ANÁLISIS DE LAS FORMAS DE OCUPACIÓN, PARA LA INTERPRETACIÓN DE LA ESTRUCTURA TERRITORIAL EN EL VALLE DEL SUGAMUXI.

MARIANA GINETT CASTIBLANCO ENGATIVA
Arquitecta

PONTIFICIA UNIVERSIDAD JAVIERIANA
FACULTAD DE ARQUITECTURA Y DISEÑO
MAESTRÍA EN PLANIFICACIÓN URBANA Y REGIONAL
BOGOTÁ, NOVIEMBRE 2019
ANÁLISIS DE LAS FORMAS DE OCUPACIÓN, PARA LA INTERPRETACIÓN DE LA ESTRUCTURA TERRITORIAL EN EL VALLE DEL SUGAMUXI.

MARIANA GINETT CASTIBLANCO ENGATIVA
Arquitecta

Director : GONZALO NAVARRO SANDINO
Arquitecto
Asesor : DAVID BURBANO
Arquitecto

PONTIFICIA UNIVERSIDAD JAVERIANA
FACULTAD DE ARQUITECTURA Y DISEÑO
MAESTRÍA EN PLANIFICACIÓN URBANA Y REGIONAL
BOGOTÁ, NOVIEMBRE 2019
Nota de aceptación:

Firma del presidente del jurado

Firma del jurado

Firma del jurado

Bogotá D.C, noviembre 2019
<table>
<thead>
<tr>
<th>Sección</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td>12</td>
</tr>
<tr>
<td>1 MARCO GENERAL</td>
<td>12</td>
</tr>
<tr>
<td>2 MARCO TEÓRICO</td>
<td>13</td>
</tr>
<tr>
<td>2.1 TEORÍA SISTEMAS ENFOQUE MCLOUGHLIN</td>
<td>16</td>
</tr>
<tr>
<td>2.2 CAMAGNI PRINCIPIO DE AGLOMERACIÓN -PRINCIPIO DE ACCESIBILIDAD</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1 El Principio De Aglomeración</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 El Principio De Accesibilidad</td>
<td>21</td>
</tr>
<tr>
<td>2.3 APROXIMACIONES CONCEPTUALES Y METODOLÓGICAS PARA EL ANÁLISIS DE LAS FORMAS DE CRECIMIENTO METROPOLITANO. GIOVANNI GONZÁLEZ ARÉVALO</td>
<td>22</td>
</tr>
<tr>
<td>2.4 TEORÍA DE GRAFOS</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1 Clasificación Nodal Jerarquía</td>
<td>25</td>
</tr>
<tr>
<td>2.4.2 La clasificación de los circuitos</td>
<td>27</td>
</tr>
<tr>
<td>2.4.3 Conceptos Para el Análisis De La Estructura</td>
<td>28</td>
</tr>
<tr>
<td>2.4.4 Metodología para el análisis de conectividad y accesibilidad de la red</td>
<td>29</td>
</tr>
<tr>
<td>3 CONTEXTO DEPARTAMENTAL</td>
<td>31</td>
</tr>
<tr>
<td>3.1 ESCALA MACRO TERRITORIAL</td>
<td>31</td>
</tr>
<tr>
<td>3.1.1 Interconexión</td>
<td>32</td>
</tr>
<tr>
<td>3.1.2 Población</td>
<td>33</td>
</tr>
<tr>
<td>3.1.3 Ambiental</td>
<td>36</td>
</tr>
<tr>
<td>3.1.4 Boyacá En Cifras</td>
<td>40</td>
</tr>
<tr>
<td>4 ANÁLISIS RESULTADOS DE LA APLICACIÓN CASO DE ESTUDIO VALLE SUGAMUXI</td>
<td>42</td>
</tr>
<tr>
<td>4.1 REPRESENTACIÓN CARTOGRÁFICA DE LA OCUPACIÓN PARA LOS PERIODOS 1970-2000 2018</td>
<td>42</td>
</tr>
<tr>
<td>4.1.1 Representación Cartográfica Periodo 1970</td>
<td>42</td>
</tr>
<tr>
<td>4.1.2 Representación cartográfica periodo 2000</td>
<td>48</td>
</tr>
<tr>
<td>4.1.3 Representación cartográfica periodo 2018</td>
<td>50</td>
</tr>
</tbody>
</table>
4.2 APLICACIÓN TEORÍA GRAFOS

