsilon} \phi_{1}(\theta) f_{0}(\theta, \lambda) \mathrm{e}^{-i n \theta} \frac{\mathrm{~d} \theta}{2 \pi}, \quad \mathcal{I}_{2}:=\int_{-\delta}^{\delta} \phi_{2}(\theta) f_{0}(\theta, \lambda) \mathrm{e}^{-i n \theta} \frac{\mathrm{~d} \theta}{2 \pi} .
$$

The function $\phi_{1}(\theta) f_{0}(\theta, \lambda)$ belongs to $C^{\infty}[\varepsilon, 2 \pi-\varepsilon]$. Using integration by parts m-times and taking $q(\theta, \lambda)=\phi_{1}(\theta) f_{0}(\theta, \lambda)$ we have

$$
\mathcal{I}_{1}=\sum_{s=0}^{m-1}(-1)^{s}\left[\frac{q(\theta, \lambda)^{(s)}(-1)^{s+1} \mathrm{e}^{-i n \theta}}{(i n)^{s+1}}\right]_{\varepsilon}^{2 \pi-\varepsilon}+(-1)^{m} \int_{\varepsilon}^{2 \pi-\varepsilon} \frac{q(\theta, \lambda)^{(m)} \mathrm{e}^{-i n \theta}(-i)^{m}}{(i n)^{m}} \mathrm{~d} \theta .
$$

Because of Riemann Lebesgue's lemma (2.11), this equals

$$
\mathcal{I}_{1}=\sum_{s=0}^{m-1} O\left(\frac{1}{n^{s+1}}\right)+\frac{1}{n^{m}} o(1)
$$

The predominant order is the one with higher degree thus $\mathcal{I}_{1}=O\left(\frac{1}{n^{m}}\right)$. We obtain that $\mathcal{I}_{1}=O\left(\frac{1}{n^{\infty}}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$.

Solving for $f_{0}(\theta, \lambda)$ in (5.6), we arrive at $\mathcal{I}_{2}=\mathcal{I}_{21}+\mathcal{I}_{22}$ where

$$
\begin{equation*}
\mathcal{I}_{21}:=\int_{-\delta}^{\delta} \phi_{2}(\theta) b(\theta, \lambda) \mathrm{e}^{-i n \theta} \frac{\mathrm{~d} \theta}{2 \pi}, \quad \mathcal{I}_{22}:=\frac{-1}{t_{\lambda} a^{\prime}\left(t_{\lambda}\right)} \int_{-\delta}^{\delta} \frac{\phi_{2}(\theta) \mathrm{e}^{-i n \theta}}{\mathrm{e}^{i \theta}-t_{\lambda}} \frac{\mathrm{d} \theta}{2 \pi} . \tag{5.9}
\end{equation*}
$$

Once more, the function $\phi_{2}(\theta)\left(\exp (i \theta)-t_{\lambda}\right)^{-1}$ belongs to $C^{\infty}[-\delta, \delta]$, with a similar method we conclude that $\mathcal{I}_{22}=O\left(\frac{1}{n^{\infty}}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$.

Expression (5.8) says that the value of \mathcal{I} basically depends on the integrand $b(\theta, \lambda) \mathrm{e}^{-i n \theta}$ at $\theta=0$. As we can take δ as small as we desire, we can assume that θ is arbitrarily close to zero. Keeping this idea in mind, we will develop an asymptotic expansion for b. For future Reference, we rewrite (5.8) as

$$
\begin{equation*}
\mathcal{I}=\mathcal{I}_{21}+Q_{1}(n, \lambda) \tag{5.10}
\end{equation*}
$$

where $Q_{1}(n, \lambda)=O\left(\frac{1}{n^{\infty}}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$.
Lemma 5.4 (Refer [2]). For every sufficiently small positive δ,

$$
\begin{equation*}
\mathcal{I}_{21}=-\sum_{s=0}^{\infty} \frac{1}{\lambda^{s+1}} \int_{-\delta}^{\delta} \frac{\phi_{2}(\theta) h^{s}(\theta) \mathrm{e}^{-i n \theta}}{\mathrm{e}^{i \theta(s+1)}} \frac{\mathrm{d} \theta}{2 \pi} . \tag{5.11}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\mathcal{I}_{21}=\int_{-\delta}^{\delta} \phi_{2}(\theta) b(\theta, \lambda) \mathrm{e}^{-i n \theta} \frac{\mathrm{~d} \theta}{2 \pi} . \tag{5.12}
\end{equation*}
$$

Note that

$$
b(\theta, \lambda)=\frac{1}{h(\theta)-\lambda \mathrm{e}^{i \theta}}=\frac{-1}{\lambda \mathrm{e}^{i \theta}} \cdot \frac{1}{1-\lambda^{-1} \mathrm{e}^{-i \theta} h(\theta)} .
$$

Now, since f is bounded, $|h(\theta)|=\left|1-\mathrm{e}^{i \theta}\right|^{\alpha}\left|f\left(\mathrm{e}^{i \theta}\right)\right| \rightarrow 0$ when $\theta \rightarrow 0$. So there exists a small positive constant δ such that

$$
\left|\lambda^{-1} \mathrm{e}^{-i \theta} h(\theta)\right|<1
$$

for every $|\theta|<\delta$. Thus,

$$
\begin{equation*}
b(\theta, \lambda)=\frac{-1}{\lambda \mathrm{e}^{i \theta}} \sum_{s=0}^{\infty}\left(\lambda^{-1} \mathrm{e}^{-i \theta} h(\theta)\right)^{s}=-\sum_{s=0}^{\infty} \frac{h^{s}(\theta)}{\lambda^{s+1} \mathrm{e}^{i \theta(s+1)}} \tag{5.13}
\end{equation*}
$$

for every $|\theta|<\delta$. Inserting (5.13) in (5.12) and considering that $\left|\phi_{2}(\theta) b(\theta, \lambda)\right| \leq 1$, the dominated convergence Theorem 2.4 finishes the proof.

We will use the notation

$$
\mathcal{I}_{21 s}:=\frac{1}{\lambda^{s+1}} \int_{-\delta}^{\delta} \frac{\phi_{2}(\theta) h^{s}(\theta) \mathrm{e}^{-i n \theta}}{\mathrm{e}^{i \theta(s+1)}} \frac{\mathrm{d} \theta}{2 \pi} .
$$

Because $\phi_{2}(\theta) \mathrm{e}^{-i \theta} \in C^{\infty}[-\delta, \delta]$, using the same idea which proves $\mathcal{I}_{1}=O\left(\frac{1}{n^{\infty}}\right)$ we have $\left.\mathcal{I}_{21 s}\right|_{s=0}=O\left(\frac{1}{n^{\infty}}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$. With the previous notation, we can rewrite (5.11) as

$$
\begin{equation*}
\mathcal{I}_{21}=-\sum_{s=1}^{\infty} \mathcal{I}_{21 s}+Q_{2}(n, \lambda) \tag{5.14}
\end{equation*}
$$

where $Q_{2}(n, \lambda)=O\left(\frac{1}{n^{\infty}}\right)$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$. Finally we will work with $\mathcal{I}_{21 s}$.

Lemma 5.5 (Refer [2]). Let $h(t)=(1-t)^{\alpha} f(t)$ with $\alpha \in \mathbb{R}_{+} \backslash \mathbb{Z}$ and $f \in C^{\infty}(\mathbb{T})$. Then,

$$
\begin{equation*}
\mathcal{I}_{21}=\frac{f(1) \Gamma(\alpha+1) \sin (\alpha \pi)}{\pi \lambda^{2} n^{\alpha+1}}+R_{1}(n, \lambda), \tag{5.15}
\end{equation*}
$$

where $R_{1}(n, \lambda)=O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)$ with $\alpha_{0}=\min \{\alpha, 1\}$ as $n \rightarrow \infty$, uniformly with respect to λ in $a(W) \backslash W_{0}$.

Proof. All the order terms in this proof work as $n \rightarrow \infty$, uniformly in $\lambda \in a(W) \backslash W_{0}$.
We know that $h(\theta)=\left(1-\mathrm{e}^{i \theta}\right) f\left(\mathrm{e}^{i \theta}\right)=(-i \theta)^{\alpha} v(\theta) f\left(\mathrm{e}^{i \theta}\right)$, where the function v equals $\left(i \theta^{-1}\left(1-\mathrm{e}^{i \theta}\right)\right)^{\alpha}$, the branch of the α th power being the one corresponding to the argument in $(-\pi, \pi]$; note that for every sufficiently small positive δ we have $v \in C^{\infty}[-\delta, \delta]$ since $v(0)=\lim _{\theta \rightarrow 0}\left(\frac{1-\mathrm{e}^{i \theta}}{i \theta}\right)^{\alpha}=1$. Thus,

$$
\begin{aligned}
\mathcal{I}_{21 s} & =\frac{1}{2 \pi \lambda^{s+1}} \int_{-\delta}^{\delta} \frac{\phi_{2}(\theta) h^{s}(\theta) \mathrm{e}^{-i n \theta}}{\mathrm{e}^{i \theta(s+1)}} \mathrm{d} \theta \\
& =\frac{1}{2 \pi \lambda^{s+1}} \int_{-\delta}^{\delta} \frac{\phi_{2}(\theta) \theta^{s \alpha} v^{s}(\theta) f^{s}\left(\mathrm{e}^{i \theta}\right) \mathrm{e}^{-i n \theta}}{\mathrm{e}^{i \theta(s+1)}} \mathrm{d} \theta
\end{aligned}
$$

Using $w(\theta):=(-i)^{\alpha s} \frac{\phi_{2}(\theta) v^{s}(\theta) f^{s}\left(\mathrm{e}^{i \theta}\right)}{2 \pi \lambda^{s+1} \mathrm{e}^{i \theta(s+1)}}$ and $\beta:=\alpha s+1$, the last integral can be written as

$$
\begin{align*}
\mathcal{I}_{21 s} & =\int_{-\delta}^{\delta} \theta^{\beta-1} w(\theta) \mathrm{e}^{-i n \theta} \mathrm{~d} \theta \\
& =\int_{-\delta}^{0} \theta^{\beta-1} w(\theta) \mathrm{e}^{-i n \theta} \mathrm{~d} \theta+\int_{0}^{\delta} \theta^{\beta-1} w(\theta) \mathrm{e}^{-i n \theta} \mathrm{~d} \theta \\
& =\int_{0}^{\delta}(-\tau)^{\beta-1} w(-\tau) \mathrm{e}^{i n \tau} d \tau+\int_{0}^{\delta} \theta^{\beta-1} w(\theta) \mathrm{e}^{-i n \theta} \mathrm{~d} \theta=\mathcal{I}_{21 s 1}+\mathcal{I}_{21 s 2}, \tag{5.16}
\end{align*}
$$

where

$$
\mathcal{I}_{21 s 1}:=(-1)^{\beta-1} \int_{0}^{\delta} \theta^{\beta-1} w(-\theta) \mathrm{e}^{i n \theta} \mathrm{~d} \theta, \quad \mathcal{I}_{21 s 2}:=\int_{0}^{\delta} \theta^{\beta-1} w(\theta) \mathrm{e}^{-i n \theta} \mathrm{~d} \theta
$$

Note that $w(\pm \theta) \in C^{\infty}[0, \delta]$ and $w^{(s)}(\pm \delta)=0$ for all $s \in \mathbb{N}$ because $\phi_{2}(\theta) \equiv 0$ in a small neighborhood of $\pm \delta$. Applying Theorem 2.12 to $\mathcal{I}_{21 s 1}$ and Corollary 2.13 to $\mathcal{I}_{21 s 2}$, we obtain

$$
\mathcal{I}_{21 s 1}=\frac{(-1)^{\alpha s} w(0) \Gamma(\alpha s+1) i^{\alpha s+1}}{n^{\alpha s+1}}+Q_{3}(s, n, \lambda)
$$

and

$$
\begin{equation*}
\mathcal{I}_{21 s 2}=\frac{w(0) \Gamma(\alpha s+1) i^{-\alpha s-1}}{n^{\alpha s+1}}+Q_{4}(s, n, \lambda), \tag{5.17}
\end{equation*}
$$

where Q_{3} and Q_{4} are $O\left(\frac{1}{n^{\alpha s+2}}\right)$. Substitution of (5.17) in (5.16) yields

$$
\begin{align*}
\mathcal{I}_{21 s} & =\frac{w(0) \Gamma(\alpha s+1)}{n^{\alpha s+1}}\left(\mathrm{e}^{-i \frac{\pi}{2}(\alpha s+1)}+\left(\mathrm{e}^{i \pi}\right)^{\alpha s} \mathrm{e}^{i \frac{\pi}{2}(\alpha s+1)}\right)+Q_{5}(s, n, \lambda) \\
& =\frac{f(1) \Gamma(\alpha s+1)}{2 \pi \lambda^{s+1} n^{\alpha s+1}} i \mathrm{e}^{-\frac{\pi}{2} s \alpha}\left(\mathrm{e}^{i \pi \alpha s} \mathrm{e}^{i \frac{\pi}{2}(\alpha s)}-\mathrm{e}^{-i \frac{\pi}{2}(\alpha s)}\right)+Q_{5}(s, n, \lambda) \\
& =\frac{f(1) \Gamma(\alpha s+1)}{2 \pi \lambda^{s+1} n^{\alpha s+1}} i\left(\mathrm{e}^{i \pi \alpha s}-\mathrm{e}^{-i \alpha s}\right)+Q_{5}(s, n, \lambda) \\
& =\frac{-C_{s}}{\lambda^{s+1} n^{\alpha s+1}}+Q_{5}(s, n, \lambda) \tag{5.18}
\end{align*}
$$

where

$$
\begin{equation*}
C_{s}:=\frac{1}{\pi} f^{s}(1) \Gamma(\alpha s+1) \sin (\alpha \pi s) \tag{5.19}
\end{equation*}
$$

and $Q_{5}(s, n, \lambda)=O\left(\frac{1}{n^{\alpha s+2}}\right)$. From (5.14) and (5.18) we obtain

$$
\mathcal{I}_{21}=\frac{C_{1}}{\lambda^{2} n^{\alpha+1}}+O\left(\frac{1}{n^{\alpha+2}}\right)+O\left(\frac{1}{n^{2 \alpha+1}}\right)=\frac{C_{1}}{\lambda^{2} n^{\alpha+1}}+R_{1}(n, \lambda)
$$

where $R_{1}(n, \lambda)=O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)$ here $\alpha_{0}:=\min \{\alpha, 1\}$.

The previous calculation gives us the main asymptotic term for \mathcal{I}_{21}. If more terms are needed, say m, we must expand \mathcal{I}_{21} from $\left.\mathcal{I}_{21 s}\right|_{s=1}$ to $\left.\mathcal{I}_{21 s}\right|_{s=m}$ and expand each $\mathcal{I}_{21 s}$ to m terms, after which, according to the value of α, we need to select the first m principal terms.

