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Bogotá - Colombia



Acknowledgments

First of all, thanks to my family for their constant support, trust and for believing in me

to carry out this work. Thanks to my adviser for sharing his work, his passion and for

teaching me the importance and the beauty of this topic, as he sees it. Also, to the rest

of my professors for their accompaniment in my professional development. Last but not

least, I want to thank Juan Felipe and my friends that grew with me as mathematicians,

specially Jhoan, Mileidy, Odette, David and Sebastian.

2



Contents

1 Introduction 5

2 Preliminary 10

2.1 Toeplitz matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Main results 16

3.1 Inner eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Extreme eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 A Key Example 25

4.1 Inner eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Extreme eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Behavior of Inner Eigenvalues 30

5.1 Toeplitz determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Contribution of λ to the asymptotic behavior of Dn . . . . . . . . . . . . . 32

5.3 Contribution of 1 to the asymptotic behavior of Dn . . . . . . . . . . . . . 34

5.4 Individual eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Behavior of Extreme Eigenvalues 48

6.1 Location of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



6.2 Determinant estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Individual eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4



Chapter 1

Introduction

The n × n Toeplitz matrix generated by a complex-valued function a ∈ L1(T), on the

complex unit circle T, is the square matrix

Tn(a) = (aj−k)
n−1
j,k=0,

where ak is the kth Fourier coefficient of a, that is,

ak =
1

2π

∫ 2π

0

a(1 + eiθ) + e−ikθ dθ =
1

2πi

∫
T
a(t)t−(k+1) dt (k ∈ Z).

The function a is referred to as the symbol of the matrices Tn(a).

Denote by H∞ the usual Hardy space of (boundary values of) bounded analytic func-

tions over the unit disk D. For a function a ∈ C(T), let windλ(a) be the winding number

of a about the point λ ∈ C R(a) where R(a) stands for the range of a, and let D(a) be

the set {λ ∈ C R(a) : winda(λ) 6= 0}. Let spTn(a) be the spectrum of a Toeplitz matrix

by be the set {λ : Dn(a − λ) = 0} where Dn(a − λ) is determinant of Tn(a − λ), we say

that spectrum may have canonical or skin distribution if dH(R(a), spTn(a)) → 0 when

n→ 0 (see Figure 1.1a) and Skeleton distribution if dH(R(a), spTn(a)) 9 0 when n→ 0

(see Figure 1.1b) where dH is the Haussdorff distance.
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(a) Skin distribution (b) Skeleton distribution

Figure 1.1: The pictures shows the range R(a) (blue color) for the symbol

a(t) = 1
t
(33− (t+ t2)(1 + t2)

3
4 ), spT128(a) in Figure 1.1a and spT512 in Figure 1.1b (or-

ange color). The spectrum was calculated using MATLAB.

For a real-valued symbol a, the matrices Tn(a) are all Hermitian, and in this case

a number of results on the asymptotics of the eigenvalues of Tn(a) are known; see, for

example, [4,5,8–13,15–18,20]. If a is a rational function, in [6,7,14] describe the limiting

behavior of the eigenvalues of Tn(a). If a is a non-smooth symbol, in [19,21] are devoted

to the asymptotic eigenvalue distribution. If a ∈ L∞(T) and R(a) does not separate the

plane, in [19,24] it is prove that the eigenvalues of Tn(a) approximate R(a). Many of the

results of the in cited above can also be found in [23,25,29].

In 1990, Widom [19] showed that if R(a) is a Jordan curve and a is smooth on T

minus a single point but not smooth on all of T, then the spectrum of Tn(a) has canonical

distribution. He also raised the following intriguing conjecture, which is still an open

problem:

The eigenvalues of Tn(a) are canonically distributed except when

a extends analytically to an annulus r < |z| < 1 or 1 < |z| < R.
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Reference [3] deals with asymptotic formulas for individual eigenvalues of Toeplitz ma-

trices whose symbols are complex-valued and have a so-called Fisher–Hartwig singularity.

These are special symbols that are smooth on T minus a single point but not smooth on

the entire circle T; see [23,25].

We consider here genuinely complex-valued symbols, in which case less is known. Dai,

Geary, and Kadanoff [3] considered symbols of the form

a(t) =

(
2− t− 1

t

)γ
(−t)β =

(−1)β+3γ

tγ−β
(1− t)2γ (t ∈ T),

where 0 < γ < −β < 1. They conjectured that the eigenvalues λ = λ
(n)
j satisfy

λ
(n)
j ∼ a

(
n

1
n

(2γ−1)e−
1
n

2πij
)

(j = 0, . . . , n− 1), (1.1)

and confirmed this conjecture numerically. Note that in (1.1) the argument of a can be

outside of T. This is no problem, since a can be extended analytically to a neighborhood

of T {1} not containing the singular point 1.

0

W0

(a)

(b)

Figure 1.2: Figura a Es la figura 1 y figura b es la otra

In the following work we will study eigenvalues of Tn(a) for symbols of the form

a(t) =
1

t
(1− t)αf(t) (t ∈ T), (1.2)
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where 0 < α < 1, which we will divide into two parts. Let W0 be any small open neigh-

borhood of the origin in C. In the first part we will study the eigenvalues outside of W0,

those will be called inner eigenvalues (red points in Figure 1.2a) and in the second part

the eigenvalues inside of W0, those will be called extreme eigenvalues (black points in

Figure 1.2a). Those names are usual in Toeplitz operators literature, however the natural

explanation of those names is that if we cut the cardioid by the origin point (see Figure

1.2a), stretched it to a line segment (see Figure 1.2b), the black points are located in the

inner part of the segment, and the red points are located in the extremes of the segment.

According to [19], in our case the spectrum of Tn(a) has canonical distribution, that

is the Haussdorff distance between the spectrum of Tn(a) and R(a) goes to zero when n

goes to infinity. Note that when β = γ − 1 and f ≡ 1 our symbol coincides with the one

of [3].

This work consists of studying and complementing the papers [1], [2]. In Chapter 2 we

give the preliminaries for understanding the following Chapters. In Chapter 3 we state

the main results for each case of the eigenvalues (inner and extreme) giving a sketch of

how to solve these and present the necessary tools to prove them. In Chapter 4 we give a

key example when the symbol a equals
1

t
(1−t) 3

4 using the main results given on Chapter 3.

In Chapter 5 we study the behavior of inner eigenvalues, prove on detail the main re-

sults and show that the conjecture (1.1) in the special case β = γ− 1 is true for the inner

eigenvalues. We will also give an asymptotic approximation for each individual eigenvalue

incorporating two terms.

Similarly in Chapter 6 we study the behavior of extreme eigenvalues, prove on detail

the main results and show that the problem to find the extreme individual eigenvalues of

Tn(a), as n goes to infinity, can be reduced to the solution of a certain equation in a fixed
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complex domain not depending on n. In this sense our results extend to the complex-

value case the well known results of Parter [12] and Widom [19] for the real-value case.

Moreover, we show that the conjecture (1.1) of Dai, Geary, and Kadanoff [3] is not true

for the extreme eigenvalues.

In conclusion, in the Chapters 5 and 6 we obtain an univocal correspondence between

eigenvalues and some elements of the domain corresponding to the extension of the sym-

bol a, also for the inner eigenvalues there is a relationship with the nth root of unity

(eigenvalues enumerable and uniformly distanced), and for the extreme eigenvalues there

is a relationship with the zeros of an analytic function, thus is only necessary to find those

zeros once.

For the eigenvalues of Tn(a) regardless the case (inner or extreme), we will give an

asymptotic approximation depending only on n and its respective relationships, therefore

we can approximate the eigenvectors. It is important to note that no matter the values

of n, because for example, in the conjecture (1.1) of Dai, Gearay and Kadanoff [3], the

interested n is approximately the Avogadro number.

9



Chapter 2

Preliminary

In this chapter we mention some notions will be needing in this work.

Definition 2.1 (Hessenberg Matrix). Let A be an square n× n matrix.

• Upper Hessenberg matrix: A is said to be in upper Hessenberg form or to be an

upper Hessenberg matrix if ai,j = 0 for all i, j with i > j + 1.

• Lower Hessenberg matrix: A is said to be in lower Hessenberg form or to be an lower

Hessenberg matrix if its transpose is an upper Hessenberg matrix, or equivalently,

if ai,j = 0 for all i, j with j > i+ 1.

In this work, when we mention the Hessenberg matrix, we mean a lower Hessenberg

matrix.

Definition 2.2 (Hausdorff Distance). Let X and Y be two non-empty subsets of a metric

space (M,d). We define their Hausdorff distance dH(X, Y ) by

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

where sup represents the supremum and inf the infimum.

Definition 2.3 (Hardy Space). The Hardy spaces (or Hardy classes) Hp are certain

spaces of holomorphic functions on the unit disk or upper half plane satisfying
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sup
06r<1

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ

) 1
p

<∞.

This class Hp is a vector space. The number on the left side of the above inequality is

the Hardy space p-norm for f , denoted by ‖f‖Hp . It is a norm when p > 1, but not when

0 < p < 1.

The space H∞ is defined as the vector space of bounded holomorphic functions on the

disk, with the norm

‖f‖H∞ = sup
|z|<1

|f(z)|.

Theorem 2.4 (Lebesgue’s Dominated Convergence Theorem). Let {fn}∞n=1 be a sequence

of complex-valued measurable functions on a measure space (S,Σ, µ). Suppose that the

sequence converges pointwise to a function f and is dominated by some integrable function

g in the sense that |fn(x)| 6 g(x) for all numbers n in the index set of the sequence and

all points x ∈ S. Then f is integrable and

lim
n→∞

∫
S

|fn − f | dµ = 0

which also implies

lim
n→∞

∫
S

fn dµ =

∫
S

f dµ.

2.1 Toeplitz matrix

Let a ∈ L1(T) be a symbol defined as in the Introduction with

a(z) =
∞∑
n=0

anz
n, (2.1)

where a0 6= 0, and consider c(z) =
1

a(z)
=

∞∑
m=0

cmz
n with c0 = a−1

0 .

Proposition 2.5 (Baxter-Schmidt Formula for Toeplitz determinants). If n, r > 1, then

a−r0 Dn(z−ra) = (−1)rnc−n0 Dr(z
−nc).
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Proposition 2.6. Let a be a symbol defined as (2.1) and b ∈ L1(T) then

Tn(ab) = Tn(a)Tn(b).

The inverse of a Toeplitz matrix is not always a Toeplitz matrix, but the previous

proposition shows that if a(z) =
∞∑
n=0

anz
n then T−1

n (a) = Tn(c).

Let Pn be the projection in `2(C) defined by

Pn : {z0, z1, z3, ...} 7−→ {z0, z2, · · · , zn−1, 0, ...}.

Proposition 2.7 (Finite section method). Let X be `2(C) and a be a symbol defined as

(2.1). If T (a) is invertible, then the operators T−1
n (a)Pn converge strongly to T−1(a) in X

i.e. ‖T−1
n (a)Pnx− T−1(a)x‖ −→ 0 for all x ∈ X,

where T (a) is an infinite Toeplitz matrix.

By functional analysis theory [30], the reader can verify that `2 is isomorphic to L2,

where the isomorphism is given by the Fourier Transform. The Propositions 2.5, 2.6 and

2.7 are classic and known results in the literature of the Toeplitz matrices, the proof can

found in [29] and [22].

2.2 Asymptotic analysis

Definition 2.8. Let f and φ : D ⊆ C→ C be functions. We say that:

• f = O(φ) when (z → z0), if ∀U(z0) ⊆ C ∃A > 0 such that |f(z)| 6 A|φ(z)| for

z ∈ U .

• f = o(φ) when (z → z0), if ∀ε > 0 ∃Uε(z0) ⊆ C such that |f(z)| 6 ε|φ(z)| for

z ∈ Uε.
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• f ∼ φ when (z → z0), if f(z) = φ(z)(1 + o(1)).

Proposition 2.9 (Properties of o and O). Let f and φ : D ⊆ C→ C be functions.

• For k constant we have kO(f) = O(f), similarly with o.

• o(f) = O(f) but O(f) = o(f) is not always true.

• O(f) + o(f) = O(f).

• f = O(1) in D if only if |f | is bounded in D.

• f = o(1) in (z → z0) if only if lim
z→zo

f(z) = 0.

Note that “=” here is not usual equal, since, for example o(1) = O(1) but O(1) 6= o(1)

because when x→∞, we have sin(x) = O(1) but sin(x) 6= o(1), however e−x = o(1) and

also e−x = O(1).

Definition 2.10 (Piecewise). A piecewise function Cpw[a, b] is a continue function almost

everywhere.

Proposition 2.11 (Riemann Lebesgue’s lemma). Let q ∈ Cpw[a, b] then

Q(x) =

∫ b
a

eixtq(t) dt = o(1), (x→∞).

Theorem 2.12. Let β > 0, δ > 0, v ∈ C∞[0, δ], v(s)(δ) = 0 for all s > 0. Then, as

n→∞, ∫ δ
0

θβ−1v(θ)einθ dθ ∼
∞∑
s=0

as
ns+β

,

where

as =
v(s)(0)

s!
Γ(s+ β)is+β (2.2)

and Γ(z) =

∫∞
0

tz−1e−tdt is Euler’s Gamma function.
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Proof. Since v ∈ C∞[0, δ] we can replace v(θ) with its Taylor’s series centered on 0 then

∫ δ
0

θβ−1

∞∑
s=0

v(s)(0)θ(s)

s!
einθ dθ =

∞∑
s=0

v(s)(0)

s!

∫ δ
0

θs+β−1einθ dθ.

This equality is true by the dominated convergence Theorem 2.4. Now

∫ δ
0

θs+β−1einθ dθ =

∫∞
0

θs+β−1einθ dθ −
∫∞
δ

θs+β−1einθ dθ.

Using the Riemann Lebesgue’s lemma (2.11) when n→∞ we have

∫ b
δ

θs+β−1einθ dθ = o(1)

then

∫∞
δ

θs+β−1einθ dθ = o(1). Taking the variable change −τ = inθ, we get

∫∞
0

θs+β−1einθ dθ =

(
−1

in

)β+s

,

∫∞
0

τ s+β−1e−τdτ =

(
i

n

)β+s

Γ(s+ β),

thus ∫ δ
0

θβ−1

∞∑
s=0

v(s)(0)θ(s)

s!
einθ dθ =

∞∑
s=0

1

nβ+s

v(s)(0)

s!
Γ(s+ β)iβ+s.

Corollary 2.13. Using the same hypothesis of theorem 2.12, we get∫ δ
0

θβ−1v(θ)e−inθ dθ ∼
∞∑
s=0

as
ns+β

.