4.2.1 Análisis estático de la conectividad en la estructura macro y meso durante los períodos 1970, 2000, 2018

4.2.2 Análisis dinámico de la conectividad en la estructura macro y meso durante los períodos 1970, 2000 y 2017.

4.2.3 Análisis accesibilidad estructura macro y micro circuitos 1970, 2000, 2018

4.2.4 Análisis De Micro Circuitos: Relaciones Individuales De Menor Escala. Principio De Aglomeración

5 CONCLUSIONES

BIBLIOGRAFÍA
LISTA DE GRÁFICAS

Gráfica No.1 Estructura para el análisis funcional sobre el territorio……………...15
Gráfica No.2 Desarrollo cíclico formulación de planes17
Gráfica No.3 Principios Teoría General Sistema ...19
Gráfica No.4 Estructura Grafo ..24
Gráfica No.5 Instrumento de aplicación ...30
Gráfica No.6 Interconexión Vial, Año 2018 ..32
Gráfica No.7 Generación Empleos Directos Valle Sugamuxi35
Gráfica No.8 Servicios Ecosistémicos -Captación Acueductos36
Valle de Sugamuxi
Gráfica No.9 Porcentaje de la captación litros por segundo37
Gráfica No.10 Capacidad agrológica suelos departamento Boyacá38
Gráfica No.11 Títulos Mineros Municipios ..39
Gráfica No.12 Localización Área de estudio comprende municipios de Nobsa,
Sogamoso, Duitama, Tibasosa ...42
Gráfica No.13 Representación Abstracta Del Grafo45
Gráfica No.14 Representación Ocupaciones Año 197046
Gráfica No.15 Representación Actividades Año 197047
Gráfica No.16 Representación Ocupaciones Año 200048
Gráfica No.17 Representación Actividades Año 200049
Gráfica No.18 Representación Ocupaciones Año 201850
Gráfica No.19 Representación Actividades Año 201851
Gráfica No.20 Representación Abstracta Del Macro Circuito..........................55
Gráfica No.21 Representación Abstracta Del Meso Circuito..........................56
Gráfica No.22 Representación Abstracta Del Micro circuito..........................57
Gráfica No.23 Representación Estructura Macro Circuito 1970.........................58
Gráfica No.24 Representación Estructura Macro Circuito 2000..........................58
Gráfica No.25 Representación Estructura Macro Circuito 2018..........................59
Gráfica No.26 Representación Estructura Meso Circuito 1970..........................60
Gráfica No.27 Representación Estructura Meso Circuito 2000..........................60
Gráfica No.28 Representación Estructura Meso Circuito 2018..........................60
Gráfica No.29 Conectividad Macro Circuito Año 1970..................................67
Gráfica No.30 Conectividad Macro Circuito Año 2000..................................68
Gráfica No.31 Conectividad Macro Circuito Año 2018..................................70
Gráfica No.32 Análisis Dinámico De La Conectividad Estructura Macro -Técnica Interpolación 1970...71
Gráfica No.33 Análisis Dinámico De La Conectividad Estructura Macro -Técnica Interpolación 2000...72
Gráfica No.34 Análisis Dinámico De La Conectividad Estructura Macro -Técnica Interpolación 2018...73
Gráfica No.35 Conectividad Meso Circuitos 1970...74
Gráfica No.36 Conectividad Meso Circuitos 2000...75
Gráfica No.37 Conectividad Meso Circuitos 2018...76
Gráfica No.38 Análisis Dinámico Conectividad Meso Circuitos 1970....................77
Gráfica No.39 Análisis Dinámico Conectividad Meso Circuitos 2000....................78
Gráfica No.40 Análisis Dinámico Conectividad Meso Circuitos 2018....................79
Gráfica No.41 Accesibilidad Estructura Macro Circuitos 1970..........................80
Gráfica No.42 Accesibilidad Estructura Macro Circuitos 2000..........................82
Gráfica No.43 Accesibilidad Estructura Macro Circuitos 2018..........................83
Gráfica No.44 Accesibilidad Macro Circuito -Técnica Interpolación 1970.............84
Gráfica No.45 Accesibilidad Macro Circuito - Técnica Interpolación 2000 84
Gráfica No.46 Accesibilidad Macro Circuito - Técnica Interpolación 2018 85
Gráfica No.47 Accesibilidad Estructura Meso Circuitos 1970 86
Gráfica No.48 Accesibilidad Estructura Meso Circuitos 2000............................. 87
Gráfica No.49 Accesibilidad Estructura Meso Circuitos 2018............................. 88
Gráfica No.50 Accesibilidad Estructura Meso Circuitos 2000 - Técnica Interpolación... 89
Gráfica No.51 Accesibilidad Estructura Meso Circuitos 2018 - Técnica Interpolación... 90
Gráfica No.52 Análisis Dinámico Micro Circuitos 1970 91
Gráfica No.53 Análisis Dinámico Micro Circuitos 2000 92
Gráfica No.54 Análisis Dinámico Micro Circuitos 2018 93
Gráfica No. 56 Ocupaciones lineales ... 94
Gráfica No. 57 Ocupaciones dispersas .. 94
Gráfica No. 58 Ocupaciones agrupadas ... 94
LISTA DE TABLAS .

Tabla 1 Aplicación metodología ,etapas de análisis ..22
Tabla 2 Generación empleos directos Sogamoso ...34
Tabla 3 Posición a nivel nacional en índices Boyacá ..40
Tabla 4 Crecimiento de ocupación para los periodos de estudio por actividad53
Tabla 5 Índice beta estructura macro circuito ..62
Tabla 6 Índice gama estructura macro circuitos ...62
Tabla 7 Índice número Ciclomático estructura macro circuito63
Tabla 8 Índice alfa estructura macro circuito ..63
Tabla 9 Índice beta estructura meso circuito ..64
Tabla 10 Índice gama estructura meso circuitos ...64
Tabla 11 Índice número Ciclomático estructura meso circuito65
Tabla 12 Índice alfa estructura meso circuitos ...65
Tabla 13 Conectividad macro 1970 ...67
Tabla 14 Conectividad macro 2000 ...68
Tabla 15 Conectividad macro 2018 ...70
Tabla 16 Conectividad meso 1970 ...74
Tabla 17 Conectividad meso 2000 ...75
Tabla 18 Conectividad meso 2018 ...76
Tabla 19 Accesibilidad macro 1970...81
Tabla 20 Accesibilidad macro 2000...82
Tabla 21 Accesibilidad macro 2018...83
Tabla 22 Accesibilidad meso 1970...86
Tabla 23 Accesibilidad meso 2000...87
Tabla 24 Accesibilidad meso 2018...88
LISTA DE ANEXOS .

Anexo A . Teorías de localización
RESUMEN

En el debate de la planificación se han planteado diversas herramientas para el análisis territorial, estas permiten identificar conflictos y dinámicas que inciden en la transformación del territorio, no obstante, la mayoría enfocados en unas metodologías reduccionistas, esta investigación se interesa desde el enfoque funcional en identificar las formas de ocupación, como han venido configurándose en el territorio y entender la incidencia de los elementos generatrices que estos han tenido en el valle del Sugamuxi.

La propuesta de análisis comprende las siguientes etapas: análisis de las características principales del territorio, representación de las formas de ocupación, análisis de los elementos generatrices desde el enfoque de sistemas, estos serán valorados mediante la aplicación de la metodología basada en la teoría de grafos, útil para abordar el territorio y explicar su comportamiento a partir de la identificación de los componentes de su estructura.

Palabras clave (componentes generatrices de la ocupación, formas de ocupación, estructura del territorio)
INTRODUCCIÓN

Durante el proceso histórico de la ocupación en el territorio, se aprecian ocupaciones de diferente índole, por consiguiente, al interpretar las formas de ocupación en el territorio y como inciden en su transformación los elementos generatrices; es decir accesibilidad ,conectividad, aglomeración ,intensidad de flujos e identificación de circuitos, se logra aclarar el comportamiento de las mismas .

La investigación se basa en el enfoque de sistemas que contribuye a una aproximación para definir las interrelaciones de los elementos , utilizando la teoría de grafos, que a su vez se complementan con diversas técnicas , estás serán las base para realizar la medición de los componentes de la estructura con el objetivo de determinar la transformación de la ocupación a partir de a los elementos generatrices. El alcance de la investigación es identificar como ha sido la transformación de la estructura, que al final indicara una tendencia de ocupación, para lograrlo la estructura del análisis cuenta con las siguientes etapas :

- Análisis de las características principales , como está el territorio en relación con los recursos naturales.
- Análisis multitemporal de las formas de ocupación en el territorio.
- Análisis de los elementos desde el enfoque de sistemas : en esta etapa se estudian como estos inciden en las ocupaciones en el territorio.
1 MARCO GENERAL

El territorio del valle del Sugamuxi, es el resultado de un proceso emergente que ha generado unas presiones sobre el ecosistema, Carrizosa (2005) lo define como: “el territorio es una construcción socio cultural sobre un ecosistema específico, y de esta manera, está en función de su protección una posible integración regional sostenible”

La transformación de la ocupación en el valle del Sugamuxi ha tenido un crecimiento del 117 % entre el periodo de 1970 al 2018, contrario a lo que tienden a mostrar lo análisis territoriales que se concentran en medir el fenómeno como una expansión urbana, las ocupaciones en el territorio se han ido localizando por las ventajas comparativas de algunos elementos generatrices, situación que está ejerciendo presión el territorio de diferentes maneras por las nuevas actividades extractivas y de transformación, de esta manera surge la pregunta ¿Cómo se puede medir las ocupaciones a partir de los elementos generatrices? , con el objeto de evidenciar la tendencia que históricamente ha venido cambiando para determinar porque actualmente son así.