Finally we put all the lemmas together to prove Theorem 3.1.
Proof of Theorem 3.1. The proof of this theorem is a direct application of equations (5.5), (5.7), (5.10), and (5.15).

$$
\begin{aligned}
D_{n}(a-\lambda)= & (-1)^{n}\left(h_{0}\right)^{n+1} b_{n}(\lambda) \text { but } b_{n}(\lambda)=\frac{-1}{t_{\lambda}^{n+2} a^{\prime}\left(t_{\lambda}\right)}+\mathcal{I} \text { and } \mathcal{I}=\mathcal{I}_{1}+\mathcal{I}_{2} \text { so } \\
& D_{n}(a-\lambda)=\left(-h_{0}\right)^{n+1}\left(\frac{1}{t_{\lambda}^{n+2} a^{\prime}\left(t_{\lambda}\right)}-\frac{C_{1}}{\lambda^{2} n^{\alpha+1}}+O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)\right)
\end{aligned}
$$

5.4 Individual eigenvalues

In order to find the eigenvalues of the matrices $T_{n}(a)$, we need to solve the equations $D_{n}(a-\lambda)=0$. We start this Section by locating the zeros of $D_{n}(a-\lambda)$.

Figure 5.3: 19 th root of unity, where $n_{1}=n_{2}=1$

Let W_{0} be a small open neighborhood of zero in \mathbb{C} and $\omega_{n}:=\exp \left(\frac{-2 \pi i}{n}\right) n$th root of unity, where n is a positive integer. For each n there exist integers n_{1} and n_{2} such that
$\omega_{n}^{n_{1}}, \omega_{n}^{n-n_{2}} \in a^{-1}\left(W_{0}\right)$ but $\omega_{n}^{n_{1}+1}, \omega_{n}^{n-n_{2}-1} \notin a^{-1}\left(W_{0}\right)$, see Figure (5.3), because W_{0} does not cover $a(\mathbb{T})$.

Recall that $\lambda=a\left(t_{\lambda}\right)$. Take an integer j satisfying $n_{1}<j<n-n_{2}$, since $a\left(t_{\lambda}\right)$ and $a^{\prime}\left(t_{\lambda}\right)$ have no problems in 0 and are analytical, using the relations

$$
\frac{1}{t_{\lambda}^{2} a^{\prime}\left(t_{\lambda}\right)}=\frac{1}{\omega_{j}^{2} a^{\prime}\left(\omega_{n}^{j}\right)}+O\left(\left|t_{\lambda}-\omega_{n}^{j}\right|\right)
$$

and

$$
\frac{1}{a^{2}\left(t_{\lambda}\right)}=\frac{1}{a^{2}\left(\omega_{n}^{j}\right)}+O\left(\left|t_{\lambda}-\omega_{n}^{j}\right|\right)
$$

where t_{λ} belongs to a small neighborhood of the point ω_{n}^{j}, we see that

$$
\begin{align*}
& D_{n}(a-\lambda)=\left(-h_{0}\right)^{n+1}\left(\mathcal{T}_{1}-\mathcal{T}_{2}+\frac{1}{t_{\lambda}^{n}} O\left(\left|t_{\lambda}-\omega_{n}^{j}\right|\right)+\frac{1}{n^{\alpha+1}} O\left(\left|t_{\lambda}-\omega_{n}^{j}\right|\right)+Q_{6}\left(n, t_{\lambda}\right)\right) \\
& D_{n}(a-\lambda)=\left(-h_{0}\right)^{n+1}\left(\mathcal{T}_{1}-\mathcal{T}_{2}+O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)+O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha+1}}\right)+Q_{6}\left(n, t_{\lambda}\right)\right), \tag{5.20}
\end{align*}
$$

where $Q_{6}\left(n, t_{\lambda}\right)=O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)$ as $n \rightarrow \infty$, uniformly with respect to t_{λ} in $W \backslash a^{-1}\left(W_{0}\right)$, and where t_{λ} belongs to a small neighborhood of ω_{n}^{j}. Here

$$
\mathcal{T}_{1}:=\frac{1}{t_{\lambda}^{n} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}, \quad \mathcal{T}_{2}:=\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right) n^{\alpha+1}},
$$

and $\alpha_{0}:=\min \{\alpha, 1\}$. Recall C_{1} from (5.19). Expression (5.20) makes sense only when t_{λ} is sufficiently "close" to ω_{n}^{j} and thus it is necessary to know whether there exists a zero of $D_{n}(a-\lambda)$ "close" to ω_{n}^{j}. Let

$$
t_{\lambda}=(1+\rho) \exp (i \theta)
$$

It is easy to see that $\mathcal{T}_{1}-\mathcal{T}_{2}=0$ if and only if $(1+\rho)^{n} \exp (\operatorname{in} \theta)=\frac{a^{2}\left(\omega_{n}^{j}\right) n^{\alpha+1}}{C_{1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}$ then

$$
\begin{equation*}
\rho=\left(\frac{\left|a\left(\omega_{n}^{j}\right)\right|^{2} n^{\alpha+1}}{\left|C_{1} a^{\prime}\left(\omega_{n}^{j}\right)\right|}\right)^{\frac{1}{n}}-1 \tag{5.21}
\end{equation*}
$$

and

$$
\theta=\theta_{j}=\frac{1}{n} \arg \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)-\frac{2 \pi j}{n}
$$

for some $j \in\{0, \ldots, n-1\}$. When n tends to infinity, (5.21) shows that ρ remains positive and since $\frac{\left|a\left(\omega_{n}^{j}\right)\right|^{2}}{\left|C_{1} a^{\prime}\left(\omega_{n}^{j}\right)\right|}$ is a bounded constant and $n^{\frac{\alpha+1}{n}} \rightarrow 1$ then $\rho \rightarrow 0$. The function $\mathcal{T}_{1}-\mathcal{T}_{2}$ has n zeros with respect to $\lambda \in \mathcal{D}(a)$ given by

$$
a\left((1+\rho) \mathrm{e}^{i \theta_{0}}\right), \ldots, \quad a\left((1+\rho) \mathrm{e}^{i \theta_{n-1}}\right) .
$$

As Lemma 5.2 establishes a 1-1 correspondence between λ and t_{λ} and the function $D_{n}(a-\lambda)$ is analytic with respect to λ in $a(W) \backslash W_{0}$, that is, analytic with respect to t_{λ} in $W \backslash a^{-1}\left(W_{0}\right)$. We can therefore suppose that $\mathcal{T}_{1}-\mathcal{T}_{2}$ has n zeros with respect to t_{λ} in the exterior of $\overline{\mathbb{D}}$ given by

$$
t_{0}:=(1+\rho) \mathrm{e}^{i \theta_{0}}, \ldots, \quad t_{n-1}:=(1+\rho) \mathrm{e}^{i \theta_{n-1}} .
$$

We take the function "arg" in the interval $(-\pi, \pi]$. Thus, $t_{j}=(1+\rho) \mathrm{e}^{i \theta_{j}}$ is the nearest zero to ω_{n}^{j} for the Rouché Theorem 2.15. Consider the neighborhood E_{j} of t_{j} sketched in Figure 5.4.

Figure 5.4: (Refer [2]) The neighborhood E_{j} of t_{j} in the complex plane.

The boundary of E_{j} is $\Gamma:=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$. We have chosen radial segments Γ_{2} and Γ_{4} so that their length is $\frac{1}{n^{\varepsilon}}$ with $\epsilon \in\left(0, \alpha_{0}\right)$ and all the points in Γ_{2} have the common
argument $\frac{\theta_{j+1}+\theta_{j}}{2}$, while all the points in Γ_{4} have the common argument $\frac{\theta_{j-1}+\theta_{j}}{2}$. As we can see in Figure 5.4, these points run from the unit circle \mathbb{T} to $\left(1+\frac{1}{n^{\varepsilon}}\right) \mathbb{T}$. Note also that $\Gamma_{1} \subset\left(1+\frac{1}{n^{\varepsilon}}\right) \mathbb{T}$ and $\Gamma_{3} \subset \mathbb{T}$.

Figure 5.5: Neighborhoods in the complex plane

Theorem 5.6 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Let $\epsilon \in\left(0, \alpha_{0}\right)$ be a constant. Then, there exists a family of sets $\left\{E_{j}\right\}_{j=n_{1}+1}^{n-n_{2}-1}$ in \mathbb{C} such that

1. $\left\{E_{j}\right\}_{j=n_{1}+1}^{n-n_{2}-1}$ is a family of pairwise disjoint open sets,
2. $\operatorname{diam}\left(E_{j}\right) \leqslant \frac{2 \pi}{n^{\epsilon}}$,
3. $\omega_{n}^{j} \in \partial E_{j}$,
4. $D_{n}\left(a-a\left(t_{\lambda}\right)\right)=D_{n}(a-\lambda)$ has exactly one zero in each E_{j}.

Here $\alpha_{0}:=\min \{\alpha, 1\}$ and $\operatorname{diam}\left(E_{j}\right):=\sup \left\{\left|z_{1}-z_{2}\right|: z_{1}, z_{2} \in E_{j}\right\}$.
Proof. 1. It is enough to prove that $E_{j} \cap E_{j+1} \neq \varnothing$. Because of the definition we have, $\partial E_{j} \cap \partial E_{j+1}=\left\{z_{0}: \arg \left(z_{0}\right)=\frac{\theta_{j}+\theta_{j+1}}{2}\right\}$ (see Figure 5.5a), thus $E_{j} \cap E_{j+1} \neq \varnothing$.
2. Remember that we gave necessary conditions for t_{λ} be "close" to ω_{n}^{j}, this implies that $\arg \left(t_{j}\right) \sim \frac{2 \pi j}{n}$. Consider the set \hat{E}_{j} in Figure 5.5b. Thus $\operatorname{diam}\left(E_{j}\right) \sim \operatorname{diam}\left(\hat{E}_{j}\right)$, but $\operatorname{diam}\left(\hat{E}_{j}\right)<\frac{2 \pi}{n^{\varepsilon}}$ then $\operatorname{diam}(E j)<\frac{2 \pi}{n^{\varepsilon}}$.
3. We know that each consecutive pair of nth roots of unity, are separated by an arc with length $\frac{2 \pi}{n}<\frac{2 \pi}{n^{\varepsilon}}$, then using the previous item, we have $\omega_{n}^{j} \in E_{j}$, moreover $\omega_{n}^{j} \in \Gamma_{3}$.
4. We prove assertion 4 by studying the behavior of $\left|D_{n}(a-\lambda)\right|$ with respect to $t_{\lambda} \in \Gamma$.

For $t_{\lambda} \in \Gamma_{1}$ is $\left|t_{\lambda}\right|^{n}=\left|1+\frac{1}{n^{\varepsilon}}\right|^{n}$, using that $\left(1+\frac{1}{n^{\epsilon}}\right)^{-n}=\exp \left(-n \log \left(1+\frac{1}{n^{\varepsilon}}\right)\right)$. We have as $n \rightarrow \infty$,

$$
\left|\mathcal{T}_{1}\right|_{\Gamma_{1}}=\frac{1}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|}\left(1+\frac{1}{n^{\epsilon}}\right)^{-n}=\frac{\exp \left(-n^{1-\varepsilon}\right)}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|}+O\left(\frac{\exp \left(-n^{1-\varepsilon}\right)}{n^{2 \varepsilon-1}}\right)
$$

and using the Taylor's series of log, we get

$$
\left|\mathcal{T}_{2}\right|_{\Gamma_{1}}=\frac{1}{n^{\alpha+1}}\left|\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|
$$

By a similar argument, we have

$$
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)\right|_{\Gamma_{1}}=O\left(\frac{\exp \left(-n^{1-\epsilon}\right)}{n^{\epsilon}}\right)
$$

also

$$
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{n^{\alpha+1}}\right|\right)\right|_{\Gamma_{1}}=O\left(\frac{1}{n^{\epsilon+\alpha+1}}\right) \quad \text { and } \quad\left|Q_{6}\left(n, t_{\lambda}\right)\right|_{\Gamma_{1}}=O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)
$$

When n goes to infinity, the modulus of \mathcal{T}_{2} decreases at polynomial speed over Γ_{1}, while the module of the remaining terms in (5.20) are smaller over Γ_{1}. Thus,

$$
\left|\frac{D_{n}(a-\lambda)}{h_{0}^{n+1}}\right|_{\Gamma_{1}}=\frac{1}{n^{\alpha+1}}\left|\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|+O\left(\frac{1}{n^{\alpha+\epsilon+1}}\right) .
$$

For $t_{\lambda} \in \Gamma_{3}$ is $\left|t_{\lambda}\right|=1$. We get, as $n \rightarrow \infty$,

$$
\left|\mathcal{T}_{1}\right|_{\Gamma_{3}}=\frac{1}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|} \quad \text { and } \quad\left|\mathcal{T}_{2}\right|_{\Gamma_{3}}=\frac{1}{n^{\alpha+1}} \cdot\left|\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|
$$

Note that $\left|t_{\lambda}-\omega_{n}^{j}\right|=O\left(\frac{1}{n}\right)$ so

$$
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)\right|_{\Gamma_{3}}=O\left(\frac{1}{n}\right), \quad\left|O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha+1}}\right)\right|_{\Gamma_{3}}=O\left(\frac{1}{n^{\alpha+2}}\right)
$$

and $\left|Q_{6}\left(n, t_{\lambda}\right)\right|_{\Gamma_{3}}=O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)$. When n goes to infinity, the modulus of \mathcal{T}_{1} remains constant over Γ_{3}, while the moduli of the remaining terms in (5.20) are smaller there. Consequently,

$$
\left|\frac{D_{n}(a-\lambda)}{h_{0}^{n+1}}\right|_{\Gamma_{3}}=\frac{1}{\left|a^{\prime}\left(\omega_{n}^{j}\right)\right|}+O\left(\frac{1}{n}\right) .
$$

Figure 5.6: (Refer [2]) Function $\frac{D_{(}(-\lambda)}{h_{0}^{n+1}}$ in neighborhood E_{j}

For the radial segments Γ_{2} and Γ_{4}, we start by showing that \mathcal{T}_{1} and $-\mathcal{T}_{2}$ have the same argument principal there. Since t_{j} is a zero of $\mathcal{T}_{1}-\mathcal{T}_{2}$, we deduce that

$$
\begin{aligned}
\arg \left(\frac{1}{t_{j}^{n} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) & =\arg \left(\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right) n^{\alpha+1}}\right), \\
\arg \left(\frac{1}{t_{j}^{n}}\right)+\arg \left(\frac{1}{\omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) & =\arg \left(\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right) .
\end{aligned}
$$

Note that $\arg \left(t_{j}^{-1}\right)=\arg \left(\overline{t_{j}}\right)=-\arg \left(t_{j}\right)=-\theta_{j}$ and "if we sum $2 k \pi$ the second argument change the representative of class", thus

$$
\begin{equation*}
-n \theta_{j}+\arg \left(\frac{1}{\omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)=\arg \left(\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right) \tag{5.22}
\end{equation*}
$$

For $t_{\lambda} \in \Gamma_{4}$ we have

$$
\begin{aligned}
\arg \left(\mathcal{T}_{1}\right) & =\arg \left(\frac{1}{t_{\lambda}^{n} \omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right)=-\frac{n}{2}\left(\theta_{j-1}+\theta_{j}\right)+\arg \left(\frac{1}{\omega_{n}^{2 j} a^{\prime}\left(\omega_{n}^{j}\right)}\right) \\
& =\frac{n}{2}\left(\theta_{j}-\theta_{j-1}\right)+\arg \left(\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right)=\pi+\arg \left(\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right)=\arg \left(-\mathcal{T}_{2}\right) .
\end{aligned}
$$