For more properties of the order symbol, or the proof of Proposition 2.11, we refer the

reader to [28].

2.3 Complex analysis

Proposition 2.14. Let f be an analytic function at z0 and f(z) = f(z0) + O(|z − z0|)

then

f(z0 + ∆z) = f(z0) +O(|∆z|) (∆z → 0).
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Theorem 2.15 (Rouché). For any two complex-valued functions f and g holomorphic

inside some region K with closed and simple contour ∂K, if |g(z)| < |f(z)| on ∂K, then

f and f + g have the same number of zeros inside K, where each zero is counted as many

times as its multiplicity.

Theorem 2.16 (Maximum modulus Principle). Let f be a complex holomorphic function

on some connected open subset D of C. If z0 is a point in D such that

|f(z0)| > |f(z)|

for all z in a neighborhood of z0, then the function f is constant on D.

Corollary 2.17 (Maximum Modulus Principle). Let D be an open subset and bounded

in C, f : D → D be continuous in D and holomorphic in D, then

sup{|f(z)| : z ∈ D} = sup{|f(z)| : z ∈ ∂D}.
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Chapter 3

Main results

In this chapter we propose the necessary conditions that must be satisfied by the symbol

a to be able to find the inner and extreme eigenvalues (i.e solve Dn(a−λ) = 0). For each

case the conditions may be different because of the nature of the problem since in the

particular case of extreme eigenvalues we have the condition of non-differentiability at 1.

Also we will give a sketch of how to solve each case.

3.1 Inner eigenvalues

Properties 3.1. Let a(t) =
1

t
h(t) be a symbol, where a ∈ C(T) then:

1. h(t) = (1− t)αf(t), where α ∈ [0,∞) Z and f ∈ C∞(T);

2. h ∈ H∞ and h0 6= 0;

3. h has an analytic extension to an open neighborhood W of T {1} not containing

the point 1;

4. R(a) is a Jordan curve in C, windλ(a) = −1 for each λ ∈ D(a), and a′(t) 6= 0 for

every t ∈ T {1}.
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Here h0 is the zeroth Fourier coefficient of h.

For the farthest from zero eigenvalues, we study the eigenvalues of Tn(a) for symbols a

that satisfy the Properties 3.1.

Let Dn(a) denote the determinant of Tn(a). Thus, the eigenvalues λ of Tn(a) are

the solutions of the equation Dn(a − λ) = 0. The assumptions imply that Tn(a) is a

Hessenberg matrix. This circumstance together with the Baxter-Schmidt Formula 2.5 for

Toeplitz determinants allows us to express Dn(a− λ) as a Fourier integral. The value of

this integral mainly depends on λ and a power of the singularity of (1− t)α at the point

1. Let W0 be a small open neighborhood of zero in C. We show that for every point

λ ∈ D(a) ∩
(
a(W ) W0

)
there exists a unique point tλ /∈ D such that a(tλ) = λ. After

exploring the contributions of λ and the singular point 1 to the Fourier integral, we get

the following asymptotic expansion for Dn(a− λ).

Theorem 3.1 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for

every small open neighborhood W0 of zero in C and every λ ∈ D(a) ∩
(
a(W ) W0

)
,

Dn(a− λ) = (−h0)n+1

(
1

tn+2
λ a′(tλ)

− f(1)Γ(α + 1) sin(απ)

πλ2nα+1
+R1(n, λ)

)
, (3.1)

where R1(n, λ) = O
(

1

nα+α0+1

)
as n → ∞, uniformly in λ ∈ a(W ) W0 and here

α0 = min{α, 1}.

The first term in brackets is the contribution of λ, while the second is the contribution

of the point 1.

Now, here are our main results. Put ωn:= exp
(−2πi

n

)
, for each n there exist integers

n1 and n2 such that ωn1
n , ω

n−n2
n ∈ a−1(W0) but ωn1+1

n , ωn−n2−1
n /∈ a−1(W0). Recall that

a(tλ) = λ.

Theorem 3.2 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for

every small open neighborhood W0 of the origin in C and every j between n1 and n− n2,

tλj,n = n
α+1
n ωjn

(
1 +

1

n
log

(
a2(ωjn)

C1a′(ω
j
n)ω2j

n

)
+R2(n, j)

)
, (3.2)
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where R2(n, j) = O
(

1

nα0+1

)
+ O

(
log n

n2

)
as n → ∞, uniformly with respect to j in

(n1, n− n2). Here α0 = min{α, 1} and

C1 =
f(1)Γ(α + 1) sin(απ)

π
.

Formula (3.2) proves conjecture (1.1) in the special case β = γ − 1. It shows that as

n increases, the point tλj,n is close to n
α+1
n ωjn. Finally, we apply a at both sides of (3.2)

to obtain the following expression for λj,n.

Theorem 3.3 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for

every small neighborhood W0 of zero in C and every j between n1 and n− n2,

λj,n = a(ωjn) + (α + 1)ωjna
′(ωjn)

log n

n
+
ωjna

′(ωjn)

n
log

(
a2(ωjn)

C1a′(ω
j
n)ω2j

n

)
+R3(n, j), (3.3)

where C1 is as in Theorem 3.2 and R3(n, j) = O
(

1

nα0+1

)
+O

(
log n

n2

)
as n→∞, uniformly

with respect to j in (n1, n− n2).

We remark that we wrote down only the first few terms in the asymptotic expansions

but that our method is constructive and would allow us to get as many terms as we desire.

Clearly, conjecture (1.1) corresponds to the first term in the asymptotic expansion (3.2).

Figure 3.1 illustrates Theorem 3.3. We present another simulation graphic and error

tables made with MATLAB software to show that incorporating the second term of the

expansion (3.2) (= third term in (3.3)) reduces the error to nearly one tenth.

3.2 Extreme eigenvalues

We take the multi-valued complex function z 7→ zβ (β ∈ R) with the branch specified by

−π < arg zβ 6 π. Let B(z0, r) be the set {z ∈ C : |z − z0| < r}.

Properties 3.2. Let symbols a(t) =
1

t
(1− t)αf(t) where a ∈ C(T) then:
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−1.682 −1.6815 −1.681 −1.6805 −1.68 −1.6795 −1.679 −1.6785 −1.678 −1.6775 −1.677

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

 

 

R
(
a
)

Figure 3.1: (Refer [2]) The picture shows a piece of R(a) for the symbol a(t) = 1
t
(1− t) 3

4

(solid line) located “far” from zero. The dots are spT4096(a) calculated by MATLAB. The

crosses and the stars are the approximations obtained by using 2 and 3 terms of (3.3),

respectively.
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1. The function f is in H∞ with f(0) 6= 0 and for some ε > 0, f has an analytic

continuation to the region

Kε := B(1, ε) {x ∈ R : 1 < x < 1 + ε}

and is continuous in K̂ε := B(1, ε) {x ∈ R : 1 < x 6 1 + ε}. Additionally,

fϕ(x) := f(1 + x+ eiϕ) belongs to the algebra C2[0, ε) for each −π < ϕ 6 π.

2. Let 0 < α < 1 be a constant and take

−απ < arg(1− z)α 6 απ when −π < arg(1− z) 6 π.

3. R(a) is a Jordan curve in C and windλ(a) = −1 for each λ ∈ D(a).

For the extreme eigenvalues, we study the eigenvalues of Tn(a) for symbols a that

satisfy the Properties 3.2.

Note that, in general, limϕ→0+ fϕ(x) 6= limϕ→0− fϕ(x), thus f cannot be continuously

extended to the ball B(1, ε). Without loss of generality, we assume that f(1) = 1.

0.9 1.0 1.1 1.2 1.3 1.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.4 -0.2 0.0 0.2

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

arg z =
1

2
απ

arg z = − 1

2
απ

arg z = −απ

arg z = απ

γ+

γ−

a((1 + ε)T)

a(T)

T

(1 + ε)T

arg(z − 1) = δ

arg(z − 1) =−δ

Figure 3.2: (Refer [1]) The behavior of the function a(t) =
1

t
(1− t) 3

4 near the point t = 1.

Before we go further, we need to give the required understanding to the symbol a near
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to the point t = 1. For 0 6 x 6 ε take

a+(x) := lim
δ→0+

a(1 + xeiδ), a−(x) := lim
δ→0−

a(1 + xeiδ),

γ+ := a+([0, ε]), γ− := a−([0, ε]).

The Figure 3.2 shows the situation. Note that γ+ and γ− are very close to the lines

arg z = ∓απ, respectively, but they are not the same. In Chapter (5) we will prove that

if λ ∈ D(a) is bounded away from 0, then a can be extended bijectively to a certain

neighborhood of T {1} not containing the point 1, but if λ is arbitrarily close to 0 the

situation is much more complicated. The map z 7→ zα transforms the real negative semi-

axis into the lines arg z = ±απ generating bijectivity limitations to a, see Figure 3.2.

Moreover, Lemma 5.1 tell us that a maps C D into D(a). Let ρ < sup{|a(z)| : z ∈ Kε} be

a positive constant and consider the regions S0 := B(0, ρ) D(a) and S := D(a)∩B(0, ρ),

which we split as follows (see Figure 3.3 right): S1 is the subset of S enclosed by the

curves ρT, R(a), and γ−, including γ− only; S2 is the subset of S enclosed by the curves

ρT, R(a), and γ+, including γ+ only; and S3 is the open subset of S enclosed by the

curves ρT, γ−, and γ+. We thus have

S = S1 ∪ S2 ∪ S3.

It is easy to see that, for every sufficiently large n, we have no eigenvalues of Tn(a) in

S0. Since wind(a− λ) = 0 for each λ ∈ S0, the operator T (a− λ) must be invertible and

the Finite Section Method od Proposition 2.7 is applicable, which means that for every

sufficiently large n the matrix Tn(a− λ) is invertible and hence, λ is not an eigenvalue of

Tn(a). The regions S1, S2, and S3 will be our working sets for λ. In [1] Bogoya, Grudsky

and Malysheva raised the following conjecture:

For every sufficiently large n, Tn(a) has no eigenvalues in S3. (3.4)

We will prove this conjecture for the cases
1

2
< α < 1 and 0 < α <

1

2
with | arg λ| > π

2

(see Theorem 6.6).
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Figure 3.3: (Refer [1]) The bijectivity regions of the symbol a near to the point t = 1.

In order to simplify our calculations, throughout the Chapter (5) we use the parameter

Λ := (n+ 1)λ
1
α (3.5)

divided in to two cases: m 6 |Λ| 6M for certain constants 0 < m < M <∞ (depending

only on the symbol a) and |Λ| → 0, and the case |Λ| → ∞ including the situation where

λ is bounded away from zero. Throughout the Chapter (6), let ψ be the argument of λ,

δ a small positive constant (see Figure 3.2), and consider the sets

R1 := {λ ∈ S : α(π − δ) 6 ψ < απ};

R2 := {λ ∈ S : − απ < ψ 6 −α(π − δ)}.

The following are main results.

Theorem 3.4 (Refer [1]). Let a be the symbol (1.2) satisfying the Properties 3.2. A point

λ ∈ (S1 R1)∪ (S2 R2) is an eigenvalue of Tn(a) if and only if there exists numbers m,M

(depending only on the symbol a) satisfying 0 < m 6 |Λ| 6M , and

2πi

α
eiψ( 1

α
−1)eΛ =

∫∞
0

e−|Λ|vb(v, ψ) dv + ∆1(λ, n),

where

b(v, ψ) :=
e−iαπ

vα − ei(ψ−απ)
− eiαπ

vα − ei(ψ+απ)
,

ψ = arg λ, and ∆1(µ, n) is a function defined for µ ∈ (S1 R1) ∪ (S2 R2) and satisfying

∆1(µ, n) = O
(

1

nα

)
as n→∞ uniformly in µ.
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The previous Theorem 3.4 is important when doing numerical experiments, but using

a change of variable and doing some rotations, we can re-write it in terms of Λ alone with

the disadvantage of having complex integration paths.

Corollary 3.5 (Refer [1]). Let a be the symbol (1.2) satisfying the Properties 3.2. A

point λ ∈ (S1 R1)∪ (S2 R2) is an eigenvalue of Tn(a) if and only if there exists positive

numbers m,M (depending only on the symbol a) satisfying m 6 |Λ| 6M , and

2πi

α
eΛ =

∫
C

e−Λuβ(u) du+ ∆2(λ, n),

where

β(u) :=
1

uαeiαπ − 1
− 1

uαe−iαπ − 1
,

the integration path C is the straight line from 0 to ∞e−i
3
4
π if λ ∈ S1 or the straight

line from 0 to ∞ei
3
4
π if λ ∈ S2, and ∆2(µ, n) is a function which is defined for any

µ ∈ (S1 R1)∪(S2 R2) and satisfies ∆2(µ, n)=O
(

1

nα

)
as n→∞ uniformly in µ.

Remember that there are many ways to go to infinity in the complex plane. The

symbol ∞e−i
3
4
π means that we go to infinity in the direction of the argument of

3

4
π, and

similarly for ∞ei
3
4
π

To get the eigenvalues of Tn(a) from the previous corollary we proceed as follows.

Consider the function

F (Λ) :=
2πi

α
eΛ −

∫
C

e−Λuβ(u) du, (3.6)

where C and β are as in Corollary 3.5. Consider the complex sets

Ŝ` := {Λ = (n+ 1)λ
1
α : λ ∈ S` and m 6 |Λ| 6M} (` = 1, 2, 3).

For each sufficiently large n, the function F is analytic in Ŝ1 ∪ Ŝ2. We can think of ∆2

as a function of Λ with parameter n which, for each sufficiently large n, will be analytic

in Ŝ1 ∪ Ŝ2 also. Let λ
(n)
1 , . . . , λ

(n)
n be the eigenvalues of Tn(a), then according to Corollary

3.5, if λ
(n)
j ∈ (S1 R1) ∪ (S2 R2), the corresponding Θ

(n)
j := (n+ 1)(λ

(n)
j )

1
α ∈ Ŝ1 ∪ Ŝ2 will

be a zero of F (·)−∆2(·, n).
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Theorem 3.6 (Refer [1]). Under the same assumptions as in Theorem 3.4, consider the

function F in (3.6) and suppose that Λj (1 6 j 6 k) are its roots located in Ŝ1 ∪ Ŝ2 with

F ′(Λj) 6= 0 for each j. We then have

λ
(n)
j =

(
Λj

n+ 1

)α
(1 + ∆3(Λj, n)),

where ∆3(Λ, n) = O
(

1

nα

)
as n→∞ uniformly in Λ.

The previous theorem gives us a simple method to get the extreme eigenvalues of Tn(a).