Al determinar la problemática, se debe trazar el objetivo para alcanzar ese resultado y dar respuesta a la pregunta de investigación, por lo tanto, esta pretende identificar las formas de ocupación en el territorio del valle de Sugamuxi a partir de la identificación de elementos generatrices, la estrategia para alcanzar este objetivo consiste en: analizar las formas de ocupación que se está materializando en la estructura territorial, igualmente analizar la interrelación de los elementos generatrices que inciden en las formas de ocupación, la estructura para el análisis funcional sobre el territorio.
Los análisis territoriales que se han planteado para la zona están enfocados en una descripción de variables ambientales, sociales, económicas y políticas. Este estudio busca a través de la aplicación metodológica con un enfoque funcional, aportar unos elementos que se deben tener en cuenta en futuras propuestas de planeación, estudiando la transformación de las formas de ocupación a partir de los elementos generatrices.

Metodología Aplicada

Para interpretar y evidenciar las interdependencias se acude a la teoría clásica de grafos es útil para la interpretación de la estructura territorial, al igual que el análisis topológico, que vinculan particularmente indicadores de accesibilidad, estos han sido aplicados en trabajos realizados por Herce (1983) y Dupuy (1998), para su análisis se realizó una clasificación de nodos (puntos) y vectores (líneas), en donde los nodos se integran en unas matrices topológicas de accesibilidad y conectividad en filas y columnas para cada nodo se mide su interdependencia.

Las técnicas utilizadas para el análisis de datos son: Inicialmente se realiza un estudio multitemporal que permita la recolección de información para establecer la trayectoria que estos tienen en el sistema, seguidamente la descripción del proceso de ocupación para el periodo de 1970 y 2000 se realiza mediante una aerofotografía suministrada por el instinto geográfico Agustín Codazzi, para el periodo 2018 mediante la plataforma Google Earth.

A partir de la teoría de grafos que busca la interpretación de la estructura, para sintetizar la estructura en las matrices topológicas se utilizan Indicadores de conectividad, de acuerdo con Madrid y Ortiz (2005), los índices topológicos más utilizados se pueden nombrar los siguientes: Índice beta (β), Índice gamma (γ), Número Ciclomático (μ), Índice alfa (α).
En lo que se refiere a sistemas de información geográfica, por un lado, se utilizaron técnicas de interpolación que realiza una estimación de la influencia del nodo sobre un área determinada. y la técnica de densidad de puntos que calcula la densidad de las entidades de punto alrededor de cada celda ráster de salida.

Gráfica No.1 Estructura para el análisis funcional sobre el territorio

Gráfica No.1 Elaboración propia
2. MARCO TEÓRICO

2.1 TEORÍA SISTEMAS ENFOQUE MCLOUGHLIN

Ahora bien, se realizó una recopilación de algunas teorías espaciales que se han planteado para determinar la localización de algunas actividades, ver anexo 1, de las cuales se toman principios como accesibilidad y aglomeración, y las ventajas de las mismas. Estas teorías son complementarias para la investigación, no obstante el enfoque es desde la teoría de sistemas tomada del libro planificación urbana y regional de Brian McLoughlin, por la importancia del enfoque funcional, fundamental para entender la estructura del sistema que se ha consolidado en el territorio.

En general por sistema se entiende un todo complejo, un grupo de cosas o partes conectadas entre sí, un conjunto organizado de cosas material o inmateriales y también un grupo de objetos relacionados o en interacción de tal modo que forman una unidad. (Mcloughlin, 1969, p.78)

El sistema comprende una metodología que establece los siguientes procedimientos:

- Observación del comportamiento de un sistema real.
- Identificación de los componentes y procesos fundamentales del mismo.
- Identificación de las estructuras de retroalimentación que permiten explicar su comportamiento.
- Construcción de un modelo formalizado sobre la base de la cuantificación de los atributos y relaciones.
- Introducción del modelo.

Si bien las características, enfatizan en la identificación de los componentes e identificación de las estructuras, la investigación permite estudiar esta estructura funcional y la relación con los elementos generatrices.
Como todo sistema tiene un proceso cíclico desarrollado de la siguiente manera que será oportuno para la formulación de planes. Ver gráfico 2

Gráfica 2. Desarrollo cíclico formulación de planes

<table>
<thead>
<tr>
<th>El entorno es explorado</th>
</tr>
</thead>
<tbody>
<tr>
<td>revisiones periódicas por todos los sectores de la comunidad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulación de los fines (objetivos que pueden avanzar hacia los fines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>identificar los fines denominada progresión lógica ya que ello necesita una justificación mediante un conjunto de fines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cursos de acción posibles para alcanzar los objetivos y alcanzar fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>la generación de posibles cursos de acción necesita un modelo de sistema que mostrara cambios de estado a través del tiempo bajo la influencia de una serie de variables de política</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluación de cursos posibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Síntesis de cursos coherentes, la evaluación debe ser precedida por dos cuestiones ¿qué elementos del plan van a utilizarse en la evaluación? ¿Cómo van a medirse estos?</td>
</tr>
</tbody>
</table>

| **Finalmente la acción** |

Gráfica No. 2 Elaboración propia a partir del libro planificación urbano y regional McLoughlin

Se pueden encontrar sistemas abiertos o cerrados, siendo el primero el que importa y procesa elementos (energía, materia, información) de sus ambientes. Que un sistema sea abierto significa que establece intercambios permanentes con su ambiente, intercambios que determinan su equilibrio, capacidad reproductividad o continuidad, es decir su viabilidad. (Marcelo Arnold & Francisco Osorio, 1989)

Los elementos de un sistema o componentes que lo forman están en constante relación, estas pueden darse “internas y externas y diversas denominaciones como: efectos recíprocos, interrelaciones, organización, comunicación, flujos intercambios, interdependencias, coherencia entre otras” (Arnold & Osorio, 1989).
La relación entre los elementos del sistema es decir la sinergia que surge de las interacciones entre las partes o componentes de un sistema. Este concepto responde al postulado aristotélico que dice que “el todo no es igual a la suma de sus partes”.