Here the second line is due to $\left(\theta_{j}-\theta_{j-1}\right)$ is the angle between t_{j} and t_{j-1}, note that t_{j} is uniformly distanced because is a solution when take nth root, then $\left(\theta_{j}-\theta_{j-1}\right)=\frac{2 \pi}{n}$. In addition, as $n \rightarrow \infty$,

$$
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)\right|_{\Gamma_{4}}=O\left(\frac{1}{n^{\epsilon}\left|t_{\lambda}\right|^{n}}\right), \quad\left|O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha+1}}\right)\right|_{\Gamma_{4}}=O\left(\frac{1}{n^{\alpha+\epsilon+1}}\right)
$$

and $\left|Q_{6}\left(n, t_{\lambda}\right)\right|_{\Gamma_{4}}=O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)$. Furthermore,

$$
\left|\frac{D_{n}(a-\lambda)}{h_{0}^{n+1}}\right|_{\Gamma_{4}}=\frac{1}{\left|t_{\lambda}^{n} a^{\prime}\left(\omega_{n}^{j}\right)\right|}+O\left(\frac{1}{n^{\epsilon}\left|t_{\lambda}\right|^{n}}\right)+\frac{1}{n^{\alpha+1}}\left|\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|+O\left(\frac{1}{n^{\alpha+\epsilon+1}}\right)
$$

over Γ_{4} when $n \rightarrow \infty$. The situation is similar for the segment Γ_{2}.
From the previous analysis of $\left|D_{n}(a-\lambda)\right|$ over Γ we infer by Figure 5.6 and previous analysis that, the more less values in the frontier is $\frac{1}{n^{\alpha+1}}\left|\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|(1+o(1))$, thus using the maximum modulus principle Corollary 2.17 that for every sufficiently large n we have

$$
\left|\mathcal{T}_{1}-\mathcal{T}_{2}\right|_{\Gamma} \geqslant \frac{1}{2 n^{\alpha+1}}\left|\frac{C_{1}}{a^{2}\left(\omega_{n}^{j}\right)}\right|
$$

and

$$
\left|O\left(\left|\frac{t_{\lambda}-\omega_{n}^{j}}{t_{\lambda}^{n}}\right|\right)+O\left(\frac{\left|t_{\lambda}-\omega_{n}^{j}\right|}{n^{\alpha+1}}\right)+Q_{6}\left(n, t_{\lambda}\right)\right|_{\Gamma} \leqslant \frac{C}{n^{\alpha+\epsilon+1}},
$$

where C is a constant. Hence, by Rouché's Theorem 2.15, $\left(-h_{0}\right)^{-(n+1)} D_{n}(a-\lambda)$ and $\mathcal{T}_{1}-\mathcal{T}_{2}$ have the same number of zeros in E_{j}, that is, a unique zero.

As a consequence of Theorem 5.6, we can iterate the variable t_{λ} in the equation $D_{n}(a-\lambda)=0$, where $D_{n}(a-\lambda)$ is given by (3.1). In this fashion we find the unique eigenvalue of $T_{n}(a)$ which is located "close" to each ω_{n}^{j}. We thus rewrite the equation $D_{n}(a-\lambda)=0$ in a small neighborhood of ω_{n}^{j} as

$$
\frac{1}{a^{\prime}\left(t_{\lambda}\right) t_{\lambda}^{n+2}}=\frac{C_{1}}{a^{2}\left(t_{\lambda}\right) n^{\alpha+1}}+O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)
$$

$$
\frac{1}{t_{\lambda}^{n}}=\frac{C_{1} t^{2} a^{\prime}\left(t_{\lambda}\right)}{a^{2}\left(t_{\lambda}\right) n^{\alpha+1}}+O\left(\frac{1}{n^{\alpha+\alpha_{0}+1}}\right)=\frac{C_{1} t^{2} a^{\prime}\left(t_{\lambda}\right)}{a^{2}\left(t_{\lambda}\right) n^{\alpha+1}}\left(1+O\left(\frac{1}{n^{\alpha_{0}}}\right)\right) .
$$

Then if we reverse and take nth root above we get

$$
\begin{equation*}
t_{\lambda_{j, n}}=n^{\frac{\alpha+1}{n}} \omega_{n}^{j}\left(\frac{a^{2}\left(t_{\lambda_{j, n}}\right)}{C_{1} a^{\prime}\left(t_{\lambda_{j, n}}\right) t_{\lambda_{j, n}}^{2}}\right) \cdot \cdot^{\frac{1}{n}}\left(1+Q_{7}(n, j)\right)^{-\frac{1}{n}} \tag{5.23}
\end{equation*}
$$

recall C_{1} from (5.19). The Theorem 5.6 insures a $1-1$ correspondence between ω_{n}^{j} and $t_{\lambda_{j, n}}$, so after taking the n st root. Here the function $z^{\frac{1}{n}}$ takes its principal branch, specified by the argument in $(-\pi, \pi]$. Also notice that $Q_{7}(n, j)=O\left(\frac{1}{n^{\alpha_{0}}}\right)$ as $n \rightarrow \infty$, uniformly in $j \in\left(n_{1}, n-n_{2}\right)$, with n_{1}, n_{2} as in Theorem 5.6.

Proof of Theorem 3.2. All the order terms in this proof work with $n \rightarrow \infty$, uniformly in $j \in\left(n_{1}, n-n_{2}\right)$, with n_{1}, n_{2} as in Theorem 5.6.

Equation (5.23) is an implicit expression for $t_{\lambda_{j, n}}$. We manipulate it to obtain two asymptotic terms for $t_{\lambda_{j, n}}$. Remember that λ belongs to $\mathcal{D}(a) \backslash W_{0}$; see Figure 5.1. We can choose W so thin that $\lambda_{j, n}=a\left(t_{\lambda_{j, n}}\right), a^{\prime}\left(t_{\lambda_{j, n}}\right)$, and $t_{\lambda_{j, n}}$ are bounded and not too close to zero.

Now, if we denote $A_{j, n}$ as $\frac{a^{2}\left(t_{\lambda_{j, n}}\right)}{C_{1} a^{\prime}\left(t_{\lambda_{j, n}}\right) t_{\lambda_{j, n}}^{2}}$, then

$$
A_{j, n}^{\frac{1}{n}}=\exp \left(\frac{1}{n} \log A_{j, n}\right)=1+\frac{1}{n} \log A_{j, n}+O\left(\frac{1}{n^{2}}\right)
$$

and $\left(1+Q_{7}(n, j)\right)^{-\frac{1}{n}}=O\left(\frac{1}{n^{1+\alpha_{0}}}\right)$.
After expanding and multiplying the terms in parenthesis in (5.23), we obtain

$$
\begin{equation*}
t_{\lambda_{j, n}}=n^{\frac{\alpha+1}{n}} \omega_{n}^{j}\left(1+\frac{1}{n} \log \left(A_{\lambda_{j, n}}\right)+Q_{8}(n, j)\right) \tag{5.24}
\end{equation*}
$$

where $Q_{8}(n, j)=O\left(\frac{1}{n^{1+\alpha_{0}}}\right)$. Our first approximation for $t_{\lambda_{j, n}}$ is the smaller order of (5.24), that is

$$
\begin{equation*}
t_{\lambda_{j, n}}=n^{\frac{\alpha+1}{n}} \omega_{n}^{j}\left(1+O\left(n^{-1}\right)\right)=\omega_{n}^{j}\left(1+Q_{9}(n, j)\right), \tag{5.25}
\end{equation*}
$$

where $Q_{9}(n, j)=O\left(\frac{\log n}{n^{2}}\right)$, which is a consequence of $n^{\frac{\alpha+1}{n}}=\exp \left(\frac{\alpha+1}{n} \log (n)\right)$. Inserting (5.25) in (5.24), we get

$$
t_{\lambda_{j, n}}=n^{\frac{\alpha+1}{n}} \omega_{n}^{j}\left[1+\frac{1}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\left[1+Q_{9}(n, j)\right]\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\left[1+Q_{9}(n, j)\right]\right)\left(\omega_{n}^{j}\left[1+Q_{9}(n, j)\right]\right)^{2}}\right)+Q_{8}(n, j)\right] .
$$

Now we use the analyticity of \log , a, and a^{\prime} in W, and Proposition 2.14 to obtain that

$$
\log \left(\frac{a^{2}\left(\omega_{n}^{j}\left[1+Q_{9}(n, j)\right]\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\left[1+Q_{9}(n, j)\right]\right)\left(\omega_{n}^{j}\left[1+Q_{9}(n, j)\right]\right)^{2}}\right)=\log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\right) \omega_{n}^{2 j}}\right)+Q_{9}(n, j),
$$

we can simplify the expression for $t_{\lambda_{j, n}}$ to obtain

$$
t_{\lambda_{j, n}}=n^{\frac{\alpha+1}{n}} \omega_{n}^{j}\left(1+\frac{1}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\right) \omega_{n}^{2 j}}\right)+R_{2}(n, j)\right),
$$

where $R_{2}(n, j)=O\left(\frac{1}{n^{1+\alpha_{0}}}\right)+O\left(\frac{\log n}{n^{2}}\right)$.
Proof of Theorem 3.3. All the order terms in this proof work with $n \rightarrow \infty$, uniformly in $j \in\left(n_{1}, n-n_{2}\right)$, with n_{1}, n_{2} as in Theorem 5.6. Note that

$$
\begin{equation*}
n^{\frac{\alpha+1}{n}}=\exp \left(\frac{(\alpha+1)}{n} \log n\right)=1+\frac{(\alpha+1)}{n} \log n+O\left(\frac{\log n}{n}\right)^{2} \tag{5.26}
\end{equation*}
$$

Inserting (5.26) in (3.2) we obtain

$$
\begin{equation*}
t_{\lambda_{j, n}}=\omega_{n}^{j}\left(1+\frac{(\alpha+1)}{n} \log n+\frac{1}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\right) \omega_{n}^{2 j}}\right)+Q_{10}(n, j)\right) \tag{5.27}
\end{equation*}
$$

where $Q_{10}(n, j)=O\left(\frac{1}{n^{1+\alpha_{0}}}\right)+O\left(\frac{\log ^{2} n}{n^{2}}\right)$. Now we know that

$$
\begin{equation*}
a(z)=a\left(\omega_{n}^{j}\right)+a^{\prime}\left(\omega_{n}^{j}\right)\left(z-\omega_{n}^{j}\right)+O\left(\left|z-\omega_{n}^{j}\right|^{2}\right) \tag{5.28}
\end{equation*}
$$

applying the symbol a to (5.27) and taking $z=t_{\lambda_{j, n}}$ in (5.28), we see that,

$$
\begin{aligned}
a\left(t_{\lambda}\right)=a\left(\omega_{n}^{j}\right) & +\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)\left(\frac{(\alpha+1)}{n} \log n+\frac{1}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\right) \omega_{n}^{2 j}}\right)+Q_{10}(n, j)\right) \\
& +O\left(\frac{\log n}{n}\right)+O\left(\frac{1}{n}\right)+O\left(\frac{1}{n^{\alpha_{0}+1}}\right)+O\left(\frac{\log ^{2} n}{n^{2}}\right),
\end{aligned}
$$

the dominant order in the last equation is $Q_{10}(n, j)$, so

$$
\lambda_{j, n}=a\left(\omega_{n}^{j}\right)+(\alpha+1) \omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right) \frac{\log n}{n}+\frac{\omega_{n}^{j} a^{\prime}\left(\omega_{n}^{j}\right)}{n} \log \left(\frac{a^{2}\left(\omega_{n}^{j}\right)}{C_{1} a^{\prime}\left(\omega_{n}^{j}\right) \omega_{n}^{2 j}}\right)+Q_{10}(n, j)
$$

Chapter 6

Behavior of Extreme Eigenvalues

We start this section with a technical result that enables us to invert the symbol a in a certain neighborhood of 0 .

6.1 Location of eigenvalues

Lemma 6.1 (Refer [1]). Let ρ be a small positive constant and a be the symbol in (1.2) satisfying the Properties 3.2. Then
(i) there exist U_{1}, U_{2} subsets of $K_{\varepsilon} \backslash \overline{\mathbb{D}}$ such that $a\left(U_{1}\right) \subseteq S_{1}$ and $a\left(U_{2}\right) \subseteq S_{2}$, and a restricted to $U_{1} \cup U_{2}$ is a bijective map; moreover, for some small positive δ and each $\lambda \in S_{1} \backslash R_{1}, S_{2} \backslash R_{2}$, there exists a unique z_{λ} in U_{1}, U_{2}, respectively, such that $a\left(z_{\lambda}\right)=\lambda ;$
(ii) for some small positive μ we have,

$$
\begin{array}{rll}
\frac{\pi}{2}-\mu<\arg (1-z) \leqslant \pi & \text { for every } & z \in U_{1} \\
-\pi \leqslant \arg (1-z)<-\frac{\pi}{2}+\mu & \text { for every } & z \in U_{2}
\end{array}
$$

that is, the sets U_{1}, U_{2} are located as in Figure 3.3;
(iii) z_{λ} is a simple zero of $a-\lambda$.

Proof. (i)

Figure 6.1: Regions S_{i} and R_{j} with $i=1,2,3$ and $j=1,2$.

Let $U_{1}:=a^{-1}\left(S_{1}\right)$ and $U_{2}:=a^{-1}\left(S_{2}\right)$, see Figure 3.3. By property $1, f$ has an analytic continuation to K_{ε}, thus a has a continuous extension to \hat{K}_{ε}

Let's show the uniqueness of z_{λ}. Suppose that there exist z_{λ} and \tilde{z}_{λ} in $U_{1} \cup U_{2}$ satisfying $a\left(z_{\lambda}\right)=a\left(\tilde{z}_{\lambda}\right)=\lambda$, note that z_{λ} and \tilde{z}_{λ} belongs to the same set U_{1} or U_{2}, thus

$$
\begin{equation*}
a\left(z_{\lambda}\right)-a\left(\tilde{z}_{\lambda}\right)=0=\int_{\gamma_{\lambda}} a^{\prime}(z) \mathrm{d} z \tag{6.1}
\end{equation*}
$$

where γ_{λ} is some closed polygonal curve in U_{1} or U_{2} from \tilde{z}_{λ} to z_{λ}. Since f is an arbitrarily smooth function with $f(1)=1$ and $f^{\prime}(1)=1$, we have

$$
a^{\prime}(z)=-\frac{\alpha}{z}(1-z)^{\alpha-1} f(z)\left(1+\frac{1-z}{\alpha z}-\frac{(1-z) f^{\prime}(z)}{\alpha f(z)}\right) .
$$

Now $f(z)=f^{\prime}(z)=1+O(|1-z|)$ and $z=1+O(|1-z|)$ so $z^{-1} f(z)=1+O(|1-z|)$ then,

$$
\begin{equation*}
a^{\prime}(z)=-\alpha(1-z)^{\alpha-1}(1+O(|1-z|)) \quad(z \rightarrow 1) . \tag{6.2}
\end{equation*}
$$

Putting together (6.1) and (6.2), as $\lambda \rightarrow 0$, we get

$$
\begin{align*}
a\left(z_{\lambda}\right)-a\left(\tilde{z}_{\lambda}\right) & =-\alpha \int_{\gamma_{\lambda}}(1-z)^{\alpha-1} \mathrm{~d} z+O\left(\int_{\gamma_{\lambda}}|1-z|^{\alpha}|\mathrm{d} z|\right) \\
& =\left(1-z_{\lambda}\right)^{\alpha}-\left(1-\tilde{z}_{\lambda}\right)^{\alpha}+O\left(\int_{\gamma_{\lambda}}|1-z|^{\alpha}|\mathrm{d} z|\right) \tag{6.3}
\end{align*}
$$

In order to reach a contradiction, we work separately with the terms in the right of (6.3). We begin by showing that there exists a positive constant c satisfying

$$
\begin{equation*}
\left|\left(1-z_{\lambda}\right)^{\alpha}-\left(1-\tilde{z}_{\lambda}\right)^{\alpha}\right| \geqslant c\left|z_{\lambda}-\tilde{z}_{\lambda}\right| . \tag{6.4}
\end{equation*}
$$

Suppose first that $\lambda \in S_{1}$. Then $z_{\lambda}, \tilde{z}_{\lambda} \in U_{1}$. Let I_{λ} be the closed line segment from \tilde{z}_{λ} to z_{λ}. We thus have $-\frac{\pi}{2}-\mu \leqslant \arg (z-1) \leqslant 0$ for some small positive μ and every $z \in I_{\lambda}$ (See Figure 6.2).