To approximate λ
(n)
j , for every sufficiently large n, we only need to calculate numerically

(see Table 4.2) the extreme zeros Λj of F once.
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Chapter 4

A Key Example

The symbol studied by Dai, Geary, and Kadanoff [3] was

a(t) =

(
2− t− 1

t

)γ
(−t)β = (−1)3γ+βtβ−γ(1− t)2γ,

where 0 < γ < −β < 1. In the case β = γ − 1, this function a becomes our symbol with

α = 2γ, we omit the constant (−1)4γ−1, because it is just a rotation. The conjecture of

[3] is that

tλj,n ∼ n(2γ+1)n−1

exp

(
−2πij

n

)
.

Consider the symbol

a(t) =
1

t
(1− t)

3
4 (t ∈ T).

4.1 Inner eigenvalues

Expansions (3.2) and (3.3) prove this conjecture when λ is bounded away from zero, giving

us an error bound and a mathematical justification.

The results are valid outside a small open neighborhood W0 of the origin, now we

take W0 = B1/5(0) be the disk of radius
1

5
centered at zero. Table 4.1 shows the data
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of numerical computations. It reveals that the maximum error of (3.2) with one term is

reduced by nearly 10 times when considering the second term; see also Figure 3.1.

n 256 512 1024 2048 4096

(3.2) with 1 term 1.6×10−2 8.1×10−3 4.1×10−3 2.1×10−3 1.0×10−3

(3.2) with 2 terms 1.7×10−3 4.5×10−4 1.2×10−4 3.2×10−5 8.7×10−6

(3.3) with 1 term 5.1×10−2 2.8×10−2 1.5×10−2 8.3×10−3 4.4×10−3

(3.3) with 2 terms 1.5×10−2 7.9×10−3 4.1×10−3 2.1×10−3 1.0×10−3

(3.3) with 3 terms 1.4×10−3 4.3×10−4 1.3×10−4 3.7×10−5 1.1×10−5

Table 4.1: (Refer [2]) The table shows the maximum error obtained with those different

formulas for the eigenvalues of Tn
(1

t
(1 − t)

3
4

)
for different values of n. The data was

obtained by comparison with the solutions given by MATLAB, taking into account only

the eigenvalues with absolute value greater than or equal to
1

5
.

4.2 Extreme eigenvalues

The Theorem 3.4 and Corollary 3.5 show that the conjecture is false when λ→ 0.

-9 -8 -7 -6

-40

-20

0

20

40

Figure 4.1: (Refer [1]) Left: The norm of F ((n + 1)(·) 1
α ) for n = 512. We see 3 zeros

corresponding to 3 consecutive extreme eigenvalues. Right: the 16 zeros of F closest to

zero.
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In order to approximate the extreme eigenvalues of Tn(a), we worked with the function

F in Theorem 3.6. See Figure 4.1.

The symbol a(t) =
1

t
(1 − t)

3
4 (t ∈ T) satisfies the properties 1–3 with α =

3

4
and

f(t) = 1. According to [19] the eigenvalues of Tn(a) must approximate (in the Hausdorff

metric) R(a) as n increases. See Figure 4.2 (right). In this case the Fourier coefficients

can be calculated exactly as ak = (−1)k+1
(
3/4
k

)
.

−5.4682120370856014060824201941002± 5.7983682817148888207896459067784 i

−6.5314428236842426830338089371926± 12.367528740074554797742518382959 i

−7.2146902524700029142376134506139± 18.766726622277519575303569592433 i

−7.7391832574277648348440150030617± 25.107047817964583436614118399184 i

−8.1801720679740042575992012537452± 31.419065936016327475853819485556 i

−8.5727223117580707859817744737871± 37.714934295174649424694165724166 i

−8.9360890295369466170427530738561± 44.000518944333248611110872372448 i

−9.2820006335018468357176990494608± 50.279021560318150412713405426181 i

Table 4.2: (Refer [1]) The 16 zeros of F closest to zero with 32 decimal places (see Figure

4.1 right).

Let λ
(n)
1 , . . . , λ

(n)
n be the eigenvalues of Tn(a) numbered counterclockwise starting from

the closest one to zero with positive imaginary part. See Figure 4.2 (left). Note that

when f is real-valued, then the eigenvalues of Tn(a) as well as the zeros of F come in

conjugated pairs. Let Λ1, . . . ,Λn be the zeros of F , and take

λ̂
(n)
j :=

(
Λj

n+ 1

)α
(j = 1, . . . , n)

be the approximated eigenvalues obtained from the zeros of F . Finally let ε
(n)
j and ε̂

(n)
j

be our individual and relative individual errors, respectively, i.e.

ε
(n)
j := |λ(n)

j − λ̂
(n)
j | and ε̂

(n)
j :=

|λ(n)
j − λ̂

(n)
j |

|λ(n)
j |

.

See Figure 4.3 and Tables 4.3 and 4.4. The data was obtained with Wolfram Mathematica.
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Figure 4.2: (Refer [1]) Range of a(t) =
1

t
(1 − t)

3
4 (black curve) and spectrum of Tn(a)

(blue dots) for n = 512 (left) and n = 64 (right).
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Figure 4.3: (Refer [1]) Range of a(t) =
1

t
(1− t) 3

4 (black curve), a few extreme exact and

approximated eigenvalues λ
(512)
j (blue dots) and λ̂

(512)
j (orange stars), respectively.

In the following chapters we are going to complete the details of prove the results used

in this chapters (Refer [1] and [2]).
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n 128 256 512 1024 2048 4096

ε
(n)
1 4.39 ·10−3 1.28 ·10−3 3.58 ·10−4 9.16 ·10−5 1.82 ·10−5 1.79 ·10−6

ε
(n)
2 1.20 ·10−2 3.51 ·10−3 9.81 ·10−4 2.51 ·10−4 4.99 ·10−5 4.92 ·10−6

ε
(n)
3 2.28 ·10−2 6.66 ·10−3 1.86 ·10−3 4.77 ·10−4 9.48 ·10−5 9.36 ·10−6

ε
(n)
4 3.64 ·10−2 1.07 ·10−2 2.99 ·10−3 7.65 ·10−4 1.52 ·10−4 1.50 ·10−5

ε
(n)
5 5.27 ·10−2 1.55 ·10−2 4.33 ·10−3 1.11 ·10−3 2.20 ·10−4 2.18 ·10−5

ε
(n)
6 7.16 ·10−2 2.10 ·10−2 5.89 ·10−3 1.51 ·10−3 3.00 ·10−4 2.96 ·10−5

ε
(n)
7 9.29 ·10−2 2.73 ·10−2 7.65 ·10−3 1.96 ·10−3 3.89 ·10−4 3.84 ·10−5

ε
(n)
8 1.16 ·10−1 3.43 ·10−2 9.61 ·10−3 2.46 ·10−3 4.89 ·10−4 4.83 ·10−5

Table 4.3: (Refer [1]) The error ε
(n)
j for the 8 eigenvalues of Tn(a) closest to zero and with

positive imaginary part. Here a(t) =
1

t
(1− t) 3

4 .

n 128 256 512 1024 2048 4096

ε̂
(n)
1 3.63 ·10−2 1.71 ·10−2 8.18 ·10−3 3.50 ·10−3 1.17 ·10−3 1.94 ·10−4

ε̂
(n)
2 6.54 ·10−2 3.16 ·10−2 1.47 ·10−2 6.31 ·10−3 2.10 ·10−3 3.48 ·10−4

ε̂
(n)
3 9.48 ·10−2 4.58 ·10−2 2.13 ·10−2 9.13 ·10−3 3.04 ·10−3 5.05 ·10−4

ε̂
(n)
4 1.24 ·10−1 6.00 ·10−2 2.80 ·10−2 1.20 ·10−2 3.99 ·10−3 6.62 ·10−4

ε̂
(n)
5 1.54 ·10−1 7.43 ·10−2 3.46 ·10−2 1.48 ·10−2 4.94 ·10−3 8.19 ·10−4

ε̂
(n)
6 1.84 ·10−1 8.87 ·10−2 4.13 ·10−2 1.77 ·10−2 5.89 ·10−3 9.77 ·10−4

ε̂
(n)
7 2.14 ·10−1 1.03 ·10−1 4.80 ·10−2 2.05 ·10−2 6.84 ·10−3 1.13 ·10−3

ε̂
(n)
8 2.44 ·10−1 1.17 ·10−1 5.47 ·10−2 2.34 ·10−2 7.80 ·10−3 1.29 ·10−3

Table 4.4: (Refer [1]) Relative individual error ε̂
(n)
j for the 8 eigenvalues of Tn(a) closest

to zero and with positive imaginary part. We worked here with a(t) =
1

t
(1− t) 3

4 .
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Chapter 5

Behavior of Inner Eigenvalues

5.1 Toeplitz determinant

Lemma 5.1 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Then, for each

λ ∈ D(a) and every n ∈ N, and with [ · ]n denoting the nth Fourier coefficient,

Dn(a− λ) = (−1)nhn+1
0

[
1

h(t)− λt

]
n

. (5.1)

Proof. We get the entries of the matrices Tn(a−λ) and Tn+1(h−λt), and the relationship

between them. For k ∈ N we have

ak =
1

2π

∫ 2π

0

a(eiθ)e−ikθ dθ =
1

2π

∫ 2π

0

h(eitθ)eiθ(k+1) dθ = hk+1,

[
h(t)− λt

]
k

= hk −
λ

2π

∫ 2π

0

eiθ(1−k) dθ =


hk − λ, k = 1;

hk, k 6= 1.

Remember that Tn(a − λ) and Tn+1(h − λt) are Hessenberg matrices, thus a−k = 0
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∀k ≥ 0. So

Tn+1(h− λt) =



h0 0 0 · · · 0 0

h1 − λ h0 0 · · · 0 0

h2 h1 − λ h0 · · · 0 0
...

...
...

. . .
...

...

hn−1 hn−2 hn−3 · · · h0 0

hn hn−1 hn−2 · · · h1 − λ h0


(5.2)

and

Tn(a− λ) =



h1 − λ h0 0 · · · 0

h2 h1 − λ h0 · · · 0
...

...
...

. . .
...

hn−1 hn−2 hn−3 · · · h0

hn hn−1 hn−2 · · · h1 − λ


.

Note that Tn+1(h − λt) is non-singular, because h0 6= 0, and applying the Cramer’s rule

to the system AX = B for A = Tn+1(h − λt), X = A−1, and B = In+1, we can take the

1st row and (n+ 1)th column to get:[
T−1
n+1(h− λt)

]
(n+1,1)

= (−1)n+2 Dn(a− λ)

Dn+1(h− λt)
. (5.3)

We claim that h(t)− λt is invertible in H∞. To see this, we must show that h(t) 6= λt for

all t ∈ D and each λ ∈ D(a). Let λ be a point in D(a). For each t ∈ T we have h(t) 6= λt

because λ /∈ ∂D(a) = R(a). By assumption, windλ(a) = −1 for λ ∈ D(a), as R(a− λ) is

a translation of R(a) thus

wind0(a) = −1 = wind0(a− λ) = wind0

(
1

t
h(t)− λ

)
= wind0

(
1

t
(h(t)− λt)

)
= wind0

(
1

t

)
+ wind0

(
h(t)− λt

)
= −1 + wind0

(
h(t)− λt

)
.

It follows that wind0

(
h(t)− λt

)
= 0, which means that the origin does not belong to the

inside domain of the curve {h(t)− λt : t ∈ T}. As h ∈ H∞, this shows that h(t) 6= λt for
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all t ∈ D and proves our claim. Using the Proposition 2.6, we have that if b is invertible

in H∞, then T−1
n+1(b) = Tn+1(1/b). Thus, the (n+1, 1) entry of the matrix T−1

n+1

(
h(t)−λt

)
is in fact the nth Fourier coefficient of

(
h(t)− λt

)−1
,[

T−1
n+1

(
h(t)− λt

)]
(n+1,1)

=

[
1

h(t)− λt

]
n

.

Inserting this in (5.3) we get

Dn(a− λ) = (−1)n+2Dn+1

(
h(t)− λt

)[ 1

h(t)− λt

]
n

= (−1)nhn+1
0

[
1

h(t)− λt

]
n

,

which completes the proof.

Expression (5.1) says that the determinant Dn(a− λ) can be expressed as the Fourier

integral

Dn(a− λ) = (−1)nhn+1
0

∫π
−π

e−inθ

h
(
eiθ
)
− λeiθ

dθ

2π
,

which is our starting point to find an asymptotic expansion for the eigenvalues of Tn(a).

There are two major contributions to this integral. The first comes from λ, when it is

close to R(a), and the second results from the singularity at the point 1. We will analyze

them in separate sections.

5.2 Contribution of λ to the asymptotic behavior of

Dn

Defining

b(z, λ):=
1

h(z)− λz
,

we have

bn(λ) =

∫π
−π
b
(
eiθ, λ

)
e−inθ

dθ

2π
. (5.4)

From (5.1) we conclude that

Dn(a− λ) = (−1)nhn+1
0 bn(λ). (5.5)
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Lemma 5.2 (Refer [2]). Let a be the symbol satisfying the Properties 3.1, such that R(a)

is a Jordan curve in C. Let W0 be a small open neighborhood of zero in C. Assume that

h has an analytic extension to an open neighborhood W of T {1} in C not containing the

point 1 and that a′(t) 6= 0 for every t ∈ T {1}. Then, for each λ ∈ D(a) W0 sufficiently

close to R(a), there exists a unique point tλ in W D such that a(tλ) = λ. Moreover, the

point tλ is a simple pole for b.

Proof. Without loss of generality, we may assume that the extension of a to W is bounded.

As h ∈ H∞, this extension must map W D to D(a) ∩ a(W ) so windλ(a) 6= 0. As the

range of a has no loops, we have a′(t) 6= 0 for all t ∈ T.

Consider the set S:= {t ∈ T : a(t) /∈ W0} we will show that it is compact. We know

that T is compact, then a(T) is compact, now R(a) is closed thus R(a)\W0 is closed,

furthermore S is compact.

For every t ∈ S, there exists an open neighborhood Vt of t in C with Vt ⊂ W such

that a′(t) 6= 0 for each t ∈ Vt. Thus, there is an open set Ut such that t ∈ Ut ⊂ Vt and a

is a conformal map (and hence bijective) from Ut to a(Ut). As S is compact, we can take

a finite sub-cover from {Ut}t∈S, say U :=
⋃M
i=1 Uti . It follows that a is a conformal map

(and hence bijective) from U ⊃ S to a(U) ⊃ a(S); see Figure 5.1. The lemma then, holds

for every λ ∈ a(U) ∩ (D(a) W0). Finally, since a′(tλ) 6= 0, the point tλ must be a simple

pole of b, moreover

lim
t→tλ

t− tλ
t(a(t)− λ)

= lim
t→tλ

1

(a(t)− λ) + ta′(t)
=

1

tλa′(tλ)
6= 0.