Friedmann es más específico y resuelve el dilema de una manera que se encuentra totalmente de acuerdo con nuestra visión sistémica de la ciudad y de la planificación.

La generalidad en la planificación de la ciudad dice se refiere en primer lugar a estar enterado de que la ciudad es un sistema de variables sociales y económicas, en relación mutua que se extiende sobre el espacio. Para mantener el principio de la generalidad, por tanto, es suficiente decir en primer lugar que los programas funcionales deben estar en consonancia con el sistema de relaciones de toda la ciudad, en segundo lugar, que los costes y beneficios de estos programas deben ser calculados sobre la base más amplia posible, y en tercer lugar, que todas las variables relevantes deben tomarse en cuenta en el proyecto de programas individuales. (Mcloughlin, 1969, p. 119)

Para finalizar el objetivo del planificador será definir las unidades o componentes de su sistema (la ciudad o la región en conjunto, de tal manera que aumente al máximo la libertad de los que tomen decisiones públicas y privadas para optimizar sus sistemas con sus componentes y siempre que tanto el cómo los especialistas públicos y privados se den cuenta de la naturaleza de las relaciones).

La teoría general de sistemas (TGS) basada en los principios postulados que rechaza el estudio de los fenómenos mediante el análisis de sus partes constituyentes, el conocimiento exacto y total de un fenómeno”
Gráfica No. 3 Elaboración propia a partir del libro planificación urbano y regional McLoughlin

Las categorías de análisis para esta investigación se relacionan con elementos influyentes en la transformación territorial.

McLoughlin (1970) plantea: “identificar las partes o elementos, por un lado, y por otro las conexiones con interacciones. las partes en nuestro sistema son actividades humanas persistentes y especialmente aquellas que tienden a producirse y repetirse en situaciones específicas o dentro de zonas o sectores particulares” (p. 78).

Al evidenciar las interdependencias de los elementos, se puede determinar la relación de intensidad en los flujos que se dan en la estructura territorial y estos a su vez son determinantes para la localización de ocupaciones por actividad. Los aportes de esta teoría aplicado a la investigación son la valoración de las interrelaciones entre los elementos.

“las comunicaciones permiten a las distintas actividades el obrar entre sí recíprocamente, unirse en interconectarse de modo que puedan darse las pautas necesarias del comportamiento humano” (McLoughlin, 1970, p. 80).
2.2 CAMAGNI PRINCIPIO DE AGLOMERACIÓN -PRINCIPIO DE ACCESIBILIDAD

Los sistemas urbanos no tienden a subsistir aislados siempre tienden a funcionar en red y es más rentable trabajar bajo la sinergia.

Roberto Camagni profundiza en estos principios no solo desde una visión puramente económica ,sino manifestada en la especialización. Por eso Camagni en su libro economía urbana refleja:

Las ventajas de la aglomeración dado que ayudan a ampliar el mercado la reducción de los "costes de transacción" “Concentración de la mano de obra calificada” lo que determina la “posibilidad de alcanzar una dimensión de producción eficiente o economías de escala en el suministro de muchos servicios públicos; este elemento genera una clara ventaja de costes para los usuarios” (Camagni,2005, p.35).

2.2.1 El Principio De Aglomeración.

“Las ciudades existen y han existido en la historia porque los hombres han encontrado más ventajoso y eficiente gestionar las propias relaciones personales, sociales, económicas y de poder de forma espacialmente concentrada”(Camagni,2005, p.21). En el libro economía urbana se expone ventajas basadas en planteamientos de autores como Weber(citado por Camagni,2005) “prevé una localización aglomerada de las unidades productivas siempre que las ventajas de aglomeración y los ahorros en los costes de trabajo, debidos a la mayor profesionalidad o a la mayor disponibilidad de la mano de obra, superen a los mayores costes de transportes en los que se incurre en la localización efectiva respecto a la localización abstracta de mínimo coste de transporte” (p.33)
No obstante, las ventajas de la aglomeración no son simplemente para las unidades productivas, la población, para la reproducción de sus relaciones en el territorio siempre ha encontrado la ventaja en la aglomeración, ventajas como:

- Ventajas derivadas de la presencia de servicios públicos más eficientes, tales como servicios de enseñanza, sanidad, transporte e infraestructuras sociales en general
- Ventajas derivadas de la presencia de servicios privados personales más avanzados y diversidades, como servicios culturales y recreativos
- Ventajas de “variedad” derivadas de las mayores posibilidades de elección que se presentan en diversas fuentes: trabajo, residencia, compras, tiempo libre, estilos de vida general.

2.2.2 El Principio De Accesibilidad

Surge de la competencia entre las diversas actividades económicas para asegurarse las localizaciones más ventajosas. Es decir, la accesibilidad significa rápida disponibilidad, que a su vez supera la barrera de las interrelaciones. “Para las personas poder disfrutar de servicios infrecuentes, vinculados a localizaciones específicas (museos, bibliotecas) o de la cercanía a maravillas específicas de la naturaleza sin tener que incurrir en costes de grandes desplazamientos” (Camagni, 2005, p.51).

La accesibilidad determina las elecciones de localización de cada actor, “que a su vez dan lugar, por efectos acumulativos, a la estructuración de todo el espacio, tanto a nivel macro como micro territorial” (Camagni, 2005, p.51).

Ahora bien, para el análisis de los elementos de la estructura de los planteamientos de McLoughlin se toma la valoración de interrelaciones, seguidamente de los principios de aglomeración y accesibilidad tomados de Camagni.
2.3 APROXIMACIONES CONCEPTUALES Y METODOLÓGICAS PARA EL ANÁLISIS DE LAS FORMAS DE CRECIMIENTO METROPOLITANO. GIOVANNI GONZÁLEZ ARÉVALO

El trabajo de investigación de Giovanni González surge de la crítica a la planificación tradicional en donde se enfoca en:

la rigidez, geometría, orden y equilibrio, componentes inherentes de la planeación tradicional se apartan de la idea contemporánea del ordenamiento del territorio, donde conceptos como la flexibilidad, el rechazo de los límites, el desorden y la inestabilidad son ahora los elementos fundamentales para el estudio de la planeación urbana contemporánea, lo representa un cambio significativo para los conceptos de la planeación. (González, 2017, p.28)