Now if $z-1=r e^{i n \theta}$ then $1-z=r e^{i n \theta+\pi}$, thus $\frac{\pi}{2}-\mu \leqslant \arg (1-z) \leqslant \pi$ which implies that $-(1-\alpha) \pi \leqslant \arg (1-z)^{\alpha-1} \leqslant(1-\alpha)\left(\mu-\frac{\pi}{2}\right)$ for every $z \in I_{\lambda}$,

Figure 6.2: Set U_{2}
similarly if $\lambda \in S_{2}$ we can get $(1-\alpha)\left(\frac{\pi}{2}-\mu\right) \leqslant \arg (1-z)^{\alpha-1} \leqslant \pi(1-\alpha)$. Then

$$
\inf _{z \in I_{\lambda}}\left|\mathfrak{I m}(1-z)^{\alpha-1}\right|=\inf _{z \in I_{\lambda}}\left\{|1-z|^{\alpha-1}\left|\sin \left(\arg (1-z)^{\alpha-1}\right)\right|\right\} \geqslant 1 \geqslant \frac{c}{\alpha}>0
$$

for some positive c. Using the parametrization $r(t)=t z_{\lambda}+(1-t) \tilde{z}_{\lambda}$ for $0 \leqslant t \leqslant 1$, we get

$$
\begin{aligned}
\left|\left(1-z_{\lambda}\right)^{\alpha}-\left(1-\tilde{z}_{\lambda}\right)^{\alpha}\right| & =\alpha\left|\int_{I_{\lambda}}(1-z)^{\alpha-1} \mathrm{~d} z\right| \\
& =\alpha\left|z_{\lambda}-\tilde{z}_{\lambda}\right|\left|\int_{0}^{1}\left(1-t z_{\lambda}-(1-t) \tilde{z}_{\lambda}\right)^{\alpha-1} \mathrm{~d} t\right| \\
& \geqslant \alpha\left|z_{\lambda}-\tilde{z}_{\lambda}\right| \mathfrak{I m}\left|\int_{0}^{1}\left(1-t z_{\lambda}-(1-t) \tilde{z}_{\lambda}\right)^{\alpha-1} \mathrm{~d} t\right| \\
& \geqslant \alpha\left|z_{\lambda}-\tilde{z}_{\lambda}\right| \int_{0}^{1} \inf _{z \in I_{\lambda}}\left|\mathfrak{I m}(1-z)^{\alpha-1}\right| \mathrm{d} t \\
& \geqslant c\left|z_{\lambda}-\tilde{z}_{\lambda}\right|
\end{aligned}
$$

the third line is true since $\mathfrak{I m}(1-z) \geqslant 0$ for $\lambda \in S_{1}$ and $\mathfrak{I m}(1-z) \leqslant 0$ for $\lambda \in S_{2}$, we can change the branch of the logarithm in such a way that the function is multiplied by some vector of norm one in particular -1 , where $z=t_{0} z_{\lambda}+\left(t_{0}-1\right) z_{\lambda}$ with $t \in[0,1]$ which proves (6.4). On the other hand, noticing that

$$
\left|\int_{\gamma_{\lambda}}\right| 1-\left.z\right|^{\alpha} \mathrm{d} z\left|\leqslant k_{\lambda}^{\alpha} \int_{\gamma_{\lambda}}\right| \mathrm{d} z\left|=k_{\lambda}^{\alpha}\right| z_{\lambda}-\tilde{z}_{\lambda} \mid,
$$

where $k_{\lambda}:=\sup \left\{|1-z|: z \in \gamma_{\lambda}\right\}$ satisfies $k_{\lambda} \rightarrow 0$ as $\lambda \rightarrow 0$, we obtain

$$
\begin{equation*}
g(z):=O\left(\int_{\gamma_{\lambda}}|1-z|^{\alpha}|\mathrm{d} z|\right)=o\left(\left|z_{\lambda}-\tilde{z}_{\lambda}\right|\right) \quad(\lambda \rightarrow 0) \tag{6.5}
\end{equation*}
$$

because $|g(z)| \leqslant k_{\lambda}^{\alpha}\left|z_{\lambda}-\tilde{z}_{\lambda}\right|$, then $g(z)=o\left(\left|z_{\lambda}-\tilde{z}_{\lambda}\right|\right)$ by the property of k_{λ}. Combining the relations (6.3), (6.4), and (6.5) we obtain

$$
\left|a\left(z_{\lambda}\right)-a\left(\tilde{z}_{\lambda}\right)\right| \geqslant(c-o(1))\left|z_{\lambda}-\tilde{z}_{\lambda}\right|>\frac{c}{2}\left|z_{\lambda}-\tilde{z}_{\lambda}\right|
$$

which contradicts (6.1). Note that because of the power ramification at the real positive semi-axis, a cannot be analytically extended to K_{ε}. We have proven that for some small positive δ and every $\lambda \in S_{1} \backslash R_{1}, S_{2} \backslash R_{2}$ there exists $z_{\lambda} \in U_{1}, U_{2}$, respectively, satisfying $a\left(z_{\lambda}\right)=\lambda$.
(ii) Recall that $\psi=\arg \lambda$. We know that the point z_{λ} is located outside of the unit disk $\mathbb{D}, z_{\lambda} \rightarrow 1$ as $\lambda \rightarrow 0$, and that

$$
z_{\lambda}=1-\left(\frac{\lambda z_{\lambda}}{f\left(z_{\lambda}\right)}\right)^{\frac{1}{\alpha}}
$$

which, by the smoothness of the continuation of f produces $f\left(z_{\lambda}\right) \rightarrow 1$ as $\lambda \rightarrow 0$. Note that $\frac{z_{\lambda}}{f\left(z_{\lambda}\right)}-1=o\left(\left|\lambda^{\frac{1}{\alpha}}\right|\right)$ gives us

$$
\begin{equation*}
z_{\lambda}=1-\lambda^{\frac{1}{\alpha}}+O\left(|\lambda|^{\frac{2}{\alpha}}\right) \quad \text { and } \quad \arg \left(1-z_{\lambda}\right)=\frac{\psi}{\alpha}+O\left(|\lambda|^{\frac{1}{\alpha}}\right) \quad(\lambda \rightarrow 0) . \tag{6.6}
\end{equation*}
$$

Because $\left(\frac{z_{\lambda}}{f\left(z_{\lambda}\right)}\right)^{\frac{1}{\alpha}}=1+O\left(\left|\lambda^{\frac{1}{\alpha}}\right|\right)$, we get $\arg \left(1-z_{\lambda}\right)=\arg \left(\lambda^{\frac{1}{\alpha}}\right)+\arg \left(1+O\left(\left|\lambda^{\frac{1}{\alpha}}\right|\right)\right)$, then $\arg \left(1-z_{\lambda}\right)=\frac{\psi}{\alpha}+\arg \left(O\left(1+|\lambda|^{\frac{1}{\alpha}}\right)\right)$,

as $1+|\lambda|^{\frac{1}{\alpha}}$ is smaller, so $\tan (\theta) \sim|\lambda|^{\frac{1}{\alpha}}$ then $\theta=\arctan \left(\lambda^{\frac{1}{\alpha}}(1+o(1))\right)$,

Figure 6.3
as θ is close to 0 , so arctan has a Taylor's series centered at 0 , thus $\theta=O\left(\lambda^{\frac{1}{\alpha}}\right)$ and this is demonstrates the second relation in (6.6).
If $\lambda \in S_{1}$, for a small positive μ, we must have $\frac{1}{2} \alpha \pi-\alpha \mu \leqslant \psi \leqslant \alpha \pi$. In this case, the second relation in (6.6) tells us $\frac{1}{2} \pi-\mu<\arg \left(1-z_{\lambda}\right) \leqslant \pi$. A similar procedure applies when $\lambda \in S_{2}$, we have $-\alpha \pi \leqslant \psi \leqslant-\frac{1}{2} \alpha \pi+\alpha \mu$ and thus $-\pi \leqslant \arg \left(1-z_{\lambda}\right)<-\frac{1}{2} \pi+\mu$. Then the sets U_{1} and U_{2} are located as in Figure 3.3.
(iii) Note that z_{λ} is a simple zero of $a-\lambda$ if and only if $a^{\prime}\left(z_{\lambda}\right) \neq 0$. From (6.2) we get

$$
a^{\prime}\left(z_{\lambda}\right)=\frac{-\alpha}{\left(1-z_{\lambda}\right)^{1-\alpha}}\left(1+O\left(\left|1-z_{\lambda}\right|\right)\right) \quad(\lambda \rightarrow 0)
$$

which combined with $z_{\lambda} \rightarrow 1$ as $\lambda \rightarrow 0$, gives us $\lim _{\lambda \rightarrow 0}\left|a^{\prime}\left(z_{\lambda}\right)\right|=\infty$.

6.2 Determinant estimation

Figure 6.4: (Refer [1]) Contour ϑ

The previous proof also shows that if $\lambda \in S_{0} \cup S_{3}$, then there is no point z_{λ} with $a\left(z_{\lambda}\right)=\lambda$. From Lemma 5.1 we know that

$$
\begin{equation*}
(-1)^{n} D_{n}(a-\lambda)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{t^{-(n+1)}}{(1-t)^{\alpha} f(t)-\lambda t} \mathrm{~d} t=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{t^{-(n+2)}}{a(t)-\lambda} \mathrm{d} t \tag{6.7}
\end{equation*}
$$

where $\lambda \in \mathcal{D}(a)$ and $h(0)=1$. To deal with the Fourier integral in (6.7), we consider the contour shown in Figure 6.4. That is,

$$
\begin{aligned}
\vartheta_{1}:= & \left\{1+x \mathrm{e}^{i \varphi}: 0 \leqslant x \leqslant \varepsilon\right\}, \\
\vartheta_{2}:= & \left\{1+x \mathrm{e}^{-i \varphi}: 0 \leqslant x \leqslant \varepsilon\right\}, \\
\vartheta_{3}:= & \left\{x \mathrm{e}^{i \varepsilon}+(1-x)\left(1+\varepsilon \mathrm{e}^{i \varphi}\right): 0 \leqslant x \leqslant 1\right\} \\
& \cup\left\{\mathrm{e}^{i \theta}: \varepsilon \leqslant \theta \leqslant 2 \pi-\varepsilon\right\} \\
& \cup\left\{x\left(1+\varepsilon \mathrm{e}^{-i \varphi}\right)+(1-x) \mathrm{e}^{-i \varepsilon}: 0 \leqslant x \leqslant 1\right\}, \\
\vartheta:= & \vartheta_{1} \cup \vartheta_{2} \cup \vartheta_{3} .
\end{aligned}
$$

We can observe that if $\varphi \rightarrow 0$ and $\varepsilon \rightarrow 0$ then $\vartheta=\mathbb{T}$. Give ϑ the positive orientation and choose φ in the following way (see Figure 6.5):

Figure 6.5: (Refer [1]) The regions in S used to determine the value of φ. If λ belongs to G_{δ}, B_{δ} we take $\varphi=0, \varphi=2 \delta$, respectively.

1. Let $G_{\delta} \subset S$ be the set of all $\lambda \in S_{1} \cup S_{2}$ (equivalently $z_{\lambda} \in U_{1} \cup U_{2}$) with $\left|\arg \left(z_{\lambda}-1\right)\right|>\delta$ (equivalently $|\psi \pm \alpha \pi|>\alpha \delta$) and all the $\lambda \in S_{3}$ with $|\psi \pm \alpha \pi|>\alpha \delta$ (green regions in Figure 6.5); if $\lambda \in G_{\delta}$ take $\varphi=0$;
2. Let $B_{\delta} \subset S$ be the set $\left(S_{1} \cup S_{2} \cup S_{3}\right) \backslash G_{\delta}$ (blue regions in Figure 6.5); if $\lambda \in B_{\delta}$ take $\varphi=2 \delta$.

Let $g(z):=\frac{z^{-(n+2)}}{a(z)-\lambda}$. According to Lemma 6.1 for $\lambda \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$, the function g has a simple pole at z_{λ}.

We consider the contour γ with positive orientation, by (6.7), we have

$$
\begin{aligned}
(-1)^{n} D_{n}(a-\lambda) & =\frac{1}{2 \pi i} \int_{\mathbb{T}} g(z) \mathrm{d} z \\
& =\frac{1}{2 \pi i} \int_{\vartheta} g(z) \mathrm{d} z-\frac{1}{2 \pi i} \int_{\gamma} g(z) \mathrm{d} z,
\end{aligned}
$$

Figure 6.6: Contour γ
and the Cauchy Residue Theorem, for every $\lambda \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$, we obtain,

$$
\begin{equation*}
(-1)^{n} D_{n}(a-\lambda)=-\operatorname{res}\left(g, z_{\lambda}\right)+\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3} \tag{6.8}
\end{equation*}
$$

where

$$
\mathcal{I}_{j}:=\frac{1}{2 \pi i} \int_{\vartheta_{j}} g(z) \mathrm{d} z \quad(j=1,2,3) .
$$

If $\lambda \in R_{1} \cup R_{2} \cup S_{3}$ we will simply get

$$
\begin{equation*}
(-1)^{n} D_{n}(a-\lambda)=\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3} \tag{6.9}
\end{equation*}
$$

We know that $\lambda \in \mathbb{C}$ is an eigenvalue of $T_{n}(a)$ if and only if $D_{n}(a-\lambda)=0$, thus we are interested in the zeros of the right hand sides of (6.8) and (6.9). The following lemmas evaluate, one by one, the terms in there.

Lemma 6.2 (Refer [1]). Suppose that $\lambda \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$.
(i) If there exist positive constants m, M (depending only on the symbol a) satisfying $m \leqslant|\Lambda| \leqslant M$, then

$$
\operatorname{res}\left(g, z_{\lambda}\right)=-\frac{1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda}\left(1+O\left(\frac{|\Lambda|}{n}\right)+O\left(\frac{|\Lambda|^{2}}{n}\right)\right) \text { as } n \rightarrow \infty \text { uniformly in } \lambda .
$$

(ii) $\lim _{|\Lambda| \rightarrow 0} \frac{\operatorname{res}\left(g, z_{\lambda}\right)}{\lambda^{\frac{1}{\alpha}-1}}=-\frac{1}{\alpha}$.