Now using that tλ is a simple pole of b, we split b as follows:

b(z, λ) =
1

z(a(z)− λ)
=

1

tλa′(tλ)(z − tλ)
+ f0(z, λ). (5.6)

Here f0 is analytic with respect to z in W and uniformly bounded with respect to λ in

a(W ) W0. We calculate the Fourier coefficients of the first term in (5.6)

bn(λ) =
1

tλa′(λ)

1

2π

∫π
−π

e−inθ

(eiθ − tλ)
dθ + I
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Figure 5.1: (Refer [2]) The map a over the unit circle.

where

I:=

∫π
−π
f0

(
eiθ, λ

)
e−inθ

dθ

2π
.

Then

bn(λ) =
−1

tn+2
λ a′(tλ)

+ I. (5.7)

The first term in (5.7) times (−1)nhn+1
0 is the contribution of tλ to the asymptotic expan-

sion of Dn(a − λ); see (5.5). The function f0 has a singularity at z = 1 and we use this

fact to expand I in the following Section.

5.3 Contribution of 1 to the asymptotic behavior of

Dn

In this Section, we will show that the value of I in (5.7) depends mainly on the singu-

larity at the point 1. Let us write b(θ, λ) and f0(θ, λ) instead of b
(
eiθ, λ

)
and f0

(
eiθ, λ

)
,

respectively. Let {φ1, φ2} be a smooth partition of unity over the segment [−π, π], see

Figure 5.2, which means that φ1, φ2 ∈ C∞[−π, π], φ1(θ) + φ2(θ) = 1 for all θ ∈ [−π, π],

the support of φ1 is contained in [−π,−ε]∪ [ε, π], and the support of φ2 is in [−δ, δ], where

0 < ε < δ are small constants. By pasting segments [−π, π] in both directions, we can

continue φ1 and φ2 to the entire real line R, and we will think of these two functions in
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1

0−δ−ε ε δ

φ2

φ1

−π π

Figure 5.2: (Refer [2]) Partition of unity over the segment [−π, π]

that way.

Lemma 5.3 (Refer [2]). For every sufficiently small positive δ, we have

I =

∫ δ
−δ
φ2(θ)b(θ, λ)e−inθ

dθ

2π
+Q1(n, λ), (5.8)

where Q1(n, λ) = O
(

1

n∞

)
as n→∞, uniformly with respect to λ in a(W ) W0.

Proof. Using the partition of unity {φ1, φ2}, we write I = I1 + I2 where

I1:=

∫ 2π−ε

ε

φ1(θ)f0(θ, λ)e−inθ
dθ

2π
, I2:=

∫ δ
−δ
φ2(θ)f0(θ, λ)e−inθ

dθ

2π
.

The function φ1(θ)f0(θ, λ) belongs to C∞[ε, 2π − ε]. Using integration by parts m-times

and taking q(θ, λ) = φ1(θ)f0(θ, λ) we have

I1 =
m−1∑
s=0

(−1)s

[
q(θ, λ)(s)(−1)s+1e−inθ

(in)s+1

]2π−ε

ε

+ (−1)m
∫ 2π−ε

ε

q(θ, λ)(m)e−inθ(−i)m

(in)m
dθ.

Because of Riemann Lebesgue’s lemma (2.11), this equals

I1 =
m−1∑
s=0

O
( 1

ns+1

)
+

1

nm
o(1).

The predominant order is the one with higher degree thus I1 = O
(

1

nm

)
. We obtain that

I1 = O
(

1

n∞

)
as n→∞, uniformly with respect to λ in a(W ) W0.
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Solving for f0(θ, λ) in (5.6), we arrive at I2 = I21 + I22 where

I21:=

∫ δ
−δ
φ2(θ)b(θ, λ)e−inθ

dθ

2π
, I22:=

−1

tλa′(tλ)

∫ δ
−δ

φ2(θ)e−inθ

eiθ − tλ
dθ

2π
. (5.9)

Once more, the function φ2(θ)
(

exp(iθ)−tλ
)−1

belongs to C∞[−δ, δ], with a similar method

we conclude that I22 = O
(

1

n∞

)
as n→∞, uniformly with respect to λ in a(W ) W0.

Expression (5.8) says that the value of I basically depends on the integrand b(θ, λ)e−inθ

at θ = 0. As we can take δ as small as we desire, we can assume that θ is arbitrarily close

to zero. Keeping this idea in mind, we will develop an asymptotic expansion for b. For

future Reference, we rewrite (5.8) as

I = I21 +Q1(n, λ), (5.10)

where Q1(n, λ) = O
(

1

n∞

)
as n→∞, uniformly with respect to λ in a(W ) W0.

Lemma 5.4 (Refer [2]). For every sufficiently small positive δ,

I21 = −
∞∑
s=0

1

λs+1

∫ δ
−δ

φ2(θ)hs(θ)e−inθ

eiθ(s+1)

dθ

2π
. (5.11)

Proof. We have

I21 =

∫ δ
−δ
φ2(θ)b(θ, λ)e−inθ

dθ

2π
. (5.12)

Note that

b(θ, λ) =
1

h(θ)− λeiθ
=
−1

λeiθ
· 1

1− λ−1e−iθh(θ)
.

Now, since f is bounded,
∣∣h(θ)

∣∣ =
∣∣1− eiθ

∣∣α∣∣f(eiθ)
∣∣ → 0 when θ → 0. So there exists a

small positive constant δ such that ∣∣∣∣λ−1e−iθh(θ)

∣∣∣∣ < 1

for every |θ| < δ. Thus,

b(θ, λ) =
−1

λeiθ

∞∑
s=0

(
λ−1e−iθh(θ)

)s
= −

∞∑
s=0

hs(θ)

λs+1eiθ(s+1)
(5.13)

for every |θ| < δ. Inserting (5.13) in (5.12) and considering that
∣∣φ2(θ)b(θ, λ)

∣∣ ≤ 1, the

dominated convergence Theorem 2.4 finishes the proof.
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We will use the notation

I21s:=
1

λs+1

∫ δ
−δ

φ2(θ)hs(θ)e−inθ

eiθ(s+1)

dθ

2π
.

Because φ2(θ)e−iθ ∈ C∞[−δ, δ], using the same idea which proves I1 = O
(

1

n∞

)
we have

I21s|s=0 = O
(

1

n∞

)
as n → ∞, uniformly with respect to λ in a(W ) W0. With the

previous notation, we can rewrite (5.11) as

I21 = −
∞∑
s=1

I21s +Q2(n, λ), (5.14)

where Q2(n, λ) = O
(

1

n∞

)
as n→∞, uniformly with respect to λ in a(W ) W0. Finally

we will work with I21s.

Lemma 5.5 (Refer [2]). Let h(t) = (1− t)αf(t) with α ∈ R+ Z and f ∈ C∞(T). Then,

I21 =
f(1)Γ(α + 1) sin(απ)

πλ2nα+1
+R1(n, λ), (5.15)

where R1(n, λ) = O
(

1

nα+α0+1

)
with α0 = min{α, 1} as n→∞, uniformly with respect to

λ in a(W ) W0.

Proof. All the order terms in this proof work as n→∞, uniformly in λ ∈ a(W ) W0.

We know that h(θ) = (1− eiθ)f(eiθ) = (−iθ)αv(θ)f
(
eiθ
)
, where the function v equals(

iθ−1(1−eiθ)
)α

, the branch of the αth power being the one corresponding to the argument

in (−π, π]; note that for every sufficiently small positive δ we have v ∈ C∞[−δ, δ] since

v(0) = lim
θ→0

(
1− eiθ

iθ

)α
= 1. Thus,

I21s =
1

2πλs+1

∫ δ
−δ

φ2(θ)hs(θ)e−inθ

eiθ(s+1)
dθ

=
1

2πλs+1

∫ δ
−δ

φ2(θ)θsαvs(θ)f s(eiθ)e−inθ

eiθ(s+1)
dθ.

Using w(θ):= (−i)αs
φ2(θ)vs(θ)f s

(
eiθ
)

2πλs+1eiθ(s+1)
and β:= αs+ 1, the last integral can be written as
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I21s =

∫ δ
−δ
θβ−1w(θ)e−inθ dθ

=

∫ 0

−δ
θβ−1w(θ)e−inθ dθ +

∫ δ
0

θβ−1w(θ)e−inθ dθ

=

∫ δ
0

(−τ)β−1w(−τ)einτdτ +

∫ δ
0

θβ−1w(θ)e−inθ dθ = I21s1 + I21s2, (5.16)

where

I21s1:= (−1)β−1

∫ δ
0

θβ−1w(−θ)einθ dθ, I21s2:=

∫ δ
0

θβ−1w(θ)e−inθ dθ.

Note that w(±θ) ∈ C∞[0, δ] and w(s)(±δ) = 0 for all s ∈ N because φ2(θ) ≡ 0 in a small

neighborhood of ±δ. Applying Theorem 2.12 to I21s1 and Corollary 2.13 to I21s2, we

obtain

I21s1 =
(−1)αsw(0)Γ(αs+ 1)iαs+1

nαs+1
+Q3(s, n, λ)

and

I21s2 =
w(0)Γ(αs+ 1)i−αs−1

nαs+1
+Q4(s, n, λ), (5.17)

where Q3 and Q4 are O
(

1

nαs+2

)
. Substitution of (5.17) in (5.16) yields

I21s =
w(0)Γ(αs+ 1)

nαs+1

(
e−i

π
2

(αs+1) + (eiπ)αsei
π
2

(αs+1)
)

+Q5(s, n, λ)

=
f (1)Γ(αs+ 1)

2πλs+1nαs+1
ie−

π
2
sα
(
eiπαsei

π
2

(αs) − e−i
π
2

(αs)
)

+Q5(s, n, λ)

=
f (1)Γ(αs+ 1)

2πλs+1nαs+1
i
(
eiπαs − e−iαs

)
+Q5(s, n, λ)

=
−Cs

λs+1nαs+1
+Q5(s, n, λ) (5.18)

where

Cs:=
1

π
f s(1)Γ(αs+ 1) sin(απs) (5.19)

and Q5(s, n, λ) = O
(

1

nαs+2

)
. From (5.14) and (5.18) we obtain

I21 =
C1

λ2nα+1
+O

(
1

nα+2

)
+O

(
1

n2α+1

)
=

C1

λ2nα+1
+R1(n, λ),

where R1(n, λ) = O
(

1

nα+α0+1

)
here α0:= min{α, 1}.
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The previous calculation gives us the main asymptotic term for I21. If more terms are

needed, say m, we must expand I21 from I21s|s=1 to I21s|s=m and expand each I21s to m

terms, after which, according to the value of α, we need to select the first m principal

terms.

Finally we put all the lemmas together to prove Theorem 3.1.

Proof of Theorem 3.1. The proof of this theorem is a direct application of equations (5.5),

(5.7), (5.10), and (5.15).

Dn(a− λ) = (−1)n(h0)n+1bn(λ) but bn(λ) =
−1

tn+2
λ a′(tλ)

+ I and I = I1 + I2 so

Dn(a− λ) = (−h0)n+1

(
1

tn+2
λ a′(tλ)

− C1

λ2nα+1
+O

(
1

nα+α0+1

))
.

5.4 Individual eigenvalues

In order to find the eigenvalues of the matrices Tn(a), we need to solve the equations

Dn(a− λ) = 0. We start this Section by locating the zeros of Dn(a− λ).

Figure 5.3: 19th root of unity, where n1 = n2 = 1

Let W0 be a small open neighborhood of zero in C and ωn:= exp
(−2πi

n

)
nth root of

unity, where n is a positive integer. For each n there exist integers n1 and n2 such that
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ωn1
n , ωn−n2

n ∈ a−1(W0) but ωn1+1
n , ωn−n2−1

n /∈ a−1(W0), see Figure (5.3), because W0 does

not cover a(T).

Recall that λ = a(tλ). Take an integer j satisfying n1 < j < n − n2, since a(tλ) and

a′(tλ) have no problems in 0 and are analytical, using the relations

1

t2λa
′(tλ)

=
1

ω2
ja
′(ωjn)

+O(|tλ − ωjn|)

and
1

a2(tλ)
=

1

a2(ωjn)
+O(|tλ − ωjn|),

where tλ belongs to a small neighborhood of the point ωjn, we see that

Dn(a− λ) = (−h0)n+1
(
T1 − T2 +

1

tnλ
O
(∣∣tλ − ωjn∣∣)+

1

nα+1
O
(∣∣tλ − ωjn∣∣)+Q6(n, tλ)

)
Dn(a− λ) = (−h0)n+1

(
T1 − T2 +O

(∣∣∣tλ − ωjn
tnλ

∣∣∣)+O
(∣∣tλ − ωjn∣∣

nα+1

)
+Q6(n, tλ)

)
, (5.20)

where Q6(n, tλ) = O
(

1

nα+α0+1

)
as n → ∞, uniformly with respect to tλ in W a−1(W0),

and where tλ belongs to a small neighborhood of ωjn. Here

T1:=
1

tnλω
2j
n a′(ω

j
n)
, T2:=

C1

a2(ωjn)nα+1
,

and α0:= min{α, 1}. Recall C1 from (5.19). Expression (5.20) makes sense only when tλ

is sufficiently “close” to ωjn and thus it is necessary to know whether there exists a zero

of Dn(a− λ) “close” to ωjn. Let

tλ = (1 + ρ) exp(iθ).

It is easy to see that T1 − T2 = 0 if and only if (1 + ρ)n exp(inθ) =
a2(ωjn)nα+1

C1ω
2j
n a′(ω

j
n)

then

ρ =

(
|a(ωjn)|2nα+1

|C1a′(ω
j
n)|

) 1
n

− 1 (5.21)

and

θ = θj =
1

n
arg

(
a2(ωjn)

C1ω
2j
n a′(ω

j
n)

)
− 2πj

n
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for some j ∈ {0, . . . , n − 1}. When n tends to infinity, (5.21) shows that ρ remains

positive and since
|a(ωjn)|2

|C1a′(ω
j
n)|

is a bounded constant and n
α+1
n → 1 then ρ → 0. The

function T1 − T2 has n zeros with respect to λ ∈ D(a) given by

a
(
(1 + ρ)eiθ0

)
, . . . , a

(
(1 + ρ)eiθn−1

)
.