El enfoque que el autor plantea es de las interrelaciones funcionales y no solamente como se ha venido haciendo la planificación basándose en sus características físicas. “Este comportamiento económico de globalidad, refuerza la idea de localización de actividades que busca las mejores posibilidades de localización y accesibilidad a las vías de comunicación físicas con mayores flujos en el territorio”(González, 2017, p.30). Planteando todos estos aspectos el autor sugiere la pregunta ¿Cómo se puede analizar la ocupación del territorio del área metropolitana de Bogotá D.C.? siguiendo así una metodología que le permite una aproximación al análisis de las formas de crecimiento metropolitano, ver tabla 1

Aplicación metodología, etapas de análisis

| 1 Etapa Análisis del territorio observado desde el enfoque de sistemas, esta etapa busca establecer las características principales del territorio que influyen en el comportamiento de las formas de crecimiento metropolitano | 2 etapa, identifica los elementos del sistema metropolitano, que serán estudiados a la luz de las herramientas de observación que provea el punto de vista del análisis espacial con la que se establece el estudio | 3 análisis de las formas de crecimiento metropolitano y su función en el territorio encaminado a la aproximación de la comprensión de los efectos que generan las nuevas formas de crecimiento metropolitano en el territorio |

Tabla 1. Elaboración propia basada trabajo de Grado Giovanni González
Lo anterior es la base para definir los elementos que se toman para la investigación que está enfocada en las formas de ocupación y sus elementos generatrices, que influyen en la localización de los mismos. Si bien el primer capítulo sintetiza la aproximación al concepto, este debe ser representado gráficamente para interpretar la estructura funcional, es allí donde basados en un trabajo realizado por Giovanni González sustentado en un trabajo realizado por las autoras Adriana Madrid Soto y Lina María Ortiz López se recurre a la teoría de grafos, utilizada en diversas disciplinas de geografía, economía, que sirven para representar gráficamente un fenómeno.

En esta investigación su aplicación está relacionada para identificar la accesibilidad y conectividad respecto a un corredor de estudio, que a su vez están determinados por la constante interrelación e intensidad de los flujos. Para continuar con la base teórica en la que se sustenta la metodología aplicada es importantes diferenciar entre el concepto de red y sistema, según Bosque (citado por Madrid & Ortiz, 2005), una red es “un sistema interconectado de elementos lineales, que forman una estructura espacial por la que pueden pasar flujos de algún tipo: personas, mercancías, energía, información".
2.4 TEORÍA DE GRAFOS

Los grafos se presentan con frecuencia en la vida real

Tal es el caso de una red de carreteras que enlace un cierto grupo de ciudades; aquí los nodos de la red o ciudades representan los vértices del grafo, las carreteras que unen las ciudades representan los arcos o aristas (vectores); así a cada arco se asocia una información tal como la distancia de las ciudades (Caicedo, Wagner & Méndez, 2010, p. 1).

Un grafo G consta de un conjunto de vértices o nodos V y un conjunto de arcos A, cada uno de los cuales une un vértice con otro.

Gráfica 4. Estructura Grafo

Dado que el sistema puede ser representado por vectores y el grafo constituye un conjunto de nodos y vértices (citado por Madrid & Ortiz, 2005) menciona que los nodos o vértices de la red pueden ser constituidos por los puntos de origen y destino de los intercambios (ciudades, puertos, aeropuertos o centros de zona denominados centroides, si trabajamos a una escala urbana, a los que se les atribuyen las características del área que representan). los arcos o aristas se identifican con las rutas, tanto si tienen estructura física de soporte (rutas terrestres) como si no cuentan con ella (rutas marítimas, aéreas o referidas a teleflujos), o con los flujos (pasajeros, mercancías, flujos telemáticos.)
Según McLoughlin se identifican los elementos que en esta investigación son las ocupaciones por actividades y se busca mediante la teoría de grafos describir los nodos y los arcos que permiten identificar el grado de conexión para demostrar la interdependencia de los municipios y generar una reflexión en torno a la forma tradicional de planificación, sin el previo conocimiento de relaciones que superan los límites políticos administrativos.

2.4.1 Clasificación Nodal Jerarquía

Se mencionaba que los nodos pueden constituirse en puntos de origen y destino es decir aplicado en el territorio se refiere a los cascos urbanos e intersecciones donde hay un intercambio de flujos. Para la identificación de los nodos de la simplificación gráfica de la estructura, se utilizó la metodología mediante la clasificación nodal.

Para la investigación es pertinente retomar el aporte Red Colombiana de ciudades, elaborado por Humberto Molina y Pedro Ignacio Moreno, ensayo aportes para una nueva regionalización del territorio colombiano.

> El ensayo comprende una extensa recopilación de estadísticas alfanuméricas y geográficas, elaboran un modelo de ordenamiento o jerarquización funcional de los centros urbanos a partir de variables relacionadas con la disponibilidad de comunicaciones, infraestructura y servicios terciarios, identifican subsistemas, para finalmente proponer las bases y las acciones de política urbana que posibiliten mejorar la competitividad de distintos tipos de centro o periten superar las situaciones de manifiesto desequilibrio. (Molina, 2000)

Las características básicas de una red son accesibilidad y conexión. Para el modelo de accesibilidad, se determinaron dos tipos de insumos: datos alfanuméricos y datos geográficos, con la creación de una base de datos
alfanuméricos para recoger la información referente a la calificación de atributos urbanos para generar el índice de jerarquización funcional de centros urbanos.

El resultado de dicha investigación permite la caracterización de cada una de las regiones pertinentes para esta investigación así:

- Identificación de las ciudades que hacen parte de cada subsistema con su respectiva jerarquización funcional y determinación de los límites territoriales de cada área funcional.
- Factores que determinan situaciones de desequilibrio entre sistemas urbano-regionales, asociación entre sistemas urbanos e indicadores económicos y de calidad de vida.
- La jerarquización funcional variables Generar sus áreas de influencia mediante el modelo de accesibilidad.

Una de las conclusiones que presento el estudio es en los primeros seis órdenes del universo urbano apenas se agrupan 108 cabeceras que tan solo representan el 10.7 % del total incluido del área de estudio. es decir, de las 1.006 cabeceras seleccionadas para el estudio.
Para la interpretación de la estructura es necesario ver la interrelación con los vértices, en este punto es importante la identificación de los circuitos que directamente está relacionado con la identificación de los flujos para eso se recurre a la clasificación de los circuitos en macro, meso y micro de tal forma:

2.4.2 **La clasificación de los circuitos**

Para identificar las intensidades de los flujos de las nuevas formas de ocupación de las actividades dentro del territorio, se determinan los circuitos, equivalentes al sistema vial de la siguiente manera:

- **Macro circuitos**: Son aquellas troncales, transversales y accesos a capitales de Departamento que cumplen la función básica de integración de las principales zonas de producción y consumo del país y de éste con los demás países.