Proof. (i) Since $\lambda \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$, Lemma 6.1 guarantees the existence of z_{λ}. A direct calculation reveals that

$$
\operatorname{res}\left(g, z_{\lambda}\right)=\lim _{z \rightarrow z_{\lambda}} \frac{z^{-(n+2)}\left(z-z_{\lambda}\right)}{a(z)-\lambda}=\lim _{z \rightarrow z_{\lambda}} \frac{z^{-(n+2)}-(n+2)\left(z-z_{\lambda}\right) z^{-(n+1)}}{a^{\prime}(z)}=\frac{z_{\lambda}^{-(n+2)}}{a^{\prime}\left(z_{\lambda}\right)}
$$

Now

$$
\begin{aligned}
a(z) & =\frac{1}{z}(1-z)^{\alpha} f(z) \\
a^{\prime}(z) & =-\frac{1}{z} \alpha(1-z)^{\alpha-1} f(z)+\frac{1}{z} f^{\prime}(z)(1-z)^{\alpha}-\frac{1}{z^{2}}(1-z)^{\alpha} f(z) \\
a^{\prime}\left(z_{\lambda}\right) & =a\left(z_{\lambda}\right)\left[-\frac{\alpha}{1-z_{\lambda}}+\frac{f^{\prime}\left(z_{\lambda}\right)}{f\left(z_{\lambda}\right)}-\frac{1}{z_{\lambda}}\right] \\
& =\lambda\left[\frac{-\alpha f\left(z_{\lambda}\right) z_{\lambda}+f^{\prime}\left(z_{\lambda}\right)\left(1-z_{\lambda}\right) z_{\lambda}-\left(1-z_{\lambda}\right) f\left(z_{\lambda}\right)}{\left(1-z_{\lambda}\right) z_{\lambda} f\left(z_{\lambda}\right)}\right]
\end{aligned}
$$

Then $\operatorname{res}\left(g, z_{\lambda}\right)=\frac{z_{\lambda}^{-(n+1)}\left(z_{\lambda}-1\right) f\left(z_{\lambda}\right)}{\lambda\left((\alpha-1) z_{\lambda} f\left(z_{\lambda}\right)+f\left(z_{\lambda}\right)+z_{\lambda}\left(z_{\lambda}-1\right) f^{\prime}\left(z_{\lambda}\right)\right)}$.
Using the equation (6.6) and the smoothness of the continuation of f in K_{ε}, we get

$$
f\left(z_{\lambda}\right)=1+O\left(|\lambda|^{\frac{1}{\alpha}}\right) \quad \text { and } \quad f^{\prime}\left(z_{\lambda}\right)=f^{\prime}(1)+O\left(|\lambda|^{\frac{1}{\alpha}}\right),
$$

which combined with $\log (1-z)=-z+O\left(|z|^{2}\right)(z \rightarrow 0)$ gives us

$$
\begin{aligned}
\operatorname{res}\left(g, z_{\lambda}\right) & =\frac{-\lambda^{\frac{1}{\alpha}-1}\left[\exp \left(-(n+1) \log \left(1-\lambda^{\frac{1}{\alpha}}+O\left(\left|\lambda^{\frac{2}{\alpha}}\right|\right)\right)\right)\right]\left(1+O\left(|\lambda|^{\frac{1}{\alpha}}\right)\right)}{(\alpha-1)\left(1+O\left(|\lambda|^{\frac{1}{\alpha}}\right)\right)+1+O\left(|\lambda|^{\frac{1}{\alpha}}\right)-\lambda^{\frac{1}{\alpha}} f^{\prime}(1)\left(1+O\left(|\lambda|^{\frac{1}{\alpha}}\right)\right)} \\
& =\frac{-\lambda^{\frac{1}{\alpha}-1}\left[\exp \left(-(n+1) \log \left(1-\lambda^{\frac{1}{\alpha}}+O\left(\left|\lambda^{\frac{2}{\alpha}}\right|\right)\right)\right)\right]\left(1+O\left(|\lambda|^{\frac{1}{\alpha}}\right)\right)}{\alpha-\lambda^{\frac{1}{\alpha}} f^{\prime}(1)} .
\end{aligned}
$$

Now $\log \left(1-\lambda^{\frac{1}{\alpha}}+O\left(\left|\lambda^{\frac{2}{\alpha}}\right|\right)\right)=-\lambda^{\frac{1}{\alpha}}+O\left(\left|\lambda^{\frac{2}{\alpha}}\right|\right)$ and $\alpha-\lambda^{\frac{1}{\alpha}} f^{\prime}(1)=\alpha\left(1+O\left(\left|\lambda^{\frac{1}{\alpha}}\right|\right)\right)$ so

$$
\exp \left(-(n+1) \log \left(1-\lambda^{\frac{1}{\alpha}}+O\left(\left|\lambda^{\frac{2}{\alpha}}\right|\right)\right)\right)=\exp (\Lambda) \exp \left(O\left(n\left|\lambda^{\frac{2}{\alpha}}\right|\right)\right)
$$

Then
$\operatorname{res}\left(g, z_{\lambda}\right)=-\frac{1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda}\left(1+O\left(|\lambda|^{\frac{1}{\alpha}}\right)\right)\left(1+O\left(n|\lambda|^{\frac{2}{\alpha}}\right)\right)=-\frac{1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda}\left(1+O\left(n|\lambda|^{\frac{1}{\alpha}}\right)+O\left(n|\lambda|^{\frac{2}{\alpha}}\right)\right)$.
Finally, recalling Λ from (3.5) we obtain the first part of the lemma. The limit in (ii) can be calculated directly.

Let $\hat{\vartheta}_{1}:=\log \vartheta_{1}$. Thus $\hat{\vartheta}_{1}$ is a path from 0 to $\log \left(1+\varepsilon \mathrm{e}^{i \varphi}\right)=\hat{\varepsilon} \mathrm{e}^{i \hat{\varphi}}$ with $\hat{\varepsilon}$ and $\hat{\varphi}$ satisfying

$$
\hat{\varepsilon}=\varepsilon+O\left(\varepsilon^{2}\right) \quad \text { and } \quad \hat{\varphi}=\varphi+O(\varepsilon) .
$$

Analogously, let $\hat{\vartheta}_{2}:=\log \vartheta_{2}$. Thus $\hat{\vartheta}_{2}$ is a path from $\log \left(1+\varepsilon \mathrm{e}^{-i \hat{\varphi}}\right)=\hat{\varepsilon} \mathrm{e}^{-i \hat{\varphi}}$ to 0 . For $-\pi<\beta \leqslant \pi$ let $\infty \mathrm{e}^{i \beta}$ be $\lim _{s \rightarrow \infty} s \mathrm{e}^{i \beta}$. The following lemma is the heart of the calculation. It gives us asymptotic expansions for \mathcal{I}_{1} and \mathcal{I}_{2} with the disadvantage of handling complex integration paths.

Lemma 6.3 (Refer [1]). Suppose that $\lambda \in S_{1} \cup S_{2} \cup S_{3}$.
(i) If there exist positive constants m and M (depending only on the symbol a) satisfying $m \leqslant|\Lambda| \leqslant M$, then

$$
\begin{aligned}
& \mathcal{I}_{1}=\frac{|\Lambda|^{1-\alpha}}{2 \pi i(n+1)^{1-\alpha}}\left(\int_{0}^{\infty e^{i \varphi}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} \mathrm{~d} v+O\left(\frac{1}{n}\right)\right), \\
& \mathcal{I}_{2}=-\frac{|\Lambda|^{1-\alpha}}{2 \pi i(n+1)^{1-\alpha}}\left(\int_{0}^{\infty \mathrm{e}^{-i \varphi}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} \mathrm{~d} v+O\left(\frac{1}{n}\right)\right) .
\end{aligned}
$$

(ii) If $|\Lambda| \rightarrow 0$, then

$$
\mathcal{I}_{1} \sim \frac{\mathrm{e}^{i \alpha \pi} \Gamma(1-\alpha)}{2 \pi i(n+1)^{1-\alpha}} \quad \text { and } \quad \mathcal{I}_{2} \sim \frac{\mathrm{e}^{i \alpha \pi} \Gamma(1-\alpha)}{2 \pi i(n+1)^{1-\alpha}} .
$$

Where all the asymptotic relations work with $n \rightarrow \infty$ uniformly in λ.

Proof. All the order terms in this proof work with $n \rightarrow \infty$ and $\lambda \rightarrow 0$. Consider first the integral \mathcal{I}_{1} and make the variable change $v=\mathrm{e}^{u}$. Then

$$
\begin{equation*}
2 \pi i \mathcal{I}_{1}=\int_{\hat{\vartheta}_{1}} \frac{\mathrm{e}^{-(n+1) u}}{a\left(\mathrm{e}^{u}\right)-\lambda} \mathrm{d} u \tag{6.10}
\end{equation*}
$$

We can write

$$
a\left(\mathrm{e}^{u}\right)=\mathrm{e}^{-u}\left(1-\mathrm{e}^{u}\right)^{\alpha} f\left(\mathrm{e}^{u}\right)=(-u)^{\alpha} \hat{f}(u)
$$

where $\hat{f}(u)=\frac{f\left(\mathrm{e}^{u}\right)}{\mathrm{e}^{u}}\left(1+\frac{u}{2}+\frac{u^{2}}{6}+\cdots\right)^{\alpha}$ which, by property 1 , belongs to $C^{2}\left(\hat{\vartheta}_{1}\right)$. Note that $\hat{f}(0)=f(1)=1$ and that $(-u)^{\alpha}$ equals $\mathrm{e}^{-i \alpha \pi} u^{\alpha}$ when $u \in \hat{\vartheta}_{1}$ and $\mathrm{e}^{i \alpha \pi} u^{\alpha}$ when $u \in \hat{\vartheta}_{2}$. Using the function

$$
k(u, \lambda):=\frac{1}{(-u)^{\alpha} \hat{f}(u)-\lambda}-\frac{1}{(-u)^{\alpha}-\lambda}
$$

we split \mathcal{I}_{1} as

$$
\begin{equation*}
2 \pi i \mathcal{I}_{1}=\mathcal{I}_{1,1}+\mathcal{I}_{1,2} \tag{6.11}
\end{equation*}
$$

where

$$
\mathcal{I}_{1,1}:=\int_{\hat{\vartheta}_{1}} \frac{\mathrm{e}^{-(n+1) u}}{(-u)^{\alpha}-\lambda} \mathrm{d} u \quad \text { and } \quad \mathcal{I}_{1,2}:=\int_{\hat{\vartheta}_{1}} k(u, \lambda) \mathrm{e}^{-(n+1) u} \mathrm{~d} u .
$$

As we will see, in norm, the integral $\mathcal{I}_{1,2}$ is much smaller than $\mathcal{I}_{1,1}$. Thus we need to estimate $\mathcal{I}_{1,2}$ and we will do it by finding a uniform bound for $|k|$. To this end, note that $\hat{f}(u)=1+O(u)(u \rightarrow 0)$ and consider another variable change: $u=|\lambda|^{\frac{1}{\alpha}} v$, remember that $\frac{\lambda}{|\lambda|}=\mathrm{e}^{i \psi}$, thus $(-u)^{\alpha}=|\lambda|(-v)^{\alpha}$ and

$$
\begin{aligned}
\frac{1}{(-u)^{\alpha} \hat{f}(u)-\lambda} & =\frac{1}{|\lambda|} \frac{1}{(-v)^{\alpha}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)-\mathrm{e}^{i \psi}} \\
\frac{1}{(-u)^{\alpha}-\lambda} & =\frac{1}{|\lambda|} \frac{1}{(-v)^{\alpha}-\mathrm{e}^{i \psi}} .
\end{aligned}
$$

We get

$$
k\left(|\lambda|^{\frac{1}{\alpha}} v, \lambda\right)=\frac{O\left(|\lambda|^{\frac{1}{\alpha}-1}|v|^{\alpha+1}\right)}{\left((-v)^{\alpha}-\mathrm{e}^{i \psi}\right)\left((-v)^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)\right)} .
$$

The path $\hat{\vartheta}_{1}$ is close to the line segment given by $\left\{x \mathrm{e}^{i \hat{\varphi}}: 0 \leqslant x \leqslant \hat{\varepsilon}\right\}$. Thus for $u \in \hat{\vartheta}_{1}$ we have $\arg (-u)^{\alpha}=\arg (-v)^{\alpha} \sim \alpha(\hat{\varphi}-\pi)$ and we are ready to show that the denominator
of $|k|$ is bounded away from 0 .
Suppose that $\lambda \in G_{\delta}$ (see Figure 6.5). Then $\hat{\varphi}=0,(-v)^{\alpha}$ lies arbitrarily close to the ray with argument $-\alpha \pi$, and $\mathrm{e}^{i \psi}$ lies on \mathbb{T} with $|\psi-\alpha \pi|>\alpha \delta$, (see Figure 6.7a) giving us

$$
\begin{equation*}
\left|(-v)^{\alpha}-\mathrm{e}^{i \psi}\right| \geqslant \alpha \delta>\frac{\alpha \delta}{2} \tag{6.12}
\end{equation*}
$$

If $\lambda \in B_{\delta}$ (see Figure 6.5), then $\hat{\varphi}=2 \delta,(-v)^{\alpha}$ lies arbitrarily close to the ray with argument $\alpha(2 \delta-\pi)$, and $\mathrm{e}^{i \psi}$ lies on \mathbb{T} with $|\psi-\alpha \pi| \leqslant \alpha \delta$, giving us (6.12) again (see Figure 6.7b).

(a) Case $\lambda \in G_{\delta}$

(b) Case $\lambda \in B_{\delta}$

Figure 6.7

For the second factor in the denominator of $|k|$, note that $\left|(-v)^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)\right|$ attains its minimum value when $|v| \sim 1$ and thus the order term will be bounded by $|\lambda|^{\frac{1}{\alpha}}<\rho^{\frac{1}{\alpha}}$, which can be taken arbitrarily small. Then we get

$$
\begin{equation*}
\left|(-v)^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)\right|>\frac{\alpha \delta}{4} \tag{6.13}
\end{equation*}
$$

Using (6.12) and (6.13) we get the bound $\left|k\left(|\lambda|^{\frac{1}{\alpha}} v, \lambda\right)\right| \leqslant c_{2}|\lambda|^{\frac{1}{\alpha}-1}|v|^{\alpha+1}$ (or equivalently $\left.|k(u, \lambda)| \leqslant c_{2}|\lambda|^{-2}|u|^{\alpha+1}\right)$ where c_{2} is a positive constant not depending on λ or v.