As Lemma 5.2 establishes a 1-1 correspondence between λ and tλ and the function

Dn(a− λ) is analytic with respect to λ in a(W ) W0, that is, analytic with respect to tλ

in W a−1(W0). We can therefore suppose that T1 − T2 has n zeros with respect to tλ in

the exterior of D given by

t0:= (1 + ρ)eiθ0 , . . . , tn−1:= (1 + ρ)eiθn−1 .

We take the function “arg” in the interval (−π, π]. Thus, tj = (1 + ρ)eiθj is the nearest

zero to ωjn for the Rouché Theorem 2.15 . Consider the neighborhood Ej of tj sketched

in Figure 5.4.

*

*

*

ωj−1
n

ωjn

ωj+1
n

tj−1

tj

tj+1Γ1
Γ2

Γ3Γ4

Ej

T

Figure 5.4: (Refer [2]) The neighborhood Ej of tj in the complex plane.

The boundary of Ej is Γ:= Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. We have chosen radial segments Γ2 and

Γ4 so that their length is
1

nε
with ε ∈ (0, α0) and all the points in Γ2 have the common
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argument
θj+1 + θj

2
, while all the points in Γ4 have the common argument

θj−1 + θj
2

. As

we can see in Figure 5.4, these points run from the unit circle T to

(
1 +

1

nε

)
T. Note also

that Γ1 ⊂
(

1 +
1

nε

)
T and Γ3 ⊂ T.

Ej+1

Ej

θj+1+θj+2

2

θj+1+θj
2

θj−1+θj
2

(a) Neighborhoods Ej and Ej+1

T

(1 + 1
nε )T

Êj

1
nε

1
nε

2π
n

2π
n (1 + 1

nε )

(b) Neighborhood Êj

Figure 5.5: Neighborhoods in the complex plane

Theorem 5.6 (Refer [2]). Let a be the symbol satisfying the Properties 3.1. Let ε ∈ (0, α0)

be a constant. Then, there exists a family of sets {Ej}n−n2−1
j=n1+1 in C such that

1. {Ej}n−n2−1
j=n1+1 is a family of pairwise disjoint open sets,

2. diam(Ej) 6
2π

nε
,

3. ωjn ∈ ∂Ej,

4. Dn

(
a− a(tλ)

)
= Dn(a− λ) has exactly one zero in each Ej.

Here α0:= min{α, 1} and diam(Ej):= sup{|z1 − z2| : z1, z2 ∈ Ej}.

Proof. 1. It is enough to prove that Ej ∩Ej+1 6= ∅. Because of the definition we have,

∂Ej ∩ ∂Ej+1 = {z0 : arg(z0) =
θj + θj+1

2
} (see Figure 5.5a), thus Ej ∩ Ej+1 6= ∅.

2. Remember that we gave necessary conditions for tλ be “close” to ωjn, this implies

that arg(tj) ∼
2πj

n
. Consider the set Êj in Figure 5.5b . Thus diam(Ej) ∼ diam(Êj),

but diam(Êj) <
2π

nε
then diam(Ej) <

2π

nε
.
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3. We know that each consecutive pair of nth roots of unity, are separated by an arc

with length
2π

n
<

2π

nε
, then using the previous item, we have ωjn ∈ Ej, moreover

ωjn ∈ Γ3.

4. We prove assertion 4 by studying the behavior of |Dn(a−λ)| with respect to tλ ∈ Γ.

For tλ ∈ Γ1 is |tλ|n =

∣∣∣∣1 +
1

nε

∣∣∣∣n, using that

(
1 +

1

nε

)−n
= exp

(
− n log

(
1 +

1

nε

))
.

We have as n→∞,

|T1|Γ1 =
1

|a′(ωjn)|

(
1 +

1

nε

)−n
=

exp(−n1−ε)

|a′(ωjn)|
+O

(
exp(−n1−ε)

n2ε−1

)
,

and using the Taylor’s series of log, we get

|T2|Γ1 =
1

nα+1

∣∣∣∣ C1

a2(ωjn)

∣∣∣∣.
By a similar argument, we have∣∣∣∣O(∣∣∣∣tλ − ωjntnλ

∣∣∣∣)∣∣∣∣
Γ1

= O

(
exp(−n1−ε)

nε

)
,

also ∣∣∣∣O(∣∣∣∣tλ − ωjnnα+1

∣∣∣∣)∣∣∣∣
Γ1

= O

(
1

nε+α+1

)
and |Q6(n, tλ)|Γ1 = O

(
1

nα+α0+1

)
.

When n goes to infinity, the modulus of T2 decreases at polynomial speed over Γ1,

while the module of the remaining terms in (5.20) are smaller over Γ1. Thus,∣∣∣∣Dn(a− λ)

hn+1
0

∣∣∣∣
Γ1

=
1

nα+1

∣∣∣∣ C1

a2(ωjn)

∣∣∣∣+O

(
1

nα+ε+1

)
.

For tλ ∈ Γ3 is |tλ| = 1. We get, as n→∞,

|T1|Γ3 =
1

|a′(ωjn)|
and |T2|Γ3 =

1

nα+1
·
∣∣∣∣ C1

a2(ωjn)

∣∣∣∣.
Note that |tλ − ωjn| = O

(
1

n

)
so

∣∣∣∣O(∣∣∣∣tλ − ωjntnλ

∣∣∣∣)∣∣∣∣
Γ3

= O

(
1

n

)
,

∣∣∣∣O(
∣∣tλ − ωjn∣∣
nα+1

)∣∣∣∣
Γ3

= O

(
1

nα+2

)
,
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and |Q6(n, tλ)|Γ3 = O
(

1

nα+α0+1

)
. When n goes to infinity, the modulus of T1 remains

constant over Γ3, while the moduli of the remaining terms in (5.20) are smaller there.

Consequently, ∣∣∣∣Dn(a− λ)

hn+1
0

∣∣∣∣
Γ3

=
1

|a′(ωjn)|
+O

(
1

n

)
.

∼ |C1|
nα+1|a(ωjn)|2

∼ 1

|a′(ωjn)|

Γ 1Γ 2

Γ 3

Γ 4ωj n

T t̂ λ(n
)
j

Figure 5.6: (Refer [2]) Function
D(a− λ)

hn+1
0

in neighborhood Ej

For the radial segments Γ2 and Γ4, we start by showing that T1 and −T2 have the

same argument principal there. Since tj is a zero of T1 − T2, we deduce that

arg

(
1

tnj ω
2j
n a′(ω

j
n)

)
= arg

(
C1

a2(ωjn)nα+1

)
,

arg

(
1

tnj

)
+ arg

(
1

ω2j
n a′(ω

j
n)

)
= arg

(
C1

a2(ωjn)

)
.

Note that arg(t−1
j ) = arg(tj) = − arg(tj) = −θj and “if we sum 2kπ the second

argument change the representative of class”, thus

− nθj + arg

(
1

ω2j
n a′(ω

j
n)

)
= arg

(
C1

a2(ωjn)

)
. (5.22)
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For tλ ∈ Γ4 we have

arg(T1) = arg

(
1

tnλω
2j
n a′(ω

j
n)

)
= −n

2
(θj−1 + θj) + arg

(
1

ω2j
n a′(ω

j
n)

)
=
n

2
(θj − θj−1) + arg

(
C1

a2(ωjn)

)
= π + arg

(
C1

a2(ωjn)

)
= arg(−T2).

Here the second line is due to (θj − θj−1) is the angle between tj and tj−1, note that

tj is uniformly distanced because is a solution when take nth root, then (θj − θj−1) =
2π

n
.

In addition, as n→∞,∣∣∣∣O(∣∣∣∣tλ − ωjntnλ

∣∣∣∣)∣∣∣∣
Γ4

= O

(
1

nε|tλ|n

)
,

∣∣∣∣O(
∣∣tλ − ωjn∣∣
nα+1

)∣∣∣∣
Γ4

= O

(
1

nα+ε+1

)
,

and |Q6(n, tλ)|Γ4 = O
(

1

nα+α0+1

)
. Furthermore,∣∣∣∣Dn(a− λ)

hn+1
0

∣∣∣∣
Γ4

=
1

|tnλa′(ω
j
n)|

+O

(
1

nε|tλ|n

)
+

1

nα+1

∣∣∣∣ C1

a2(ωjn)

∣∣∣∣+O

(
1

nα+ε+1

)
over Γ4 when n→∞. The situation is similar for the segment Γ2.

From the previous analysis of |Dn(a− λ)| over Γ we infer by Figure 5.6 and previous

analysis that, the more less values in the frontier is
1

nα+1

∣∣∣ C1

a2(ωjn)

∣∣∣(1 + o(1)), thus using the

maximum modulus principle Corollary 2.17 that for every sufficiently large n we have

|T1 − T2|Γ >
1

2nα+1

∣∣∣∣ C1

a2(ωjn)

∣∣∣∣
and ∣∣∣∣O(∣∣∣∣tλ − ωjntnλ

∣∣∣∣)+O

(∣∣tλ − ωjn∣∣
nα+1

)
+Q6(n, tλ)

∣∣∣∣
Γ

6
C

nα+ε+1
,

where C is a constant. Hence, by Rouché’s Theorem 2.15, (−h0)−(n+1)Dn(a − λ) and

T1 − T2 have the same number of zeros in Ej, that is, a unique zero.

As a consequence of Theorem 5.6, we can iterate the variable tλ in the equation

Dn(a − λ) = 0, where Dn(a − λ) is given by (3.1). In this fashion we find the unique

eigenvalue of Tn(a) which is located “close” to each ωjn. We thus rewrite the equation

Dn(a− λ) = 0 in a small neighborhood of ωjn as

1

a′(tλ)t
n+2
λ

=
C1

a2(tλ)nα+1
+O

(
1

nα+α0+1

)
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1

tnλ
=

C1t
2a′(tλ)

a2(tλ)nα+1
+O

(
1

nα+α0+1

)
=

C1t
2a′(tλ)

a2(tλ)nα+1

(
1 +O

(
1

nα0

))
.

Then if we reverse and take nth root above we get

tλj,n = n
α+1
n ωjn

(
a2(tλj,n)

C1a′(tλj,n)t2λj,n

) 1
n

·
(
1 +Q7(n, j)

)− 1
n ; (5.23)

recall C1 from (5.19). The Theorem 5.6 insures a 1-1 correspondence between ωjn and tλj,n ,

so after taking the nst root. Here the function z
1
n takes its principal branch, specified by

the argument in (−π, π]. Also notice that Q7(n, j) = O

(
1

nα0

)
as n → ∞, uniformly in

j ∈ (n1, n− n2), with n1, n2 as in Theorem 5.6.

Proof of Theorem 3.2. All the order terms in this proof work with n→∞, uniformly in

j ∈ (n1, n− n2), with n1, n2 as in Theorem 5.6.

Equation (5.23) is an implicit expression for tλj,n . We manipulate it to obtain two

asymptotic terms for tλj,n . Remember that λ belongs to D(a) W0; see Figure 5.1. We can

choose W so thin that λj,n = a(tλj,n), a′(tλj,n), and tλj,n are bounded and not too close to

zero.

Now, if we denote Aj,n as
a2(tλj,n)

C1a′(tλj,n)t2λj,n
, then

A
1
n
j,n = exp

(
1

n
logAj,n

)
= 1 +

1

n
logAj,n +O

(
1

n2

)
and

(
1 +Q7(n, j)

)− 1
n = O

(
1

n1+α0

)
.

After expanding and multiplying the terms in parenthesis in (5.23), we obtain

tλj,n = n
α+1
n ωjn

(
1 +

1

n
log(Aλj,n) +Q8(n, j)

)
, (5.24)

where Q8(n, j) = O

(
1

n1+α0

)
. Our first approximation for tλj,n is the smaller order of

(5.24), that is

tλj,n = n
α+1
n ωjn(1 +O(n−1)) = ωjn

(
1 +Q9(n, j)

)
, (5.25)

where Q9(n, j) = O

(
log n

n2

)
, which is a consequence of n

α+1
n = exp

(
α+ 1

n
log(n)

)
. In-

serting (5.25) in (5.24), we get
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tλj,n = n
α+1
n ωjn

[
1 +

1

n
log

(
a2
(
ωjn
[
1 +Q9(n, j)

])
C1a′

(
ωjn
[
1 +Q9(n, j)

])(
ωjn
[
1 +Q9(n, j)

])2

)
+Q8(n, j)

]
.

Now we use the analyticity of log, a, and a′ in W , and Proposition 2.14 to obtain that

log

(
a2
(
ωjn
[
1 +Q9(n, j)

])
C1a′

(
ωjn
[
1 +Q9(n, j)

])(
ωjn
[
1 +Q9(n, j)

])2

)
= log

(
a2(ωjn)

C1a′(ω
j
n)ω2j

n

)
+Q9(n, j),

we can simplify the expression for tλj,n to obtain

tλj,n = n
α+1
n ωjn

(
1 +

1

n
log

(
a2(ωjn)

C1a′(ω
j
n)ω2j

n

)
+R2(n, j)

)
,

where R2(n, j) = O

(
1

n1+α0

)
+O

(
log n

n2

)
.

Proof of Theorem 3.3. All the order terms in this proof work with n→∞, uniformly in

j ∈ (n1, n− n2), with n1, n2 as in Theorem 5.6. Note that

n
α+1
n = exp

(
(α + 1)

n
log n

)
= 1 +

(α + 1)

n
log n+O

(
log n

n

)2

. (5.26)

Inserting (5.26) in (3.2) we obtain

tλj,n = ωjn

(
1 +

(α + 1)

n
log n+

1

n
log

(
a2(ωjn)

C1a′(ω
j
n)ω2j

n

)
+Q10(n, j)

)
, (5.27)

where Q10(n, j) = O

(
1

n1+α0

)
+O

(
log2 n

n2

)
. Now we know that

a(z) = a(ωjn) + a′(ωjn)(z − ωjn) +O(|z − ωjn|
2
), (5.28)

applying the symbol a to (5.27) and taking z = tλj,n in (5.28), we see that,

a(tλ) = a(ωjn) + ωjna
′(ωjn)

(
(α + 1)

n
log n+

1

n
log

(
a2(ωjn)

C1a′(ω
j
n)ω2j

n

)
+Q10(n, j)

)
+O

(
log n

n

)
+O

(
1

n

)
+O

(
1

nα0+1

)
+O

(
log2 n

n2

)
,

the dominant order in the last equation is Q10(n, j), so

λj,n = a(ωjn) + (α + 1)ωjna
′(ωjn)

log n

n
+
ωjna

′(ωjn)

n
log

(
a2(ωjn)

C1a′(ω
j
n)ω2j

n

)
+Q10(n, j)
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Chapter 6

Behavior of Extreme Eigenvalues

We start this section with a technical result that enables us to invert the symbol a in a

certain neighborhood of 0.