- **Meso circuitos**: Son aquellas vías que unen las cabeceras municipales entre sí y/o que provienen de una cabecera municipal y conectan con una carretera Primaria.

- **Micro circuitos**: Son aquellas vías de acceso que unen las cabeceras municipales con sus veredas o unen veredas entre sí.
2.4.3 Conceptos Para el Análisis De La Estructura

Este subcapítulo está sustentado en la aproximación del enfoque de sistemas seguido por González “centrado en las relaciones en función de los flujos que existen entre los elementos del territorio y que influyen en la localización de actividades”

Para entender el sistema es necesario ver como se configura su estructura es decir “se entiende las interrelaciones más o menos estables entre las partes o componentes de un sistema” (Marcelo Arnold & Francisco Osorio, 1989).

A hora bien para la interpretación es fundamental revisar los elementos y como se puede explicar las trasformaciones.

En la representación cartográfica uno de los elementos específicos son las ocupaciones, Según Font las define como los:

a.) Estratos construidos: “comprende la ciudad central del sistema metropolitano, las ciudades de formación histórica, apoyada en los ejes de comunicación tradicionales, los núcleos urbanos de crecimiento inducido desde la ciudad central y, finalmente las bosas o paquetes urbanos dislocados territorialmente sin buena articulación urbana.”

Para el estudio de los estratos construidos se tiene como insumo las formas de ocupación que a su vez se clasifican en residencial, agroindustria, industrial ,servicios, comercio, para su reconocimiento a partir de sus características particulares.

b.) Las redes y los nodos de la infraestructura: integradas principalmente por las redes viarias especializadas según su funcionalidad
2.4.4 Metodología para el análisis de conectividad y accesibilidad de la red

Para la aproximación y como se puede representar es estructura se basa en los planteamientos realizados por:

La teoría general de sistemas indica que las redes tienen dos estados. Seguí (citado por Ramírez, 2002), propone una clasificación de técnicas en dos vías: la primera, dirigida al estudio estático de las redes, cuyo objetivo es medir el grado de conexión entre los distintos nodos de la red. Busca fundamentalmente identificar los componentes básicos de la red, describirlas y localizarlas. La segunda vía, comprende el estudio dinámico de las redes, lo que implica un análisis de la funcionalidad de la misma en términos de cohesión, accesibilidad y centralidad (Ramirez,2002)

Estado dinámico

Muchos estudios se han realizado para determinar la accesibilidad y conectividad de la red vial de un territorio y es que la red vial constituye un elemento fundamental para entender la estructura del territorio espacial, a su vez expresa la intensidad de relaciones e intercambios que puedan darse en su interior. “Su análisis aporta al conocimiento de las deficiencias de accesibilidad en relación con centros principales, mayores centralidades y patrones espaciales que permiten identificar desigualdades territoriales en términos de las características de la red de transportes (Loyola y Rivas,2014)”

El análisis de accesibilidad y conectividad a partir de la definición de patrones espaciales dan cuenta de los efectos estructurantes de las redes viales en las dinámicas del territorio.
• Estado estático, en este caso lo que determina es la relación y vínculos de dos nodos específicos e indican el número de conexiones, los índices más comunes para determinar son los que definen Madrid y Ortiz los siguientes:
 o Índice Beta (B)
 o Índice Gamma (Γ)
 Número Ciclomático (M)
 o Índice Alfa (A)

Gráfica 5 . Instrumento de aplicación

Gráfica No. 5 Elaboración propia
3 CONTEXTO DEPARTAMENTAL

3.1 ESCALA MACRO TERRITORIAL.

Este subcapítulo tiene como objetivo, representar la escala departamental en la que está inmerso el valle de estudio que comprende los municipios de Sogamoso, Duitama, Nobsa y Tibasosa, dado que es fundamental observar la interconexión a nivel departamental y nacional.

Es importante señalar que para esta investigación es de considerar, la ciudad como el elemento de un sistema más amplio en línea con lo señalado por Berry:

Un sistema es un conjunto de objetos (centros urbanos), características de dichos objetos (población, establecimientos, tipos de empresas, tráfico generado), interrelacionados entre los objetos (asentamientos de los centros inferiores en los lugares intermedios, distribución espacial uniforme en cualquier nivel dado) y entre las características (los gráficos en las relaciones logarítmicas) e interdependencias entre los objetos y sus características (la jerarquía de los lugares centrales) (Berry, 1967, p.27)

Desde esta visión de sistema de ciudades se resaltan los siguientes aspectos: los elementos se reconocen como centros urbanos; los atributos de los elementos son: la población, área de influencia, relaciones sociales, económicas y de producción.
3.1.1 Interconexión
Así como las relaciones entre elementos son los flujos de transporte, comunicación e información, por lo tanto, el sistema de ciudades es un sistema abierto dado que está en constante interacción con su entorno.

La localización de actividades es un elemento que, unido a los análisis obtenidos del resto de sistemas, permite obtener una visión de la estructura del territorio que es de gran utilidad para la realización del diagnóstico territorial, entre esos el de interconexión vial actúa como articulador de relaciones urbano-regional.

Gráfica 6. Interconexión vial, Año 2018
El orden jerárquico de los municipios determinado por la intensidad de la prestación de servicios, paralelamente su potencial de desarrollo está directamente relacionado con la vía de carácter nacional, que recorre el centro del país y finaliza en el puerto de la costa atlántica, así como su proximidad al centro de primer orden la capital de Bogotá, además la conexión con el macro circuito alimentario de los llanos orientales (Casanare).

Según el estudio (aportes para una nueva regionalización), respecto a unas variables de jerarquía de servicios Tunja como capital de departamento cumple con un nivel jerárquico de 3, Duitama 4, Sogamoso 5, y municipios como Tibasosa y Nobsa 7 , lo que quiere decir que su importancia jerárquica no es proporcional a su tamaño porque hay municipios como Cubará con una extensión aproximada de 853 Km2 no representa mayor jerarquía.

3.1.2 Población

Siguiendo a Camagni, en donde enfatiza las ventajas que tiene la población al principio de accesibilidad, es así como aglomeraciones de los municipios de Nobsa, Sogamoso, Duitama, Paipa y Tibasosa, próximas al denominado “corredor industrial” han venido consolidándose durante décadas y cuentan con un índice de calidad de vida alto, ubicándolos por encima del promedio departamental. Una de las razones, es que dichos municipios hacen parte del corredor industrial de Boyacá que es un buen generador de empleo.

La migración de población incremento considerablemente entre la década del 50 y 70 una generatriz de dicha migración fue el empleo de una concentrada mano de obra para el porte de desarrollo económico.