Thus,

$$
\begin{aligned}
\left|\mathcal{I}_{1,2}\right| & \leqslant \int_{\hat{\vartheta}_{1}}\left|k(u, \lambda) \mathrm{e}^{-(n+1) u}\right||\mathrm{d} u| \\
& \leqslant \frac{c_{2}}{|\lambda|^{2}} \int_{\hat{\vartheta}_{1}}|u|^{\alpha+1}\left|\mathrm{e}^{-(n+1) u}\right||\mathrm{d} u| \\
& =\frac{c_{2}}{(n+1)^{\alpha+2}|\lambda|^{2}} \int_{0}^{\hat{e}^{i}{ }^{\hat{\varphi}}} \\
& |w|^{\alpha+1}\left|\mathrm{e}^{-w}\right||\mathrm{d} w| \\
& \leqslant \frac{c_{2}}{(n+1)^{\alpha+2}|\lambda|^{2}} \int_{0}^{\infty \mathrm{e}^{i \hat{\varphi}}}|w|^{\alpha+1}\left|\mathrm{e}^{-w}\right||\mathrm{d} w|,
\end{aligned}
$$

where in the third line we shifted to the variable $w=(n+1) u$. Now we consider the following contour,

Figure 6.8: Contour T

In T the function $|w|^{\alpha+1}\left|\mathrm{e}^{-w}\right|$ has not singularities and it is bounded, note that $|w|^{\alpha+1}\left|\mathrm{e}^{-w}\right|=o(1)$ when $|w| \rightarrow \infty$. Using the dominated convergence Theorem 2.4, we have that $\lim _{R \rightarrow \infty} \int_{R}^{R e^{i \varphi}}|w|^{\alpha+1}\left|\mathrm{e}^{-w}\right||\mathrm{d} w|=0$, thus

$$
\begin{aligned}
\left|\mathcal{I}_{1,2}\right| & \leqslant \frac{c_{2}}{(n+1)^{\alpha+2}|\lambda|^{2}} \int_{0}^{\infty} w^{\alpha+1} \mathrm{e}^{-w} \mathrm{~d} w \\
& =\frac{c_{2} \Gamma(\alpha+2)}{(n+1)^{\alpha+2}|\lambda|^{2}}
\end{aligned}
$$

The previous calculation gives us

$$
\begin{equation*}
\mathcal{I}_{1,2}=O\left(\frac{1}{n^{\alpha+2}|\lambda|^{2}}\right)=O\left(\frac{1}{n^{2-\alpha}|\Lambda|^{2 \alpha}}\right) \tag{6.14}
\end{equation*}
$$

uniformly in λ. Now we work with $\mathcal{I}_{1,1}$. Write

$$
\begin{equation*}
\mathcal{I}_{1,1}=\mathcal{I}_{1,1,1}-\mathcal{I}_{1,1,2}, \tag{6.15}
\end{equation*}
$$

where

$$
\mathcal{I}_{1,1,1}:=\int_{0}^{\infty \mathrm{e}^{i \hat{\varphi}}} \frac{\mathrm{e}^{-(n+1) u}}{(-u)^{\alpha}-\lambda} \mathrm{d} u \quad \text { and } \quad \mathcal{I}_{1,1,2}:=\int_{\hat{\varepsilon} \mathrm{e}^{i} \varphi}^{\infty \mathrm{e}^{i \hat{\varphi}}} \frac{\mathrm{e}^{-(n+1) u}}{(-u)^{\alpha}-\lambda} \mathrm{d} u .
$$

For $\mathcal{I}_{1,1,2}$ consider the change of variable $w=u \mathrm{e}^{-i \hat{\varphi}}$. Thus

$$
\left|\mathcal{I}_{1,1,2}\right|=\left|\int_{\hat{\varepsilon}}^{\infty} \frac{\mathrm{e}^{i \hat{\varphi}} \mathrm{e}^{-(n+1) \mathrm{e}^{i \hat{\varphi}} w}}{\left(-w \mathrm{e}^{i \hat{\varphi}}\right)^{\alpha}-\lambda} \mathrm{d} w\right|
$$

note that $\left|\left(-w \mathrm{e}^{i \hat{\varphi}}\right)^{\alpha}-\lambda\right| \geqslant\left||w|^{\alpha}-|\lambda|\right|>\left|\hat{\varepsilon}^{\alpha}-|\lambda|\right|$ hence,

$$
\begin{align*}
\left|\mathcal{I}_{1,1,2}\right| & \leqslant \frac{1}{\left|\hat{\varepsilon}^{\alpha}-|\lambda|\right|} \int_{\hat{\varepsilon}}^{\infty} \mathrm{e}^{-(n+1) w \cos \hat{\varphi}} \mathrm{~d} w \\
& =\frac{\mathrm{e}^{-(n+1) \hat{\varepsilon} \cos \hat{\varphi}}}{(n+1)\left|\hat{\varepsilon}^{\alpha}-|\lambda|\right| \cos \hat{\varphi}} . \tag{6.16}
\end{align*}
$$

Since $\hat{\varphi}$ is a small non-negative constant we get $-\cos \hat{\varphi}<-\frac{1}{2}$ and $|\lambda|<\rho$, which can be chosen satisfying $\rho<\hat{\varepsilon}^{\alpha}$, equation (6.16) shows that

$$
\mathcal{I}_{1,1,2}=O\left(\frac{\mathrm{e}^{-\frac{1}{2} \hat{\varepsilon} n}}{n}\right) \text { uniformly in } \lambda .
$$

Taking again the variable change $u=|\lambda|^{\frac{1}{\alpha}} v$, and putting together (6.11), (6.14), (6.15), and (6.16) we obtain

$$
\begin{equation*}
\mathcal{I}_{1}=\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i}\left(\int_{0}^{\infty e^{i \hat{\varphi}}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} \mathrm{~d} v+O\left(\frac{1}{n|\Lambda|^{\alpha+1}}\right)\right) \tag{6.17}
\end{equation*}
$$

uniformly in λ. A result for \mathcal{I}_{2} can be obtained readily by changing every $\hat{\varphi}$ by $-\hat{\varphi}$, getting

$$
\begin{equation*}
\mathcal{I}_{2}=-\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i}\left(\int_{0}^{\infty \mathrm{e}^{-i \hat{\varphi}}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} \mathrm{~d} v+O\left(\frac{1}{n|\Lambda|^{\alpha+1}}\right)\right) \tag{6.18}
\end{equation*}
$$

uniformly in λ. For proving (i) suppose that $m \leqslant|\Lambda| \leqslant M$. Then the result is immediate from (6.17) and (6.18).

For proving (ii) take $|\Lambda| \rightarrow 0$ and assume first that $\lambda \in G_{\delta}$ (see Figure 6.5), thus $\varphi=\hat{\varphi}=0$. From equation (6.10), with

$$
\hat{f}(u)=\hat{f}(0)+\hat{f}^{\prime}(0) O(u)=1+O(u) \quad(u \rightarrow 0)
$$

and the change of variable $u=|\lambda|^{\frac{1}{\alpha}} v$, we get

$$
\begin{align*}
2 \pi i \mathcal{I}_{1} & =\int_{\hat{\vartheta}_{1}} \frac{\mathrm{e}^{-(n+1) u}}{\mathrm{e}^{-i \alpha \pi} u^{\alpha} \hat{f}(u)-\lambda} \mathrm{d} u \\
& =|\lambda|^{\frac{1}{\alpha}-1} \int_{\vartheta_{1}^{\prime}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha} \hat{f}\left(|\lambda|^{\frac{1}{\alpha}} v\right)-\mathrm{e}^{i \psi}} \mathrm{~d} v \\
& =|\lambda|^{\frac{1}{\alpha}-1} \int_{\vartheta_{1}^{\prime}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)} \mathrm{d} v \\
& =|\lambda|^{\frac{1}{\alpha}-1}\left(\mathcal{J}_{1,1}+\mathcal{J}_{1,2}\right), \tag{6.19}
\end{align*}
$$

where ϑ_{1}^{\prime} is a continuous path in \mathbb{C} starting at 0 and ending at $\hat{\varepsilon}|\lambda|^{-\frac{1}{\alpha}}$, and

$$
\begin{align*}
& \mathcal{J}_{1,1}:=\int_{\vartheta_{1,1}^{\prime}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)} \mathrm{d} v \\
& \mathcal{J}_{1,2}:=\int_{\vartheta_{1,2}^{\prime}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)} \mathrm{d} v \tag{6.20}
\end{align*}
$$

here $\vartheta_{1,1}^{\prime}$ and $\vartheta_{1,2}^{\prime}$ are the portions of ϑ_{1}^{\prime} from 0 to 1 and from 1 to $\hat{\varepsilon}|\lambda|^{-\frac{1}{\alpha}}$, respectively. We proceed to find order bounds for $\mathcal{J}_{1,1}$ and $\mathcal{J}_{1,2}$. The former will be easy but the latter will require a lot more work.

Consider the integral $\mathcal{J}_{1,1}$. The term $O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)=O\left(|\lambda|^{\frac{1}{\alpha}}\right)$ is arbitrarily small and the denominator in the integrand of $\mathcal{J}_{1,1}$ in (6.20) has a zero at some point close to $v=\mathrm{e}^{i(\alpha \pi+\psi)}$. For $\lambda \in G_{\delta}$ we have $|\alpha \pi-\psi|>\alpha \delta$, thus

$$
\begin{align*}
\left|\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}\right)\right| & \geqslant\left|\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}\right|-O\left(|\lambda|^{\frac{1}{\alpha}}\right) \\
& \geqslant\left|v^{\alpha}\right|\left|i(\psi-\alpha \pi)-O\left((\psi-\alpha \pi)^{2}\right)\right|+O\left(|\lambda|^{\frac{1}{\alpha}}\right) \\
& \geqslant|\psi-\alpha \pi|+O\left(|\lambda|^{\frac{1}{\alpha}}\right) \\
& >\alpha \delta+O\left(|\lambda|^{\frac{1}{\alpha}}\right) \\
& >\alpha \delta \tag{6.21}
\end{align*}
$$

We thus have

$$
\begin{equation*}
\left|\mathcal{J}_{1,1}\right| \leqslant \frac{1}{\alpha \delta} \int_{\vartheta_{1,1}^{\prime}} \mathrm{e}^{-|\Lambda| v} \mathrm{~d} v \leqslant \frac{1}{\alpha \delta} . \tag{6.22}
\end{equation*}
$$

To find an order bound for $\mathcal{J}_{1,2}$ we will go through three steps: In the first one, we split it as $\mathcal{J}_{1,2,1}+\mathcal{J}_{1,2,2}$, in the second step we bound $\mathcal{J}_{1,2,1}$, and in the third step we study $\mathcal{J}_{1,2,2}$ for the cases $0<\alpha<\frac{1}{2}, \alpha=\frac{1}{2}$, and $\frac{1}{2}<\alpha<1$ separately. Finally we will put all together.

Step 1: Consider the function

$$
\ell(v, \lambda):=\frac{1}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)}-\frac{1}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}}
$$

and split $\mathcal{J}_{1,2}$ as

$$
\begin{equation*}
\mathcal{J}_{1,2}=\mathcal{J}_{1,2,1}+\mathcal{J}_{1,2,2} \tag{6.23}
\end{equation*}
$$

where

$$
\mathcal{J}_{1,2,1}:=\int_{\vartheta_{1,2}^{\prime}} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}} \mathrm{d} v \quad \text { and } \quad \mathcal{J}_{1,2,2}:=\int_{\vartheta_{1,2}^{\prime}} \ell(v, \lambda) \mathrm{e}^{-|\Lambda| v} \mathrm{~d} v .
$$

Step 2: Considering the variable change $w=|\Lambda| v$ we get

$$
\begin{align*}
&\left|\mathcal{J}_{1,2,1}\right| \leqslant \\
&\left|\mathcal{J}_{1,2,1}\right|=\left|\frac{\mathrm{e}^{i \alpha \pi}}{|\Lambda|^{1-\alpha}} \int_{|\Lambda|}^{\hat{\varepsilon}(n+1)} w^{-\alpha} \mathrm{e}^{-w} \mathrm{~d} w\right| \\
& \leqslant \frac{1}{|\Lambda|^{1-\alpha}} \int_{|\Lambda|}^{\hat{\varepsilon}(n+1)}\left|w^{-\alpha}\right|\left|\mathrm{e}^{-w}\right||\mathrm{d} w| \\
& \leqslant \frac{1}{|\Lambda|^{1-\alpha}} \int_{0}^{\infty} w^{-\alpha} \mathrm{e}^{-w} \mathrm{~d} w \\
&=\frac{\Gamma(1-\alpha)}{|\Lambda|^{1-\alpha}} \tag{6.24}
\end{align*}
$$

Step 3: Using (6.21), there exists a constant c_{1} satisfying

$$
|\ell(v, \lambda)| \leqslant \frac{1+O\left(|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}\right)}{|v|^{2 \alpha}\left|1-v^{-\alpha} \mathrm{e}^{i(\psi+\alpha \pi)}+O\left(|\lambda|^{\frac{1}{\alpha}}|v|\right)\right|} \leqslant \frac{1+c_{1}|\lambda|^{\frac{1}{\alpha}}|v|^{\alpha+1}}{\alpha \delta|v|^{2 \alpha}}
$$

so that, for every $v \in \vartheta_{1,2}^{\prime}$, we have

$$
|\ell(v, \lambda)| \leqslant \frac{1}{\alpha \delta|v|^{2 \alpha}}+c_{1}|\lambda|^{\frac{1}{\alpha}}|v|^{1-\alpha} .
$$

Then using the variable change $w=|\Lambda| v$ again, we get

$$
\begin{align*}
\left|\mathcal{J}_{1,2,2}\right| & \leqslant \frac{1}{\alpha \delta} \int_{\vartheta_{1,2}^{\prime}} \frac{\mathrm{e}^{-|\Lambda| v}}{|v|^{2 \alpha}}|\mathrm{~d} v|+c_{1}|\lambda|^{\frac{1}{\alpha}} \int_{\vartheta_{1,2}^{\prime}}|v|^{1-\alpha} \mathrm{e}^{-|\Lambda| v}|\mathrm{~d} v| \\
& \leqslant \frac{|\Lambda|^{2 \alpha-1}}{\alpha \delta} \int_{|\Lambda|}^{\hat{\varepsilon}(n+1)} w^{-2 \alpha} \mathrm{e}^{-w} \mathrm{~d} w+\frac{c_{1}|\Lambda|^{\alpha-1}}{n+1} \int_{|\Lambda|}^{\hat{\varepsilon}(n+1)} w^{1-\alpha} \mathrm{e}^{-w} \mathrm{~d} w \\
& \leqslant \frac{|\Lambda|^{2 \alpha-1}}{\alpha \delta} \int_{|\Lambda|}^{\hat{\varepsilon}(n+1)} w^{-2 \alpha} \mathrm{e}^{-w} \mathrm{~d} w+\frac{c_{1} \Gamma(2-\alpha)}{(n+1)|\Lambda|^{1-\alpha}} \\
& =\frac{1}{|\Lambda|^{1-\alpha}}\left(\frac{|\Lambda|^{\alpha}}{\alpha \delta} \hat{\mathcal{J}}+\frac{c_{1} \Gamma(2-\alpha)}{n+1}\right), \tag{6.25}
\end{align*}
$$

where

$$
\hat{\mathcal{J}}:=\int_{|\Lambda|}^{\hat{\varepsilon}(n+1)} w^{-2 \alpha} \mathrm{e}^{-w} \mathrm{~d} w \leqslant \int_{|\Lambda|}^{\infty} w^{-2 \alpha} \mathrm{e}^{-w} \mathrm{~d} w
$$