6.1 Location of eigenvalues

Lemma 6.1 (Refer [1]). Let ρ be a small positive constant and a be the symbol in (1.2)

satisfying the Properties 3.2. Then

(i) there exist U1, U2 subsets of Kε D such that a(U1) ⊆ S1 and a(U2) ⊆ S2, and a

restricted to U1 ∪ U2 is a bijective map; moreover, for some small positive δ and

each λ ∈ S1 R1, S2 R2, there exists a unique zλ in U1, U2, respectively, such that

a(zλ) = λ;

(ii) for some small positive µ we have,

π

2
− µ < arg(1− z) 6 π for every z ∈ U1,

−π 6 arg(1− z) < −π
2

+ µ for every z ∈ U2;

that is, the sets U1, U2 are located as in Figure 3.3;

(iii) zλ is a simple zero of a− λ.

48



Proof. (i)

S0S3

S1

S2

R2

R1

Figure 6.1: Regions Si and Rj with i = 1, 2, 3 and j = 1, 2.

Let U1 := a−1(S1) and U2 := a−1(S2), see Figure 3.3. By property 1, f has an analytic

continuation to Kε, thus a has a continuous extension to K̂ε

Let’s show the uniqueness of zλ. Suppose that there exist zλ and z̃λ in U1∪U2 satisfying

a(zλ) = a(z̃λ) = λ, note that zλ and z̃λ belongs to the same set U1 or U2, thus

a(zλ)− a(z̃λ) = 0 =

∫
γλ

a′(z) dz, (6.1)

where γλ is some closed polygonal curve in U1 or U2 from z̃λ to zλ. Since f is an arbitrarily

smooth function with f(1) = 1 and f ′(1) = 1, we have

a′(z) = −α
z

(1− z)α−1f(z)

(
1 +

1− z
αz
− (1− z)f ′(z)

αf(z)

)
.

Now f(z) = f ′(z) = 1 + O(|1 − z|) and z = 1 + O(|1 − z|) so z−1f(z) = 1 + O(|1 − z|)

then,

a′(z) = − α(1− z)α−1(1 +O(|1− z|)) (z → 1). (6.2)

Putting together (6.1) and (6.2), as λ→ 0, we get

a(zλ)− a(z̃λ) = −α
∫
γλ

(1− z)α−1 dz +O

( ∫
γλ

|1− z|α| dz|
)

= (1− zλ)α − (1− z̃λ)α +O

( ∫
γλ

|1− z|α| dz|
)
. (6.3)
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In order to reach a contradiction, we work separately with the terms in the right of (6.3).

We begin by showing that there exists a positive constant c satisfying

|(1− zλ)α − (1− z̃λ)α| > c|zλ − z̃λ|. (6.4)

Suppose first that λ ∈ S1. Then zλ, z̃λ ∈ U1. Let Iλ be the closed line segment from z̃λ

to zλ. We thus have −π
2
− µ 6 arg(z − 1) 6 0 for some small positive µ and every z ∈ Iλ

(See Figure 6.2).

Figure 6.2: Set U2

Now if z − 1 = reinθ then 1− z = reinθ+π, thus
π

2
− µ 6 arg(1− z) 6 π which implies that

−(1− α)π 6 arg(1− z)α−1 6 (1− α)
(
µ− π

2

)
for

every z ∈ Iλ,

similarly if λ ∈ S2 we can get (1− α)(
π

2
− µ) 6 arg(1− z)α−1 6 π(1− α) . Then

inf
z∈Iλ
|Im(1− z)α−1| = inf

z∈Iλ

{
|1− z|α−1| sin(arg(1− z)α−1)|

}
> 1 >

c

α
> 0

for some positive c. Using the parametrization r(t) = tzλ + (1− t)z̃λ for 0 6 t 6 1, we get

|(1− zλ)α − (1− z̃λ)α| = α

∣∣∣∣ ∫
Iλ

(1− z)α−1 dz

∣∣∣∣
= α|zλ − z̃λ|

∣∣∣∣ ∫ 1

0

(1− tzλ − (1− t)z̃λ)α−1 dt

∣∣∣∣
> α|zλ − z̃λ|Im

∣∣∣∣ ∫ 1

0

(1− tzλ − (1− t)z̃λ)α−1 dt

∣∣∣∣
> α|zλ − z̃λ|

∫ 1

0

inf
z∈Iλ
|Im(1− z)α−1| dt

> c|zλ − z̃λ|,
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the third line is true since Im(1 − z) > 0 for λ ∈ S1 and Im(1 − z) 6 0 for λ ∈ S2, we

can change the branch of the logarithm in such a way that the function is multiplied by

some vector of norm one in particular -1, where z = t0zλ + (t0− 1)zλ with t ∈ [0, 1] which

proves (6.4). On the other hand, noticing that∣∣∣∣ ∫
γλ

|1− z|α dz

∣∣∣∣ 6 kαλ

∫
γλ

| dz| = kαλ |zλ − z̃λ|,

where kλ := sup{|1− z| : z ∈ γλ} satisfies kλ → 0 as λ→ 0, we obtain

g(z) := O

( ∫
γλ

|1− z|α| dz|
)

= o(|zλ − z̃λ|) (λ→ 0), (6.5)

because |g(z)| 6 kαλ |zλ − z̃λ|, then g(z) = o(|zλ − z̃λ|) by the property of kλ. Combining

the relations (6.3), (6.4), and (6.5) we obtain

|a(zλ)− a(z̃λ)| > (c− o(1))|zλ − z̃λ| >
c

2
|zλ − z̃λ|,

which contradicts (6.1). Note that because of the power ramification at the real positive

semi-axis, a cannot be analytically extended to Kε. We have proven that for some small

positive δ and every λ ∈ S1 R1, S2 R2 there exists zλ ∈ U1, U2, respectively, satisfying

a(zλ) = λ.

(ii) Recall that ψ = arg λ. We know that the point zλ is located outside of the unit

disk D, zλ → 1 as λ→ 0, and that

zλ = 1−
(
λzλ
f(zλ)

) 1
α

,

which, by the smoothness of the continuation of f produces f(zλ) → 1 as λ → 0. Note

that
zλ

f(zλ)
− 1 = o(|λ 1

α |) gives us

zλ = 1− λ
1
α +O(|λ|

2
α ) and arg(1− zλ) =

ψ

α
+O(|λ|

1
α ) (λ→ 0). (6.6)

Because
(

zλ
f(zλ)

) 1
α
= 1 + O(|λ

1
α |), we get arg(1 − zλ) = arg(λ

1
α ) + arg(1 + O(|λ 1

α |)), then

arg(1− zλ) =
ψ

α
+ arg(O(1 + |λ| 1α )),
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θ

1

|λ|
1
α

0

1 + |λ| 1α

Figure 6.3

as 1 + |λ| 1α is smaller, so tan(θ) ∼ |λ| 1α

then θ = arctan(λ
1
α (1 + o(1))),

as θ is close to 0, so arctan has a Taylor’s series centered at 0, thus θ = O(λ
1
α ) and this

is demonstrates the second relation in (6.6).

If λ ∈ S1, for a small positive µ, we must have
1

2
απ − αµ 6 ψ 6 απ. In this case, the

second relation in (6.6) tells us
1

2
π − µ < arg(1 − zλ) 6 π. A similar procedure applies

when λ ∈ S2, we have −απ 6 ψ 6 −1

2
απ + αµ and thus −π 6 arg(1 − zλ) < −

1

2
π + µ.

Then the sets U1 and U2 are located as in Figure 3.3.

(iii) Note that zλ is a simple zero of a− λ if and only if a′(zλ) 6= 0. From (6.2) we get

a′(zλ) =
−α

(1− zλ)1−α (1 +O(|1− zλ|)) (λ→ 0),

which combined with zλ → 1 as λ→ 0, gives us lim
λ→0
|a′(zλ)| =∞.

6.2 Determinant estimation

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 ϑ3

ϑ1

ϑ2
0

ε
ε

ϕ
ϕ

Figure 6.4: (Refer [1]) Contour ϑ
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The previous proof also shows that if λ ∈ S0 ∪ S3, then there is no point zλ with

a(zλ) = λ. From Lemma 5.1 we know that

(−1)nDn(a− λ) =
1

2πi

∫
T

t−(n+1)

(1− t)αf(t)− λt
dt =

1

2πi

∫
T

t−(n+2)

a(t)− λ
dt (6.7)

where λ ∈ D(a) and h(0) = 1. To deal with the Fourier integral in (6.7), we consider the

contour shown in Figure 6.4. That is,

ϑ1 := {1 + xeiϕ : 0 6 x 6 ε},

ϑ2 := {1 + xe−iϕ : 0 6 x 6 ε},

ϑ3 := {xeiε + (1− x)(1 + εeiϕ) : 0 6 x 6 1}

∪ {eiθ : ε 6 θ 6 2π − ε}

∪ {x(1 + εe−iϕ) + (1− x)e−iε : 0 6 x 6 1},

ϑ := ϑ1 ∪ ϑ2 ∪ ϑ3.

We can observe that if ϕ→ 0 and ε→ 0 then ϑ = T. Give ϑ the positive orientation and

choose ϕ in the following way (see Figure 6.5):

-0.6 -0.4 -0.2 0.0 0.2

-0.4

-0.2

0.0

0.2

0.4

Gδ

Gδ

Gδ

Bδ

Bδ

arg z = α(π−δ)

arg z = α(π+δ)

arg z =−α(π+δ)

arg z =−α(π−δ)

R(a)

Figure 6.5: (Refer [1]) The regions in S used to determine the value of ϕ. If λ belongs to

Gδ, Bδ we take ϕ = 0, ϕ = 2δ, respectively.
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1. Let Gδ ⊂ S be the set of all λ ∈ S1 ∪ S2 (equivalently zλ ∈ U1 ∪ U2) with

| arg(zλ − 1)| > δ (equivalently |ψ±απ| > αδ) and all the λ ∈ S3 with |ψ±απ| > αδ

(green regions in Figure 6.5); if λ ∈ Gδ take ϕ = 0;

2. Let Bδ ⊂ S be the set (S1 ∪S2 ∪S3) Gδ (blue regions in Figure 6.5); if λ ∈ Bδ take

ϕ = 2δ.

Let g(z) :=
z−(n+2)

a(z)− λ . According to Lemma 6.1 for λ ∈ (S1 R1)∪ (S2 R2), the function g

has a simple pole at zλ.

Figure 6.6: Contour γ

We consider the contour γ with positive orientation,

by (6.7), we have

(−1)nDn(a− λ) =
1

2πi

∫
T
g(z) dz

=
1

2πi

∫
ϑ

g(z) dz − 1

2πi

∫
γ

g(z) dz,

and the Cauchy Residue Theorem, for every λ ∈ (S1 R1) ∪ (S2 R2), we obtain,

(−1)nDn(a− λ) = − res(g, zλ) + I1 + I2 + I3, (6.8)

where

Ij :=
1

2πi

∫
ϑj

g(z) dz (j = 1, 2, 3).

If λ ∈ R1 ∪R2 ∪ S3 we will simply get

(−1)nDn(a− λ) = I1 + I2 + I3. (6.9)

We know that λ ∈ C is an eigenvalue of Tn(a) if and only if Dn(a − λ) = 0, thus we are

interested in the zeros of the right hand sides of (6.8) and (6.9). The following lemmas

evaluate, one by one, the terms in there.

54



Lemma 6.2 (Refer [1]). Suppose that λ ∈ (S1 R1) ∪ (S2 R2).

(i) If there exist positive constants m,M (depending only on the symbol a) satisfying

m 6 |Λ| 6M , then

res(g, zλ) = − 1
α
λ

1
α
−1eΛ

(
1 +O

(
|Λ|
n

)
+O

(
|Λ|2

n

))
as n→∞ uniformly in λ.

(ii) lim
|Λ|→0

res(g, zλ)

λ
1
α
−1

= − 1

α
.

Proof. (i) Since λ ∈ (S1 R1) ∪ (S2 R2), Lemma 6.1 guarantees the existence of zλ. A

direct calculation reveals that

res(g, zλ) = lim
z→zλ

z−(n+2)(z − zλ)
a(z)− λ

= lim
z→zλ

z−(n+2) − (n+ 2)(z − zλ)z−(n+1)

a′(z)
=
z
−(n+2)
λ

a′(zλ)
.

Now

a(z) =
1

z
(1− z)αf(z)

a′(z) = −1

z
α(1− z)α−1f(z) +

1

z
f ′(z)(1− z)α − 1

z2
(1− z)αf(z)

a′(zλ) = a(zλ)

[
− α

1− zλ
+
f ′(zλ)

f(zλ)
− 1

zλ

]
= λ

[
−αf(zλ)zλ + f ′(zλ)(1− zλ)zλ − (1− zλ)f(zλ)

(1− zλ)zλf(zλ)

]
.

Then res(g, zλ) =
z
−(n+1)
λ (zλ − 1)f(zλ)

λ((α− 1)zλf(zλ) + f(zλ) + zλ(zλ − 1)f ′(zλ))
.

Using the equation (6.6) and the smoothness of the continuation of f in Kε, we get

f(zλ) = 1 +O(|λ|
1
α ) and f ′(zλ) = f ′(1) +O(|λ|

1
α ),

which combined with log(1− z) = −z +O(|z|2) (z → 0) gives us

res(g, zλ) =
−λ 1

α
−1
[

exp(−(n+ 1) log(1− λ 1
α +O(|λ 2

α |)))
]
(1 +O(|λ| 1α ))

(α− 1)(1 +O(|λ| 1α )) + 1 +O(|λ| 1α )− λ 1
αf ′(1)(1 +O(|λ| 1α ))

=
−λ 1

α
−1
[

exp(−(n+ 1) log(1− λ 1
α +O(|λ 2

α |)))
]
(1 +O(|λ| 1α ))

α− λ 1
αf ′(1)

.
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Now log(1− λ 1
α +O(|λ 2

α |)) = −λ 1
α +O(|λ 2

α |) and α− λ 1
αf ′(1) = α(1 +O(|λ 1

α |)) so

exp(−(n+ 1) log(1− λ
1
α +O(|λ

2
α |))) = exp(Λ) exp(O(n|λ

2
α |)).

Then

res(g, zλ) = − 1

α
λ

1
α
−1eΛ(1+O(|λ|

1
α ))(1+O(n|λ|

2
α )) = − 1

α
λ

1
α
−1eΛ(1+O(n|λ|

1
α )+O(n|λ|

2
α )).