Según los estudios censales de los últimos años y por medio del análisis estadistico del geo portal del DANE, en el área del corredor hay un estimado de población de :
Según el estudio realizado por la cámara de comercio de Sogamoso, dentro de la economía de la jurisdicción de la Cámara de Comercio se destacan las actividades en el sector primario ya que la mayoría de la población se dedica a la producción agropecuaria y a la explotación minera. No obstante, las actividades relacionadas con el transporte como talleres mecánicos, comercio de repuestos contribuyen a dinamizar la economía del valle de Sugamuxi.

<table>
<thead>
<tr>
<th>Generación empleos directos Sogamoso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número total de empleados Por actividad económica (21-50)(Código CIIU) (Agricultura, ganadería, caza, silvicultura y pesca)</td>
</tr>
<tr>
<td>Número total de empleados Por actividad económica (0-20)(Código CIIU) (Explotación de minas y canteras)</td>
</tr>
<tr>
<td>Número total de empleados Por actividad económica (0-20)(Código CIIU) (Industrias manufactureras)</td>
</tr>
<tr>
<td>Número total de empleados Por actividad económica (0-20)(Código CIIU) (Comercio al por mayor y al por menor; reparación de vehículos automotores y motocicletas)</td>
</tr>
<tr>
<td>Número total de empleados Por actividad económica (0-20)(Código CIIU) (Transporte y almacenamiento)</td>
</tr>
</tbody>
</table>

Tabla 2. Fuente elaboración propia basada datos Cámara de comercio
La migración de población rural a grandes urbes como Bogotá, evidencia unos cambios en las actividades, si bien se aprecia que el fenómeno de cambio se presentó hace 70 años, en los renglones de la economía el trabajo relacionado con el campo sigue disminuyendo, y el empleo por actividad económica (0-20) (Código CIIU) (Comercio al por mayor y al por menor; reparación de vehículos automotores y motocicletas) es uno de los grandes sin desconocer las industrias y grandes industrias como acerías paz de rio 1.570 empleados directos y 1.800 contratistas en Belencito (Boyacá).
3.1.3 Ambiental

El ecosistema de paramos en Boyacá (en verde en el gráfico) presenta la mayor extensión en el país con un 18.3% del total nacional, al igual que la mayor extensión de páramos húmedos. Le siguen en extensión los departamentos de Cundinamarca (13.3%). Los páramos son fuente de los grandes afluentes hídricos, una ramificación de vertientes hídricas que denotan una red ambiental desde su nacimiento en los páramos, su recorrido y desembocadura.

Gráfica 8. Servicios ecosistémicos - captación acueductos valle de Sugamuxi
En lo relacionado con la captación de agua para los acueductos de Duitama, Sogamoso, Nobsa, Tibasosa, la fuente con mayor captura es la alguna de tota y el río Surba como lo indica la barra en la figura. Durante el recorrido del río Chicamocha por el valle del Sugamuxi cuenta con porcentaje muy bajo de PETAP (planta de tratamiento aguas potables).

Gráfica No.9 Elaboración propia basada datos Corpoboyacá

La capacidad agrológica de los suelos en el valle, es decir los más aptos para la agricultura están concentrados en la trayectoria del río Chicamocha que en el plano son los tonos verdes (clase III), no obstante al superponer la capa de minería, ver gráfico 11, encontramos que aproximadamente un 40% está ocupando esa zona de oportunidad, esto se debe a las ventajas del localización valle respecto al agua, además la transformación del mineral que se encuentra en esa zona es fructífera, esto ha permeado la localización de nuevos servicios complementarios a la explotación de ese recurso.
Gráfica 10: Capacidad agrológica suelos departamento Boyacá

Gráfica No.10 Elaboración propia basada datos Corpoboyacá
Gráfica 11. Títulos mineros municipios

Gráfica No.11 Elaboración propia basada datos Corpoboyacá
3.1.4 Boyacá En Cifras

Sobre el contexto regional es importante ver la representación de Boyacá a nivel nacional, se encuentra en la posición novena entre veintitrés departamentos que analiza la CEPAL en que se contemplan indicadores de capital humano, ciencia y tecnología, fortaleza de la economía, infraestructura, gestión y finanzas públicas. Ver tabla 3

<table>
<thead>
<tr>
<th>Índices</th>
<th>posición</th>
<th>Puntaje 1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condiciones básicas</td>
<td>4</td>
<td>6,01</td>
</tr>
<tr>
<td>Eficiencia</td>
<td>6</td>
<td>5,05</td>
</tr>
<tr>
<td>sofisticación e innovación</td>
<td>11</td>
<td>3,99</td>
</tr>
<tr>
<td>Competitividad</td>
<td>9</td>
<td>5,35</td>
</tr>
</tbody>
</table>

Tabla 3 Posición a nivel nacional en índices. Elaboración propia basado Boyacá en cifras

Las razones por las que el departamento tiene un puntaje bajo en el indicador de innovación y dinámica empresarial, es porque cuenta con mínimos reportes en los temas evaluados como son revistas indexadas, inversión en ACTI, patentes y diseños industriales y densidad empresarial.

En lo referente al corredor industrial las actividades industriales en la región son: producción de acero, cemento, cervecería, bebidas gaseosas, prefabricados para la construcción, ladrillos, trefilados, muebles, calzado, artículos de cuero y productos alimenticios, paralelamente necesitan ser transportados a diferentes zonas del país lo que ha significado un crecimiento en la comercialización de motores para vehículos, metalmecánica, carrocerías para camiones y buses. El corredor industrial como es denominado por las entidades estatales, genera una serie de flujos en sus municipios de área de influencia, dado que aprovechan el circuito vial que moviliza un porcentaje alto de industria y sus productos sean distribuidos dada la conexión nacional que tiene dicho corredor.
Los puntos porcentuales aportados al PIB departamental por el sector turístico durante el año 2014 fueron de 3,2, por otro lado, el sector minero energético corresponden a 16 puntos siendo uno de los sectores más productivos de la región, según datos del censo minero de 2011.

Boyacá es el departamento donde se concentra el 53% de Unidades Productivas Mineras representadas en (2.649 UPM), es el primer productor no metalífero, cuenta con el 93% de explotación de piedras preciosas, 68% del total de UPM cuentan con título minero, 56% son de carbón, 33% no metálicos, 10% de esmeraldas, actividad que ocupa aproximadamente 16.000 trabajadores directos y 60.000 indirectos (Ministerio de Minas y Energía, 2012).

Sin embargo, recientes estudios han identificado un decrecimiento de población anual una conclusión, a la que llega el estudio es que la pérdida de población en el campo, población que cada día se concentra más en las ciudades .