The integral $\hat{\mathcal{J}}$ can be estimated as follows. Suppose that $\alpha=\frac{1}{2}$, integrating by parts we obtain

$$
\begin{equation*}
\hat{\mathcal{J}} \leqslant-\frac{\ln |\Lambda|}{\mathrm{e}^{|\Lambda|}}+\int_{|\Lambda|}^{\infty} \mathrm{e}^{-w} \ln w \mathrm{~d} w \tag{6.26}
\end{equation*}
$$

which means that $\hat{\mathcal{J}}=O(\ln |\Lambda|)(|\Lambda| \rightarrow 0)$ because $\ln w=O\left(\mathrm{e}^{-w}\right)$ when $(w \rightarrow \infty)$. Suppose that $0<\alpha<\frac{1}{2}$, since $0<1-2 \alpha<1$ in this case, we obtain

$$
\begin{equation*}
\hat{\mathcal{J}} \leqslant \int_{0}^{\infty} w^{-2 \alpha} \mathrm{e}^{-w} \mathrm{~d} w=\Gamma(1-2 \alpha) \tag{6.27}
\end{equation*}
$$

which means that $\hat{\mathcal{J}}=O(1)(|\Lambda| \rightarrow 0)$. Finally, suppose that $\frac{1}{2}<\alpha<1$, integrating by parts we get

$$
\begin{equation*}
\hat{\mathcal{J}} \leqslant \frac{\mathrm{e}^{-|\Lambda|}}{(2 \alpha-1)|\Lambda|^{2 \alpha-1}}-\frac{1}{1-2 \alpha} \int_{|\Lambda|}^{\infty} w^{1-2 \alpha} \mathrm{e}^{-w} \mathrm{~d} w \tag{6.28}
\end{equation*}
$$

which means that $\hat{\mathcal{J}}=O\left(\frac{1}{|\Lambda|^{2 \alpha-1}}\right) \quad(|\Lambda| \rightarrow 0)$, because the integral in the second term is bigger them $\Gamma(2 \alpha)$. Remember that $m \leqslant|\Lambda| \leqslant M$, using (6.26), (6.27), and (6.28) in (6.25) we obtain

$$
\begin{equation*}
\mathcal{J}_{1,2,2}=o\left(\frac{1}{|\Lambda|^{1-\alpha}}\right) \quad(|\Lambda| \rightarrow 0) \tag{6.29}
\end{equation*}
$$

Putting together (6.23), (6.24), and (6.29) we get

$$
\mathcal{J}_{1,2}=\frac{\mathrm{e}^{i \alpha \pi} \Gamma(1-\alpha)}{|\Lambda|^{1-\alpha}}(1+o(1))
$$

which combined with (6.19) and (6.22) gives us

$$
\begin{aligned}
\mathcal{I}_{1} & =\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i}\left(O(1)+\frac{\mathrm{e}^{i \alpha \pi} \Gamma(1-\alpha)}{|\Lambda|^{1-\alpha}}(1+o(1))\right) \\
& =\frac{|\lambda|^{\frac{1}{\alpha}-1} \mathrm{e}^{i \alpha \pi} \Gamma(1-\alpha)}{2 \pi i|\Lambda|^{1-\alpha}}\left(O\left(|\Lambda|^{\alpha-1}\right)+1+o(1)\right) \\
& =\frac{\mathrm{e}^{i \alpha \pi} \Gamma(1-\alpha)}{2 \pi i(n+1)^{1-\alpha}}(1+o(1)),
\end{aligned}
$$

where in the third line we changed $O\left(|\Lambda|^{\alpha-1}\right)$ for $o(1)$ because Λ is bounded, which shows the assertion (ii) for the case $\lambda \in G_{\delta}$. The case $\lambda \in B_{\delta}$ can be readily obtained as well as the corresponding result for \mathcal{I}_{2}.

The result in Lemma 6.3 is a neat asymptotic approach but we want to rotate the integration path to the real axis. Recall that $\psi=\arg \lambda$. To this end, choose a small positive δ and consider the following subsets of S :

$$
\begin{aligned}
& R_{1}:=\{\lambda \in S: \alpha(\pi-\delta) \leqslant \psi<\alpha \pi\} \\
& R_{2}:=\{\lambda \in S:-\alpha \pi<\psi \leqslant-\alpha(\pi-\delta)\} .
\end{aligned}
$$

We thus know that if $\lambda \in R_{1} \cup R_{2}$, then $\varphi=2 \delta$, and if $\lambda \in G_{\delta}$, then $\varphi=0$. Let χ_{A} stand for the characteristic function of the set A. Depending on the choice of φ we can rotate the integrals in Lemma 6.3 obtaining the following two lemmas.

Lemma 6.4 (Refer [1]). Suppose that there exists constants m, M (depending only on the symbol a) satisfying $m \leqslant|\Lambda| \leqslant M$. For $\lambda \in S_{1} \cup S_{2} \cup S_{3}$ with $\lambda \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{aligned}
& \mathcal{I}_{1}=\frac{1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda} \chi_{R_{2}}(\lambda)+\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i} \int_{0}^{\infty} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} \mathrm{~d} v+O\left(\frac{1}{n^{2-\alpha}}\right), \\
& \mathcal{I}_{2}=\frac{-1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda} \chi_{R_{1}}(\lambda)-\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i} \int_{0}^{\infty} \frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} \mathrm{~d} v+O\left(\frac{1}{n^{2-\alpha}}\right) .
\end{aligned}
$$

Proof. In this proof, all the order terms work with $n \rightarrow \infty$ uniformly in λ. Let $\lambda \in G_{\delta}$ (see Figure 6.5). Then $\hat{\varphi}=0$ and the result follows directly from Lemma 6.3 part (i), since for (6.17) (6.18) we have

$$
\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i} O\left(\frac{1}{n|\Lambda|^{\alpha+1}}\right)=O\left(\frac{1}{n^{2-\alpha}|\Lambda|^{2 \alpha}}\right)=O\left(\frac{1}{n^{2-\alpha}}\right) .
$$

Consider now the case $\lambda \in R_{1} \cup R_{2}$ (see B_{δ} in Figure 6.5), then $\varphi=2 \delta$. In order to rotate our integration path, for a large positive R, we consider the positively orientated triangle T with vertices $0, R$, and $R \mathrm{e}^{i \hat{\varphi}}$ (see Figure 6.8). Let h be the function

$$
h(v):=\frac{\mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} ;
$$

thus equation (6.17) can be written as

$$
\mathcal{I}_{1}=\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i} \int_{0}^{\infty e^{i \hat{\varphi}}} h(v) \mathrm{d} v+O\left(\frac{1}{n^{2-\alpha}|\Lambda|^{2 \alpha}}\right) .
$$

The function h has a singularity at $v_{0}=\mathrm{e}^{i\left(\pi+\frac{\psi}{\alpha}\right)}$. Assume that $\lambda \in R_{2}$. Then v_{0} is enclosed by T because, in this case, we must have $0<\arg v_{0} \leqslant \delta<\hat{\varphi}$, since

$$
\int_{T} h(v) \mathrm{d} v=\int_{0}^{R} h(v) \mathrm{d} v+\int_{R}^{R e^{i \hat{\varphi}}} h(v) \mathrm{d} v-\int_{0}^{r \mathrm{e}^{i} \hat{\varphi}} h(v) \mathrm{d} v=\operatorname{res}\left(h, v_{0}\right) .
$$

Note that $h(v)$ is bounded and $h(v)=o(1)$ when $|v| \rightarrow \infty$, using the dominated convergence Theorem 2.4, we have that $\lim _{R \rightarrow \infty} \int_{R}^{R e^{i \varphi}} h(v) \mathrm{d} v=0$, as $\Lambda=(n+1) \lambda^{\frac{1}{\alpha}}$ then

$$
\begin{aligned}
\operatorname{res}\left(h, v_{0}\right) & =\lim _{v \rightarrow v_{o}} \frac{\left(v-v_{0}\right) \mathrm{e}^{-|\Lambda| v}}{\mathrm{e}^{-i \alpha \pi} v^{\alpha}-\mathrm{e}^{i \psi}} \\
& =-\frac{1}{\alpha} \mathrm{e}^{i \psi\left(\frac{1}{\alpha}-1\right)} \mathrm{e}^{|\Lambda| \exp \left(i \frac{\psi}{\alpha}\right)} \\
& =-\frac{1}{\alpha} \mathrm{e}^{i \psi\left(\frac{1}{\alpha}-1\right)} \mathrm{e}^{\Lambda}
\end{aligned}
$$

When $(R \rightarrow \infty)$, thus we have

$$
\mathcal{I}_{1}=\frac{1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda}+\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i} \int_{0}^{\infty} h(v) \mathrm{d} v+O\left(\frac{1}{n^{2-\alpha}|\Lambda|^{2 \alpha}}\right) .
$$

Assume that $\lambda \in R_{1}$. Then v_{0} is not enclosed by T because, in this case, we must have $-\delta \leqslant \arg v_{0}<0$, obtaining

$$
\mathcal{I}_{1}=\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i} \int_{0}^{\infty} h(v) \mathrm{d} v+O\left(\frac{1}{n^{2-\alpha}|\Lambda|^{2 \alpha}}\right)
$$

Finally, the result for \mathcal{I}_{2} can be readily obtained.

Lemma 6.5 (Refer [1]). For $\lambda \in S_{1} \cup S_{2}$ we have

$$
\mathcal{I}_{3}=O\left(\frac{1}{n}\right) \quad(n \rightarrow \infty)
$$

uniformly in λ.
Proof. Integrating by parts we obtain

$$
\mathcal{I}_{3}=\frac{-1}{2(n+1) \pi i}\left(\left[\frac{z^{-(n+1)}}{a(z)-\lambda}\right]_{\vartheta_{3}}-\int_{\vartheta_{3}} \frac{a^{\prime}(z) z^{-(n+1)}}{(a(z)-\lambda)^{2}} \mathrm{~d} z\right) .
$$

Since $1 \notin \vartheta_{3}$ and z is bounded away from 1 , the function a is continuous and differentiable over ϑ_{3}. Thus,

$$
c_{0}:=\sup \left\{\frac{1}{|a(z)-\lambda|}: z \in \vartheta_{3}\right\} \quad \text { and } \quad c_{1}:=\sup \left\{\frac{\left|a^{\prime}(z)\right|}{|a(z)-\lambda|^{2}}: z \in \vartheta_{3}\right\}
$$

are constants not depending on λ. Now

$$
\left|\left[\frac{z^{-(n+1)}}{a(z)-\lambda}\right]_{\vartheta_{3}}\right| \leqslant c_{0}\left[\frac{1}{\left|1+\varepsilon \mathrm{e}^{-i \varphi}\right|^{n+1}}+\frac{1}{\left|1+\varepsilon \mathrm{e}^{i \varphi}\right|^{n+1}}\right] \leqslant c_{0}
$$

and

$$
\int_{\vartheta_{3}}\left|\frac{a^{\prime}(z) z^{-(n+1)}}{(a(z)-\lambda)^{2}}\right| \mathrm{d} z \leqslant c_{1} \int_{\vartheta_{3}} \mathrm{~d} z \leqslant c_{1} \varepsilon\left(\mathrm{e}^{i \varphi}-\mathrm{e}^{-i \varphi}\right) .
$$

Then

$$
\left|\mathcal{I}_{3}\right| \leqslant \frac{c_{0}}{2(n+1) \pi}+\frac{c_{1}}{2(n+1) \pi} \varepsilon\left(\mathrm{e}^{i \varphi}-\mathrm{e}^{-i \varphi}\right)=O\left(\frac{1}{n}\right)
$$

as $n \rightarrow \infty$ uniformly in λ.

6.3 Individual eigenvalues

The following result gives a partial proof of the conjecture (3.4) of Bogoya, Grudsky and Malysheva [1], there are not eigenvalues in S_{3}.

Theorem 6.6 (Refer [1]). Suppose that $\Lambda \in \hat{S}_{3}$. If $\frac{1}{2}<\alpha<1$ or if $0<\alpha \leqslant \frac{1}{2}$ with $\psi>\frac{\pi}{2}$, then we cannot have eigenvalues of $T_{n}(a)$ in $S_{3} \backslash\left(R_{1} \cup R_{2}\right)$.

Proof. In this proof, all the order terms work with $(n \rightarrow \infty)$ uniformly in Λ. Suppose that $\lambda \in S_{3} \backslash\left(R_{1} \cup R_{2}\right)$ (equivalently $\left.\psi \in(\alpha \pi, \pi] \cup(-\pi,-\alpha \pi)\right)$ is an eigenvalue of $T_{n}(a)$. Using Lemmas 6.4 and 6.5, and (6.9) we obtain

$$
0=|\lambda|^{\frac{1}{\alpha}-1} \int_{0}^{\infty} \mathrm{e}^{-|\Lambda| v} b(v, \psi) \mathrm{d} v+\Delta_{3}(\Lambda, n)
$$

where

$$
b(v, \psi):=\frac{\mathrm{e}^{-i \alpha \pi}}{v^{\alpha}-\mathrm{e}^{i(\psi-\alpha \pi)}}-\frac{\mathrm{e}^{i \alpha \pi}}{v^{\alpha}-\mathrm{e}^{i(\psi+\alpha \pi)}}
$$

and $\Delta_{3}(\Lambda, n)=O\left(\frac{1}{n}\right)$, which is equivalent to saying that

$$
0=\frac{|\Lambda|^{1-\alpha}}{2 \pi i(n+1)^{1-\alpha}}\left(G(\Lambda, \psi)+\Delta_{4}(\Lambda, n)\right)
$$

where

$$
G(\Lambda, \psi):=\int_{0}^{\infty} \mathrm{e}^{-|\Lambda| v} b(v, \psi) \mathrm{d} v
$$

and $\Delta_{4}(\Lambda, n)=O\left(\frac{1}{n^{\alpha}}\right)$. Our aim is to show that $G(\cdot, \psi)$ has no zeros, since then (by the Rouche's theorem) $G(\cdot, \psi)-\Delta_{4}(\cdot, n)$ has no zeros either, getting a contradiction. Note that

$$
\mathrm{e}^{i \varphi} b(v, \psi)=\frac{v^{\alpha}\left(\mathrm{e}^{i(\psi-\alpha \pi)}-\mathrm{e}^{i(\psi+\alpha \pi)}\right)}{\left(v^{\alpha}-\mathrm{e}^{i(\psi-\alpha \pi)}\right)\left(v^{\alpha}-\mathrm{e}^{i(\psi+\alpha \pi)}\right)} \quad \text { and } \quad \frac{2 \sin (\alpha \pi)}{i}=\mathrm{e}^{-i \psi}\left(\mathrm{e}^{i(\psi-\alpha \pi)}-\mathrm{e}^{i(\psi+\alpha \pi)}\right)
$$

Then

$$
\frac{i \mathrm{e}^{i \psi} G(\Lambda, \psi)}{2 \sin (\alpha \pi)}=\int_{0}^{\infty} \frac{v^{\alpha} \mathrm{e}^{-|\Lambda| v} \mathrm{e}^{-i \psi} \kappa(v, \psi)}{\left|v^{\alpha}-\mathrm{e}^{i(\alpha \pi+\psi)}\right|^{2}\left|v^{\alpha}-\mathrm{e}^{-i(\alpha \pi-\psi)}\right|^{2}} \mathrm{~d} v
$$

where

$$
\begin{aligned}
\kappa(v, \psi) & :=\left(\mathrm{e}^{i \psi} v^{\alpha}-\mathrm{e}^{-i \alpha \pi}\right)\left(\mathrm{e}^{i \psi} v^{\alpha}-\mathrm{e}^{i \alpha \pi}\right) \\
& =\mathrm{e}^{i \psi}\left(\mathrm{e}^{i \psi} v^{2 \alpha}+\mathrm{e}^{-i \psi}-2 v^{\alpha} \cos (\alpha \pi)\right) .
\end{aligned}
$$

We thus have

$$
\begin{equation*}
\mathfrak{R e}\left(\frac{i \mathrm{e}^{i \psi} G(\Lambda, \psi)}{2 \sin (\alpha \pi)}\right)=\int_{0}^{\infty} \frac{v^{\alpha} \mathrm{e}^{-|\Lambda| v} \mathfrak{R e}\left(\mathrm{e}^{-i \psi} \kappa(v, \psi)\right)}{\left|v^{\alpha}-\mathrm{e}^{i(\alpha \pi+\psi)}\right|^{2}\left|v^{\alpha}-\mathrm{e}^{-i(\alpha \pi-\psi)}\right|^{2}} \mathrm{~d} v . \tag{6.30}
\end{equation*}
$$

If for some Λ and ψ the equation $G(\Lambda, \psi)=0$ is satisfied, then the integral in (6.30) will have a zero. Note that

$$
\mathfrak{R e}\left(\mathrm{e}^{-i \psi} \kappa(v, \psi)\right)=\cos \psi\left(\left(v^{\alpha}+\frac{\cos (\alpha \pi)}{\cos \psi}\right)^{2}+1-\frac{\cos ^{2}(\alpha \pi)}{\cos ^{2} \psi}\right) .
$$

If $\frac{1}{2}<\alpha<1$, then (see Figure 3.2), $|\psi| \geqslant \alpha \pi>\frac{\pi}{2}$ and hence $\frac{\cos ^{2}(\alpha \pi)}{\cos ^{2} \psi}<1$ and $\cos \psi<0$, which shows that $\mathfrak{R e}\left(\mathrm{e}^{-i \psi} \kappa(v, \psi)\right)<0$, making the integrand in (6.30) strictly negative, which yields the theorem in this case. If $0<\alpha \leqslant \frac{1}{2}$ and $|\psi|>\frac{\pi}{2}$, then a similar analysis applies and we get the theorem in this case also.