Finally, recalling Λ from (3.5) we obtain the first part of the lemma. The limit in (ii)

can be calculated directly.

Let ϑ̂1 := log ϑ1. Thus ϑ̂1 is a path from 0 to log(1 + εeiϕ) = ε̂eiϕ̂ with ε̂ and ϕ̂

satisfying

ε̂ = ε+O(ε2) and ϕ̂ = ϕ+O(ε).

Analogously, let ϑ̂2 := log ϑ2. Thus ϑ̂2 is a path from log(1 + εe−iϕ̂) = ε̂e−iϕ̂ to 0. For

−π < β 6 π let∞eiβ be lim
s→∞

seiβ. The following lemma is the heart of the calculation. It

gives us asymptotic expansions for I1 and I2 with the disadvantage of handling complex

integration paths.

Lemma 6.3 (Refer [1]). Suppose that λ ∈ S1 ∪ S2 ∪ S3.

(i) If there exist positive constants m and M (depending only on the symbol a) satisfying

m 6 |Λ| 6M , then

I1 =
|Λ|1−α

2πi(n+ 1)1−α

( ∫∞eiϕ̂

0

e−|Λ|v

e−iαπvα − eiψ
dv +O

( 1

n

))
,

I2 = − |Λ|1−α

2πi(n+ 1)1−α

( ∫∞e−iϕ̂

0

e−|Λ|v

eiαπvα − eiψ
dv +O

( 1

n

))
.

(ii) If |Λ| → 0, then

I1 ∼
eiαπΓ(1− α)

2πi(n+ 1)1−α and I2 ∼
eiαπΓ(1− α)

2πi(n+ 1)1−α .

Where all the asymptotic relations work with n→∞ uniformly in λ.
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Proof. All the order terms in this proof work with n→∞ and λ→ 0. Consider first the

integral I1 and make the variable change v = eu. Then

2πi I1 =

∫
ϑ̂1

e−(n+1)u

a(eu)− λ
du. (6.10)

We can write

a(eu) = e−u(1− eu)αf(eu) = (−u)αf̂(u),

where f̂(u) =
f(eu)

eu

(
1+

u

2
+
u2

6
+· · ·

)α
which, by property 1, belongs to C2(ϑ̂1). Note that

f̂(0) = f(1) = 1 and that (−u)α equals e−iαπuα when u ∈ ϑ̂1 and eiαπuα when u ∈ ϑ̂2.

Using the function

k(u, λ) :=
1

(−u)αf̂(u)− λ
− 1

(−u)α − λ
we split I1 as

2πi I1 = I1,1 + I1,2, (6.11)

where

I1,1 :=

∫
ϑ̂1

e−(n+1)u

(−u)α − λ
du and I1,2 :=

∫
ϑ̂1

k(u, λ)e−(n+1)u du.

As we will see, in norm, the integral I1,2 is much smaller than I1,1. Thus we need to

estimate I1,2 and we will do it by finding a uniform bound for |k|. To this end, note that

f̂(u) = 1 + O(u) (u → 0) and consider another variable change: u = |λ| 1αv, remember

that
λ

|λ|
= eiψ, thus (−u)α = |λ|(−v)α and

1

(−u)αf̂(u)− λ
=

1

|λ|
1

(−v)α +O(|λ| 1α |v|α+1)− eiψ

1

(−u)α − λ
=

1

|λ|
1

(−v)α − eiψ
.

We get

k(|λ|
1
αv, λ) =

O(|λ| 1α−1|v|α+1)

((−v)α − eiψ)((−v)α − eiψ +O(|λ| 1α |v|α+1))
.

The path ϑ̂1 is close to the line segment given by {xeiϕ̂ : 0 6 x 6 ε̂}. Thus for u ∈ ϑ̂1

we have arg(−u)α = arg(−v)α ∼ α(ϕ̂−π) and we are ready to show that the denominator
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of |k| is bounded away from 0.

Suppose that λ ∈ Gδ (see Figure 6.5). Then ϕ̂ = 0, (−v)α lies arbitrarily close to the ray

with argument −απ, and eiψ lies on T with |ψ − απ| > αδ, (see Figure 6.7a) giving us

|(−v)α − eiψ| > αδ >
αδ

2
. (6.12)

If λ ∈ Bδ (see Figure 6.5), then ϕ̂ = 2δ, (−v)α lies arbitrarily close to the ray with

argument α(2δ − π), and eiψ lies on T with |ψ − απ| 6 αδ, giving us (6.12) again (see

Figure 6.7b).

−απ

−α(π + δ)

−α(π − δ)(−v)α

Bδ

eiψ

(a) Case λ ∈ Gδ

−απ

−α(π + δ)

−α(π − δ) −α(π − 2δ)

(−v)α

Bδ

eiψ

(b) Case λ ∈ Bδ

Figure 6.7

For the second factor in the denominator of |k|, note that |(−v)α−eiψ+O(|λ| 1α |v|α+1)|

attains its minimum value when |v| ∼ 1 and thus the order term will be bounded by

|λ| 1α < ρ
1
α , which can be taken arbitrarily small. Then we get

|(−v)α − eiψ +O(|λ|
1
α |v|α+1)| > αδ

4
. (6.13)

Using (6.12) and (6.13) we get the bound |k(|λ| 1αv, λ)| 6 c2|λ|
1
α
−1|v|α+1 (or equiva-

lently |k(u, λ)| 6 c2|λ|−2|u|α+1) where c2 is a positive constant not depending on λ or v.
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Thus,

|I1,2| 6
∫
ϑ̂1

|k(u, λ)e−(n+1)u|| du|

6
c2

|λ|2

∫
ϑ̂1

|u|α+1|e−(n+1)u|| du|

=
c2

(n+ 1)α+2|λ|2

∫ ε̂eiϕ̂
0

|w|α+1|e−w|| dw|

6
c2

(n+ 1)α+2|λ|2

∫∞eiϕ̂

0

|w|α+1|e−w|| dw|,

where in the third line we shifted to the variable w = (n + 1)u. Now we consider the

following contour,

0 R

Reiϕ̂

T

Figure 6.8: Contour T

In T the function |w|α+1|e−w| has not singularities

and it is bounded, note that |w|α+1|e−w| = o(1) when

|w| → ∞. Using the dominated convergence Theo-

rem 2.4, we have that lim
R→∞

∫Reiϕ̂

R

|w|α+1|e−w||dw| = 0,

thus

|I1,2| 6
c2

(n+ 1)α+2|λ|2

∫∞
0

wα+1e−w dw

=
c2 Γ(α + 2)

(n+ 1)α+2|λ|2
.

The previous calculation gives us

I1,2 = O

(
1

nα+2|λ|2

)
= O

(
1

n2−α|Λ|2α

)
(6.14)

uniformly in λ. Now we work with I1,1. Write

I1,1 = I1,1,1 − I1,1,2, (6.15)

where

I1,1,1 :=

∫∞eiϕ̂

0

e−(n+1)u

(−u)α − λ
du and I1,1,2 :=

∫∞eiϕ̂

ε̂eiϕ̂

e−(n+1)u

(−u)α − λ
du.

For I1,1,2 consider the change of variable w = ue−iϕ̂. Thus

|I1,1,2| =
∣∣∣∣ ∫∞

ε̂

eiϕ̂e−(n+1)eiϕ̂w

(−weiϕ̂)α − λ
dw

∣∣∣∣,
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note that |(−weiϕ̂)α − λ| > ||w|α − |λ|| > |ε̂α − |λ|| hence,

|I1,1,2| 6
1

|ε̂α − |λ||

∫∞
ε̂

e−(n+1)w cos ϕ̂ dw

=
e−(n+1)ε̂ cos ϕ̂

(n+ 1)|ε̂α − |λ|| cos ϕ̂
. (6.16)

Since ϕ̂ is a small non-negative constant we get − cos ϕ̂ < −1

2
and |λ| < ρ, which can be

chosen satisfying ρ < ε̂α, equation (6.16) shows that

I1,1,2 = O
(

e−
1
2 ε̂n

n

)
uniformly in λ.

Taking again the variable change u = |λ| 1αv, and putting together (6.11), (6.14), (6.15),

and (6.16) we obtain

I1 =
|λ| 1α−1

2πi

( ∫∞eiϕ̂

0

e−|Λ|v

e−iαπvα − eiψ
dv +O

(
1

n|Λ|α+1

))
(6.17)

uniformly in λ. A result for I2 can be obtained readily by changing every ϕ̂ by −ϕ̂,

getting

I2 = −|λ|
1
α
−1

2πi

( ∫∞e−iϕ̂

0

e−|Λ|v

eiαπvα − eiψ
dv +O

(
1

n|Λ|α+1

))
(6.18)

uniformly in λ. For proving (i) suppose that m 6 |Λ| 6M . Then the result is immediate

from (6.17) and (6.18).

For proving (ii) take |Λ| → 0 and assume first that λ ∈ Gδ (see Figure 6.5), thus

ϕ = ϕ̂ = 0. From equation (6.10), with

f̂(u) = f̂(0) + f̂ ′(0)O(u) = 1 +O(u) (u→ 0)

and the change of variable u = |λ| 1αv, we get

2πi I1 =

∫
ϑ̂1

e−(n+1)u

e−iαπuαf̂(u)− λ
du

= |λ|
1
α
−1

∫
ϑ′1

e−|Λ|v

e−iαπvαf̂(|λ| 1αv)− eiψ
dv

= |λ|
1
α
−1

∫
ϑ′1

e−|Λ|v

e−iαπvα − eiψ +O(|λ| 1α |v|α+1)
dv

= |λ|
1
α
−1(J1,1 + J1,2), (6.19)
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where ϑ′1 is a continuous path in C starting at 0 and ending at ε̂|λ|− 1
α , and

J1,1 :=

∫
ϑ′1,1

e−|Λ|v

e−iαπvα − eiψ +O(|λ| 1α |v|α+1)
dv,

J1,2 :=

∫
ϑ′1,2

e−|Λ|v

e−iαπvα − eiψ +O(|λ| 1α |v|α+1)
dv; (6.20)

here ϑ′1,1 and ϑ′1,2 are the portions of ϑ′1 from 0 to 1 and from 1 to ε̂|λ|− 1
α , respectively.

We proceed to find order bounds for J1,1 and J1,2. The former will be easy but the latter

will require a lot more work.

Consider the integral J1,1. The term O(|λ| 1α |v|α+1) = O(|λ| 1α ) is arbitrarily small

and the denominator in the integrand of J1,1 in (6.20) has a zero at some point close to

v = ei(απ+ψ). For λ ∈ Gδ we have |απ − ψ| > αδ, thus

|e−iαπvα − eiψ +O(|λ|
1
α )| > |e−iαπvα − eiψ| −O(|λ|

1
α )

> |vα||i(ψ − απ)−O((ψ − απ)2)|+O(|λ|
1
α )

> |ψ − απ|+O(|λ|
1
α )

> αδ +O(|λ|
1
α )

> αδ. (6.21)

We thus have

|J1,1| 6
1

αδ

∫
ϑ′1,1

e−|Λ|v dv 6
1

αδ
. (6.22)

To find an order bound for J1,2 we will go through three steps: In the first one, we split

it as J1,2,1 + J1,2,2, in the second step we bound J1,2,1, and in the third step we study

J1,2,2 for the cases 0 < α <
1

2
, α =

1

2
, and

1

2
< α < 1 separately. Finally we will put all

together.

Step 1: Consider the function

`(v, λ) :=
1

e−iαπvα − eiψ +O(|λ| 1α |v|α+1)
− 1

e−iαπvα

and split J1,2 as

J1,2 = J1,2,1 + J1,2,2 (6.23)
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where

J1,2,1 :=

∫
ϑ′1,2

e−|Λ|v

e−iαπvα
dv and J1,2,2 :=

∫
ϑ′1,2

`(v, λ)e−|Λ|v dv.

Step 2: Considering the variable change w = |Λ|v we get

|J1,2,1| 6

|J1,2,1| =
∣∣∣∣ eiαπ

|Λ|1−α

∫ ε̂(n+1)

|Λ|
w−αe−w dw

∣∣∣∣
6

1

|Λ|1−α

∫ ε̂(n+1)

|Λ|
|w−α||e−w|| dw|

6
1

|Λ|1−α

∫∞
0

w−αe−w dw

=
Γ(1− α)

|Λ|1−α
. (6.24)

Step 3: Using (6.21), there exists a constant c1 satisfying

|`(v, λ)| 6 1 +O(|λ| 1α |v|α+1)

|v|2α|1− v−αei(ψ+απ) +O(|λ| 1α |v|)|
6

1 + c1|λ|
1
α |v|α+1

αδ|v|2α
,

so that, for every v ∈ ϑ′1,2, we have

|`(v, λ)| 6 1

αδ|v|2α
+ c1|λ|

1
α |v|1−α.

Then using the variable change w = |Λ|v again, we get

|J1,2,2| 6
1

αδ

∫
ϑ′1,2

e−|Λ|v

|v|2α
| dv|+ c1|λ|

1
α

∫
ϑ′1,2

|v|1−αe−|Λ|v| dv|

6
|Λ|2α−1

αδ

∫ ε̂(n+1)

|Λ|
w−2αe−w dw +

c1|Λ|α−1

n+ 1

∫ ε̂(n+1)

|Λ|
w1−αe−w dw

6
|Λ|2α−1

αδ

∫ ε̂(n+1)

|Λ|
w−2αe−w dw +

c1Γ(2− α)

(n+ 1)|Λ|1−α

=
1

|Λ|1−α

(
|Λ|α

αδ
Ĵ +

c1Γ(2− α)

n+ 1

)
, (6.25)

where

Ĵ :=

∫ ε̂(n+1)

|Λ|
w−2αe−w dw 6

∫∞
|Λ|
w−2αe−w dw.
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The integral Ĵ can be estimated as follows. Suppose that α =
1

2
, integrating by parts we

obtain

Ĵ 6 − ln |Λ|
e|Λ|

+

∫∞
|Λ|

e−w lnw dw, (6.26)

which means that Ĵ = O(ln |Λ|) (|Λ| → 0) because lnw = O(e−w) when (w → ∞).

Suppose that 0 < α <
1

2
, since 0 < 1− 2α < 1 in this case, we obtain

Ĵ 6
∫∞

0

w−2αe−w dw = Γ(1− 2α) (6.27)

which means that Ĵ = O(1) (|Λ| → 0). Finally, suppose that
1

2
< α < 1, integrating by

parts we get

Ĵ 6
e−|Λ|

(2α− 1)|Λ|2α−1
− 1

1− 2α

∫∞
|Λ|
w1−2αe−w dw, (6.28)

which means that Ĵ = O
(

1
|Λ|2α−1

)
(|Λ| → 0), because the integral in the second term is

bigger them Γ(2α). Remember that m 6 |Λ| 6 M , using (6.26), (6.27), and (6.28) in

(6.25) we obtain

J1,2,2 = o

(
1

|Λ|1−α

)
(|Λ| → 0). (6.29)

Putting together (6.23), (6.24), and (6.29) we get

J1,2 =
eiαπΓ(1− α)

|Λ|1−α
(1 + o(1)),

which combined with (6.19) and (6.22) gives us

I1 =
|λ| 1α−1

2πi

(
O(1) +

eiαπΓ(1− α)

|Λ|1−α
(1 + o(1))

)
=
|λ| 1α−1eiαπΓ(1− α)

2πi|Λ|1−α
(O(|Λ|α−1) + 1 + o(1))

=
eiαπΓ(1− α)

2πi(n+ 1)1−α (1 + o(1)),

where in the third line we changed O(|Λ|α−1) for o(1) because Λ is bounded, which shows

the assertion (ii) for the case λ ∈ Gδ. The case λ ∈ Bδ can be readily obtained as well as

the corresponding result for I2.
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The result in Lemma 6.3 is a neat asymptotic approach but we want to rotate the

integration path to the real axis. Recall that ψ = arg λ. To this end, choose a small

positive δ and consider the following subsets of S:

R1 := {λ ∈ S : α(π − δ) 6 ψ < απ};

R2 := {λ ∈ S : − απ < ψ 6 −α(π − δ)}.

We thus know that if λ ∈ R1 ∪R2, then ϕ = 2δ, and if λ ∈ Gδ, then ϕ = 0. Let χA stand

for the characteristic function of the set A. Depending on the choice of ϕ we can rotate

the integrals in Lemma 6.3 obtaining the following two lemmas.

Lemma 6.4 (Refer [1]). Suppose that there exists constants m,M (depending only on the

symbol a) satisfying m 6 |Λ| 6M . For λ ∈ S1 ∪ S2 ∪ S3 with λ→ 0 as n→∞, we have

I1 =
1

α
λ

1
α
−1eΛχR2(λ) +

|λ| 1α−1

2πi

∫∞
0

e−|Λ|v

e−iαπvα − eiψ
dv +O

(
1

n2−α

)
,

I2 =
−1

α
λ

1
α
−1eΛχR1(λ)− |λ|

1
α
−1

2πi

∫∞
0

e−|Λ|v

eiαπvα − eiψ
dv +O

(
1

n2−α

)
.

Proof. In this proof, all the order terms work with n → ∞ uniformly in λ. Let λ ∈ Gδ

(see Figure 6.5). Then ϕ̂ = 0 and the result follows directly from Lemma 6.3 part (i),

since for (6.17) (6.18) we have

|λ| 1α−1

2πi
O

(
1

n|Λ|α+1

)
= O

(
1

n2−α|Λ|2α

)
= O

(
1

n2−α

)
.

Consider now the case λ ∈ R1 ∪ R2 (see Bδ in Figure 6.5), then ϕ = 2δ. In order to

rotate our integration path, for a large positive R, we consider the positively orientated

triangle T with vertices 0, R, and Reiϕ̂ (see Figure 6.8). Let h be the function

h(v) :=
e−|Λ|v

e−iαπvα − eiψ
;

thus equation (6.17) can be written as

I1 =
|λ| 1α−1

2πi

∫∞eiϕ̂

0

h(v) dv +O

(
1

n2−α|Λ|2α

)
.
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The function h has a singularity at v0 = ei(π+ψ
α

). Assume that λ ∈ R2. Then v0 is enclosed

by T because, in this case, we must have 0 < arg v0 6 δ < ϕ̂, since∫
T

h(v) dv =

∫R
0

h(v) dv +

∫Reiϕ̂
R

h(v) dv −
∫ reiϕ̂

0

h(v) dv = res(h, v0).

Note that h(v) is bounded and h(v) = o(1) when |v| → ∞, using the dominated

convergence Theorem 2.4, we have that lim
R→∞

∫Reiϕ̂

R

h(v) dv = 0, as Λ = (n+ 1)λ
1
α then

res(h, v0) = lim
v→vo

(v − v0)e−|Λ|v

e−iαπvα − eiψ

= − 1

α
eiψ( 1

α
−1)e|Λ| exp(iψ

α
)

= − 1

α
eiψ( 1

α
−1)eΛ.

When (R→∞), thus we have

I1 =
1

α
λ

1
α
−1eΛ +

|λ| 1α−1

2πi

∫∞
0

h(v) dv +O

(
1

n2−α|Λ|2α

)
.

Assume that λ ∈ R1. Then v0 is not enclosed by T because, in this case, we must

have −δ 6 arg v0 < 0, obtaining

I1 =
|λ| 1α−1

2πi

∫∞
0

h(v) dv +O

(
1

n2−α|Λ|2α

)
.

Finally, the result for I2 can be readily obtained.

Lemma 6.5 (Refer [1]). For λ ∈ S1 ∪ S2 we have

I3 = O
( 1

n

)
(n→∞)

uniformly in λ.

Proof. Integrating by parts we obtain

I3 =
−1

2(n+ 1)πi

([
z−(n+1)

a(z)− λ

]
ϑ3

−
∫
ϑ3

a′(z)z−(n+1)

(a(z)− λ)2
dz

)
.
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Since 1 /∈ ϑ3 and z is bounded away from 1, the function a is continuous and differentiable

over ϑ3. Thus,

c0 := sup

{
1

|a(z)− λ|
: z ∈ ϑ3

}
and c1 := sup

{
|a′(z)|
|a(z)− λ|2

: z ∈ ϑ3

}
are constants not depending on λ. Now∣∣∣∣[ z−(n+1)

a(z)− λ

]
ϑ3

∣∣∣∣ 6 c0

[
1

|1 + εe−iϕ|n+1
+

1

|1 + εeiϕ|n+1

]
6 c0,

and ∫
ϑ3

∣∣∣∣a′(z)z−(n+1)

(a(z)− λ)2

∣∣∣∣ dz 6 c1

∫
ϑ3

dz 6 c1ε(e
iϕ − e−iϕ).

Then

|I3| 6
c0

2(n+ 1)π
+

c1

2(n+ 1)π
ε(eiϕ − e−iϕ) = O

( 1

n

)
,

as n→∞ uniformly in λ.

6.3 Individual eigenvalues

The following result gives a partial proof of the conjecture (3.4) of Bogoya, Grudsky and

Malysheva [1], there are not eigenvalues in S3.

Theorem 6.6 (Refer [1]). Suppose that Λ ∈ Ŝ3. If
1

2
< α < 1 or if 0 < α 6

1

2
with

ψ >
π

2
, then we cannot have eigenvalues of Tn(a) in S3 (R1 ∪R2).

Proof. In this proof, all the order terms work with (n → ∞) uniformly in Λ. Suppose

that λ ∈ S3 (R1 ∪ R2) (equivalently ψ ∈ (απ, π] ∪ (−π,−απ)) is an eigenvalue of Tn(a).

Using Lemmas 6.4 and 6.5, and (6.9) we obtain

0 = |λ|
1
α
−1

∫∞
0

e−|Λ|vb(v, ψ) dv + ∆3(Λ, n)

where

b(v, ψ) :=
e−iαπ

vα − ei(ψ−απ)
− eiαπ

vα − ei(ψ+απ)
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and ∆3(Λ, n) = O
(

1

n

)
, which is equivalent to saying that

0 =
|Λ|1−α

2πi(n+ 1)1−α (G(Λ, ψ) + ∆4(Λ, n)),

where

G(Λ, ψ) :=

∫∞
0

e−|Λ|vb(v, ψ) dv

and ∆4(Λ, n) = O
(

1

nα

)
. Our aim is to show that G(·, ψ) has no zeros, since then (by the

Rouche’s theorem) G(·, ψ) − ∆4(·, n) has no zeros either, getting a contradiction. Note

that

eiϕb(v, ψ) =
vα(ei(ψ−απ) − ei(ψ+απ))

(vα − ei(ψ−απ))(vα − ei(ψ+απ))
and

2 sin(απ)

i
= e−iψ(ei(ψ−απ) − ei(ψ+απ)).

Then
ieiψG(Λ, ψ)

2 sin(απ)
=

∫∞
0

vαe−|Λ|ve−iψκ(v, ψ)

|vα − ei(απ+ψ)|2|vα − e−i(απ−ψ)|2
dv

where

κ(v, ψ) := (eiψvα − e−iαπ)(eiψvα − eiαπ)

= eiψ(eiψv2α + e−iψ − 2vα cos(απ)).

We thus have

Re

(
ieiψG(Λ, ψ)

2 sin(απ)

)
=

∫∞
0

vαe−|Λ|vRe(e−iψκ(v, ψ))

|vα − ei(απ+ψ)|2|vα − e−i(απ−ψ)|2
dv. (6.30)

If for some Λ and ψ the equation G(Λ, ψ) = 0 is satisfied, then the integral in (6.30) will

have a zero. Note that

Re(e−iψκ(v, ψ)) = cosψ

((
vα +

cos(απ)

cosψ

)2

+ 1− cos2(απ)

cos2 ψ

)
.

If
1

2
< α < 1, then (see Figure 3.2), |ψ| > απ >

π

2
and hence

cos2(απ)

cos2 ψ
< 1 and cosψ < 0,

which shows that Re(e−iψκ(v, ψ)) < 0, making the integrand in (6.30) strictly negative,

which yields the theorem in this case. If 0 < α 6
1

2
and |ψ| > π

2
, then a similar analysis

applies and we get the theorem in this case also.
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Proof of Theorem 3.4. Let m,M be constants (depending only on the symbol a) satisfying

m 6 |Λ| 6M . In this proof all the order terms work with n→∞ uniformly in λ. Suppose

that λ ∈ (S1 R1) ∪ (S2 R2). Using Lemmas 6.2 part (i), 6.4, and 6.5 in the equation

(6.8) we get that λ is an eigenvalue of Tn(a) if and only if

1

α
λ

1
α
−1eΛ

(
1 +O

(
1

n

))
=
|λ| 1α−1

2πi

∫∞
0

e−|Λ|vb(v, ψ) dv +O

(
1

n

)
,

where

b(v, ψ) :=
e−iαπ

vα − ei(ψ−απ)
− eiαπ

vα − ei(ψ+απ)
.

Noticing that

1

α
λ

1
α
−1eΛO

(
1

n

)
= O

(
|Λ|1−α|eΛ|
n2−α

)
= O

(
1

n2−α

)
,

O

(
1

n|λ| 1α−1

)
= O

(
n1−α

n|Λ|1−α

)
= O

(
1

nα

)
,

then
2πi

α
eiψ( 1

α
−1)eΛ +O

(
1

n2−α

)
=

∫∞
0

e−|Λ|vb(v, ψ) dv +O

(
1

nα

)
,

we get the theorem in this case. Finally, suppose that |Λ| → 0. Using the part (ii) of the

Lemmas 6.2 and 6.3 in (6.8) we get that λ is an eigenvalue of Tn(a) if and only if

0 = lim
|Λ|→0

(
− res(g, zλ)

λ
1
α
−1

+
1

λ
1
α
−1

(I1 + I2 + I3)

)
= − lim

|Λ|→0

res(g, zλ)

λ
1
α
−1

+ lim
|Λ|→0

2eiαπΓ(α− 1)

|Λ|1−αeiψ( 1
α
−1)

(1 + o(1)) + lim
n→∞

O

(
1

n

)
=∞,

thus, we don’t get eigenvalues in this case.

Proof of Corollary 3.5. Considering the variable change v = uei
ψ
α in Theorem 3.4, as

n→∞ uniformly in λ, we obtain

2πi

α
eΛ =

∫
D

e−Λuβ(u) du+O

(
1

nα

)
,
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where

β(u) :=
1

uαeiαπ − 1
− 1

uαe−iαπ − 1

and the integration path D is the straight line from 0 to ∞e−i
ψ
α .

Assume that λ ∈ S1, then there exists a small constant µ satisfying
απ

2
− αµ < ψ < απ

and hence −π < −ψ
α
< −π

2
+ µ. In order to make the integration path independent of λ,

we make a path rotation by integrating over the triangle T with vertices 0, ∞e−i
ψ
α , and

∞e−i
3
4
π.

0

∞e−iψ
3
4

T̂

∞e−i
ψ
α

Figure 6.9: Contour T̂

Since the singularities of β are u = e±iπ, the integrand

e−Λuβ(u) is analytic on T̂ and, moreover, the corre-

sponding integral over the segment joining∞e−i
ψ
α and

∞e−i
3
4
π is clearly 0 since e−Λuβ(u) = o(1).

We thus have
2πi

α
eΛ =

∫
D1

e−Λuβ(u) du+O

(
1

nα

)
,

where D1 is the straight line from 0 to ∞e−i
3
4
π. Finally, If λ ∈ S2, a similar calculation

produces
2πi

α
eΛ =

∫
D2

e−Λuβ(u) du+O

(
1

nα

)
,

where D2 is the straight line from 0 to ∞ei
3
4
π.

Proof of Theorem 3.6. Suppose that Λs for 1 6 s 6 k with k � n, are the zeros of F

located in Ŝ1 ∪ Ŝ2 and satisfying F ′(Λs) 6= 0 for each s (i.e. each Λs is simple). We can

pick a neighborhood Us for each Λs with continuous and smooth boundary ∂Us satisfying

|F (·)| > |∆2(·, n)| over ∂Us. In this case the Rouché Theorem 2.15 says that F (·)−∆2(·, n)

must have a zero Λ̂s in Us. By Corollary 3.5, we know that each Λ̂s corresponds to an
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eigenvalue λ
(n)
j of Tn(a). If necessary, re-enumerate Λs in order to get s = j. To prove the

theorem, note that

F (Λ̂j)− F (Λj) = ∆2(Λ̂j, n) = F ′(Λj)(Λ̂j − Λj) +O(|Λ̂j − Λj|2),

which produces

O

(
1

nα

)
= (Λ̂j − Λj)

(
F ′(Λj) +O(|Λ̂j − Λj|)

)
.

By hypothesis we have F ′(Λj) 6= 0, dividing both sides of the equation by second paren-

theses, we get

Λ̂j − Λj = (n+ 1)(λ
(n)
j )

1
α − Λj = O

(
1

nα

)
.

Finally, solving for λ
(n)
j then

λ
(n)
j =

(
Λj +O

(
1

nα

)
n+ 1

)α

=

(
Λj

n+ 1

)α(
1 +O

(
1

nα

))
as n→∞ uniformly in Λ.
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