Proof of Theorem 3.4. Let m, M be constants (depending only on the symbol a) satisfying $m \leqslant|\Lambda| \leqslant M$. In this proof all the order terms work with $n \rightarrow \infty$ uniformly in λ. Suppose that $\lambda \in\left(S_{1} \backslash R_{1}\right) \cup\left(S_{2} \backslash R_{2}\right)$. Using Lemmas 6.2 part (i), 6.4, and 6.5 in the equation (6.8) we get that λ is an eigenvalue of $T_{n}(a)$ if and only if

$$
\frac{1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda}\left(1+O\left(\frac{1}{n}\right)\right)=\frac{|\lambda|^{\frac{1}{\alpha}-1}}{2 \pi i} \int_{0}^{\infty} \mathrm{e}^{-|\Lambda| v} b(v, \psi) \mathrm{d} v+O\left(\frac{1}{n}\right)
$$

where

$$
b(v, \psi):=\frac{\mathrm{e}^{-i \alpha \pi}}{v^{\alpha}-\mathrm{e}^{i(\psi-\alpha \pi)}}-\frac{\mathrm{e}^{i \alpha \pi}}{v^{\alpha}-\mathrm{e}^{i(\psi+\alpha \pi)}} .
$$

Noticing that

$$
\begin{aligned}
& \frac{1}{\alpha} \lambda^{\frac{1}{\alpha}-1} \mathrm{e}^{\Lambda} O\left(\frac{1}{n}\right)=O\left(\frac{|\Lambda|^{1-\alpha}\left|\mathrm{e}^{\Lambda}\right|}{n^{2-\alpha}}\right)=O\left(\frac{1}{n^{2-\alpha}}\right), \\
& O\left(\frac{1}{n|\lambda|^{\frac{1}{\alpha}-1}}\right)=O\left(\frac{n^{1-\alpha}}{n|\Lambda|^{1-\alpha}}\right)=O\left(\frac{1}{n^{\alpha}}\right)
\end{aligned}
$$

then

$$
\frac{2 \pi i}{\alpha} \mathrm{e}^{i \psi\left(\frac{1}{\alpha}-1\right)} \mathrm{e}^{\Lambda}+O\left(\frac{1}{n^{2-\alpha}}\right)=\int_{0}^{\infty} \mathrm{e}^{-|\Lambda| v} b(v, \psi) \mathrm{d} v+O\left(\frac{1}{n^{\alpha}}\right),
$$

we get the theorem in this case. Finally, suppose that $|\Lambda| \rightarrow 0$. Using the part (ii) of the Lemmas 6.2 and 6.3 in (6.8) we get that λ is an eigenvalue of $T_{n}(a)$ if and only if

$$
\begin{aligned}
0 & =\lim _{|\Lambda| \rightarrow 0}\left(-\frac{\operatorname{res}\left(g, z_{\lambda}\right)}{\lambda^{\frac{1}{\alpha}-1}}+\frac{1}{\lambda^{\frac{1}{\alpha}-1}}\left(\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\right)\right) \\
& =-\lim _{|\Lambda| \rightarrow 0} \frac{\operatorname{res}\left(g, z_{\lambda}\right)}{\lambda^{\frac{1}{\alpha}-1}}+\lim _{|\Lambda| \rightarrow 0} \frac{2 \mathrm{e}^{i \alpha \pi} \Gamma(\alpha-1)}{|\Lambda|^{1-\alpha} \mathrm{e}^{i \psi\left(\frac{1}{\alpha}-1\right)}}(1+o(1))+\lim _{n \rightarrow \infty} O\left(\frac{1}{n}\right) \\
& =\infty
\end{aligned}
$$

thus, we don't get eigenvalues in this case.

Proof of Corollary 3.5. Considering the variable change $v=u \mathrm{e}^{\frac{\psi}{\alpha}}$ in Theorem 3.4, as $n \rightarrow \infty$ uniformly in λ, we obtain

$$
\frac{2 \pi i}{\alpha} \mathrm{e}^{\Lambda}=\int_{D} \mathrm{e}^{-\Lambda u} \beta(u) \mathrm{d} u+O\left(\frac{1}{n^{\alpha}}\right)
$$

where

$$
\beta(u):=\frac{1}{u^{\alpha} \mathrm{e}^{i \alpha \pi}-1}-\frac{1}{u^{\alpha} \mathrm{e}^{-i \alpha \pi}-1}
$$

and the integration path D is the straight line from 0 to $\infty \mathrm{e}^{-i \frac{\psi}{\alpha}}$.
Assume that $\lambda \in S_{1}$, then there exists a small constant μ satisfying $\frac{\alpha \pi}{2}-\alpha \mu<\psi<\alpha \pi$ and hence $-\pi<-\frac{\psi}{\alpha}<-\frac{\pi}{2}+\mu$. In order to make the integration path independent of λ, we make a path rotation by integrating over the triangle T with vertices $0, \infty \mathrm{e}^{-i \frac{\psi}{\alpha}}$, and $\infty \mathrm{e}^{-i \frac{3}{4} \pi}$.

Since the singularities of β are $u=\mathrm{e}^{ \pm i \pi}$, the integrand $\mathrm{e}^{-\Lambda u} \beta(u)$ is analytic on \hat{T} and, moreover, the corresponding integral over the segment joining $\infty \mathrm{e}^{-i \frac{\psi}{\alpha}}$ and $\infty \mathrm{e}^{-i \frac{3}{4} \pi}$ is clearly 0 since $\mathrm{e}^{-\Lambda u} \beta(u)=o(1)$.

Figure 6.9: Contour \hat{T}
We thus have

$$
\frac{2 \pi i}{\alpha} \mathrm{e}^{\Lambda}=\int_{D_{1}} \mathrm{e}^{-\Lambda u} \beta(u) \mathrm{d} u+O\left(\frac{1}{n^{\alpha}}\right),
$$

where D_{1} is the straight line from 0 to $\infty \mathrm{e}^{-i \frac{3}{4} \pi}$. Finally, If $\lambda \in S_{2}$, a similar calculation produces

$$
\frac{2 \pi i}{\alpha} \mathrm{e}^{\Lambda}=\int_{D_{2}} \mathrm{e}^{-\Lambda u} \beta(u) \mathrm{d} u+O\left(\frac{1}{n^{\alpha}}\right)
$$

where D_{2} is the straight line from 0 to $\infty \mathrm{e}^{i \frac{3}{4} \pi}$.

Proof of Theorem 3.6. Suppose that Λ_{s} for $1 \leqslant s \leqslant k$ with $k \ll n$, are the zeros of F located in $\hat{S}_{1} \cup \hat{S}_{2}$ and satisfying $F^{\prime}\left(\Lambda_{s}\right) \neq 0$ for each s (i.e. each Λ_{s} is simple). We can pick a neighborhood U_{s} for each Λ_{s} with continuous and smooth boundary ∂U_{s} satisfying $|F(\cdot)|>\left|\Delta_{2}(\cdot, n)\right|$ over ∂U_{s}. In this case the Rouché Theorem 2.15 says that $F(\cdot)-\Delta_{2}(\cdot, n)$ must have a zero $\hat{\Lambda}_{s}$ in U_{s}. By Corollary 3.5, we know that each $\hat{\Lambda}_{s}$ corresponds to an
eigenvalue $\lambda_{j}^{(n)}$ of $T_{n}(a)$. If necessary, re-enumerate Λ_{s} in order to get $s=j$. To prove the theorem, note that

$$
F\left(\hat{\Lambda}_{j}\right)-F\left(\Lambda_{j}\right)=\Delta_{2}\left(\hat{\Lambda}_{j}, n\right)=F^{\prime}\left(\Lambda_{j}\right)\left(\hat{\Lambda}_{j}-\Lambda_{j}\right)+O\left(\left|\hat{\Lambda}_{j}-\Lambda_{j}\right|^{2}\right),
$$

which produces

$$
O\left(\frac{1}{n^{\alpha}}\right)=\left(\hat{\Lambda}_{j}-\Lambda_{j}\right)\left(F^{\prime}\left(\Lambda_{j}\right)+O\left(\left|\hat{\Lambda}_{j}-\Lambda_{j}\right|\right)\right)
$$

By hypothesis we have $F^{\prime}\left(\Lambda_{j}\right) \neq 0$, dividing both sides of the equation by second parentheses, we get

$$
\hat{\Lambda}_{j}-\Lambda_{j}=(n+1)\left(\lambda_{j}^{(n)}\right)^{\frac{1}{\alpha}}-\Lambda_{j}=O\left(\frac{1}{n^{\alpha}}\right)
$$

Finally, solving for $\lambda_{j}^{(n)}$ then

$$
\lambda_{j}^{(n)}=\left(\frac{\Lambda_{j}+O\left(\frac{1}{n^{\alpha}}\right)}{n+1}\right)^{\alpha}=\left(\frac{\Lambda_{j}}{n+1}\right)^{\alpha}\left(1+O\left(\frac{1}{n^{\alpha}}\right)\right) \text { as } n \rightarrow \infty \text { uniformly in } \Lambda .
$$

Bibliography

[1] J. M. Bogoya, S. M. Grudsky, and I. S. Malysheva, Extreme individual eigenvalues for a class of large Hessenberg Toeplitz matrices, Oper. Theory Adv. Appl., vol. 271, Birkhäuser/Springer, Cham, 2018, pp. 119-143.
[2] J. M. Bogoya, A. Böttcher, and S. M. Grudsky, Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices, Oper. Theory Adv. Appl., vol. 220, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 77-95.
[3] H. Dai, Z. Geary, and Leo P. Kadanoff, Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices, J. Stat. Mech. Theory Exp. 5 (2009), P05012, 25.
[4] U. Grenander and G. Szegő, Toeplitz forms and their applications, 2nd ed., Chelsea Publishing Co., New York, 1984.
[5] A. Böttcher, S. M. Grudsky, and E. A. Maksimenko, Inside the eigenvalues of certain Hermitian Toeplitz band matrices, J. Comput. Appl. Math. 233 (2010), no. 9, 2245-2264.
[6] K. M. Day, Measures associated with Toeplitz matrices generated by the Laurent expansion of rational functions, Trans. Amer. Math.Soc. 209 (1975), 175-183.
[7] I. I. Hirschman Jr., The spectra of certain Toeplitz matrices, Illinois J. Math. 11 (1967), 145-159.
[8] A. Böttcher, S. Grudsky, E. A. Maksimenko, and J. Unterberger, The first order asymptotics of the extreme eigenvectors of certain Hermitian Toeplitz matrices, Integral Equations Operator Theory 63 (2009), no. 2, 165-180.
[9] M. Kac, W. L. Murdock, and G. Szegö, On the eigenvalues of certain Hermitian forms, J. Rational Mech. Anal. 2 (1953), 767-800.
[10] S. V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc. 99 (1961), 153-192.
[11] A. Y. Novosel'tsev and I. B. Simonenko, Dependence of the asymptotics of extreme eigenvalues of truncated Toeplitz matrices on the rate of attaining an extremum by a symbol, Algebra i Analiz 16 (2004), no. 4, 146-152.
[12] S. V. Parter, On the extreme eigenvalues of Toeplitz matrices, Trans. Amer. Math. Soc. 100 (1961), 263-276.
[13] S. Serra, On the extreme spectral properties of Toeplitz matrices generated by L^{1} functions with several minima/maxima, BIT 36 (1996), no. 1, 135-142.
[14] P. Schmidt and Frank Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial, Math. Scand. 8 (1960), 15-38.
[15] S. Serra, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra Appl. 270 (1998), 109-129.
[16] E. E. Tyrtyshnikov and N. L. Zamarashkin, Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships, Linear Algebra Appl. 270 (1998), 15-27.
[17] H. Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc. 88 (1958), 491-522.
[18] N. L. Zamarashkin and E. E. Tyrtyshnikov, Distribution of the eigenvalues and singular numbers of Toeplitz matrices under weakened requirements on the generating function, Mat. Sb. 188 (1997), no. $8,83-92$.
[19] H. Widom, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel, 1990, pp. 387-421.
[20] P. Zizler, R. A. Zuidwijk, K. F. Taylor, and S. Arimoto, A finer aspect of eigenvalue distribution of selfadjoint band Toeplitz matrices, SIAM J. Matrix Anal. Appl. 24 (2002), no. 1, 59-67.
[21] E. L. Basor and K. E. Morrison, The Fisher-Hartwig conjecture and Toeplitz eigenvalues, Linear Algebra Appl. 202 (1994), 129-142.
[22] A. Böttcher and S. M. Grudsky, Toeplitz matrices, asymptotic linear algebra, and functional analysis, Birkhäuser Verlag, Basel, 2000.
[23] A. Böttcher and B. Silbermann, Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999.
[24] P. Tilli, Some results on complex Toeplitz eigenvalues, J. Math. Anal. Appl. 239 (1999), no. 2, 390-401.
[25] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators, 2nd ed., Springer Monographs in Mathematics, 2006.
[26] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963.
[27] T.W. Gamelin, Complex analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001.
[28] F. W. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997.
[29] A. Böttcher and S. M. Grudsky, Spectral properties of banded Toeplitz matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
[30] J. B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, SpringerVerlag, New York, 1985.