Para el año 2015, el municipio que mayor aporte de la jurisdicción realizó al PIB departamental es la ciudad de Duitama con el 8,6%, seguido de Paipa que le aporta el 2,4% y Tuta que aporta el 1,65% al PIB de Departamento de Boyacá.
4 ANÁLISIS RESULTADOS DE LA APLICACIÓN CASO DE ESTUDIO VALLE SUGAMUXI

En este capítulo se aplica la metodología para analizar las formas de ocupación identificadas respecto al corredor vial que comprende los municipios de Nobsa, Tibasosa, Duitama, Sogamoso. Inicialmente con la identificación multitemporal de los polígonos de ocupación, seguidamente la aplicación teoría de grafos, para finalmente un análisis funcional en el territorio encaminado a la aproximación de los efectos que generan las nuevas formas de crecimiento.

Para la delimitación se tuvieron en cuenta diversas variables, como la relación de un vector de largo alcance como lo es la vía nacional que recorre el centro del país y tiene conexión con uno de los puertos del país, esto ha generado que en el territorio se presenten unas variaciones en lo que se refiere a la ocupación, así como la intensidad de prestación de servicios de los centros mayores.

Gráfica 12 Localización área de estudio municipios de Nobsa, Sogamoso, Duitama, Tibasosa

Gráfica No.12 con base Shape Gobernación de Boyacá
Las actividades de cada municipio son diversas, por un lado, se encuentra la zona de Tibasosa con un área 94.3 km, sus actividades económicas están relacionadas con las actividades agropecuarias aprovechando el distrito de riego, agroindustria lo que se refiere a invernaderos, en lo relacionado con minería sus principales yacimientos son de calizas, así como la localización de una gran industria la cervecería de Boyacá Bavaria.

Nobsa con una extensión de 53 km2, sus actividades económicas relacionadas con minería, agricultura y ganadería, los yacimientos principales de carbón y roca fosfórica. En el sector de las caleras existe una aglomeración de viviendas y la industria está representada por la explotación de canteras de cal y grandes industrias como Col Concretos y Holcim.

Sogamoso con un área total de 192 km2, sus actividades principales de industria, minería y servicios, sus principales yacimientos son materiales de construcción, carbón, roca fosfórica.

Duitama con un área total de 229 km2 sus actividades económicas principales son la agricultura, industria y servicios de transporte, Duitama se ha especializado en industria metalmecánica, que ha sido elemento generatriz de su desarrollo. Sus yacimientos principales son materiales de construcción.

Las relaciones intermunicipales generan una cadena de producción: como la prestación de servicios de Sogamoso, pero la explotación de recursos en Nobsa y el transporte de los mismos por parte de Duitama.
4.1 REPRESENTACIÓN CARTOGRÁFICA DE LA OCUPACIÓN PARA LOS PERIODOS 1970-2000 2018

Este subcapítulo tiene como objetivo representar cartográficamente el análisis espacial de la ocupación en diferentes periodos, para realizarlo se tienen como fuentes las aerofotografías de los periodos 1970 Plancha J-12 que corresponde al municipio de Duitama vuelo No C1646 Plancha J-13 que corresponde al municipio de Sogamoso vuelo No C1646, posteriormente es georreferenciada y graficada en formato Shape en el software Arcgis, para lograr interpretar la imagen las aerofotografías están aproximadamente en la escala 1:8.000, las vías representadas por un formato shape línea, en caso de que sea un camino veredal será representado por una línea punteada, las ocupaciones en formato shape polígono; para el año 2000 se utilizó Google Earth; En el año 2018 se realizó con el formato Shape, mediante una imagen de Google Earth la escala de las aerofotografías y la división predial administrada por las alcaldías municipales. Este análisis multitemporal es la base para establecer los elementos que han sido generatrices en las ocupaciones.
Gráfica 13 Representación abstracta del grafo

Gráfica No.13 con base Shape Gobernación de Boyacá

La representación abstracta del grafo permite jerarquizar los elementos que se utilizan para el análisis de las ocupaciones.
4.1.1 Representación Cartográfica Periodo 1970

La representación cartográfica de las ocupaciones en el año de 1970, con la digitalización de 877 elementos de tipo polígono en formato shp los cuales ocupaban un área en el territorio de 552,35 ha, las vías que para esa época eran caminos representadas punteadas.

Las ocupaciones se aglomeran sobre la vía de carácter nacional, los cascos urbanos con mayor consolidación: Duitama y Sogamoso, no obstante, la ocupación a lo largo del ferrocarril de forma lineal tiene un alto porcentaje. Igualmente, la vía de carácter nacional que conduce de la zona industrial al centro del país, la interconexión municipal está ligada a algunos caminos que conectan transversalmente por lo tanto sus flujos presentan una menor intensidad.

Gráfica No.14 Elaboración propia con base aerofotografía C-1713-194
Gráfica 15 . Representación actividades año 1970

<table>
<thead>
<tr>
<th>ÁREA TOTAL ha</th>
<th>Agropecuario</th>
<th>Industrial</th>
<th>Residencial</th>
<th>Comercial</th>
<th>Institucional</th>
<th>Servicios</th>
</tr>
</thead>
<tbody>
<tr>
<td>552,35</td>
<td>76,9%</td>
<td>5,8%</td>
<td>14,6%</td>
<td>0,7%</td>
<td>0,8%</td>
<td>1,2%</td>
</tr>
</tbody>
</table>

Las ocupaciones en la zona están dadas principalmente por la actividad agropecuaria, están localizadas próximas a la vía corredor nacional y al corredor férreo, la actividad industrial para la época no representa un porcentaje significativo, no obstante industrias como Acerías Paz De Rio y Cementos Boyacá venía consolidándose desde el año 1950. La ocupación es dispersa paralela a los grandes corredores viales, las ocupaciones se dan bajo intensidad de flujos por las conexiones intermunicipales y en su mayoría son cultivos, la ocupación residencial próximas a la vía, pero no representa una significativa aglomeración. Las actividades agropecuarias denotan una vocación para la región de la época y una proximidad para su transporte que conduce al interior del país mediante el Ferrocarril del Nordeste, que inició en 1925 con la ruta Bogotá, Tunja, Duitama y Sogamoso.
4.1.2 Representación cartográfica periodo 2000

La representación cartográfica de las ocupaciones en el año de 2000, con la digitalización de 1282 elementos de tipo polígono en formato shp los cuales ocupaban un área en el territorio de 901,38 ha.

La expansión de los cascos urbanos como Sogamoso y Duitama, generó unas aglomeraciones, su incremento también es sobre la vía de carácter nacional, una ocupación lineal a lo largo del corredor industrial. Se insinúan unas formas de ocupación tenues sobre las vías transversales o filamentos que conectan el macro circuito.

Gráfica 16. Representación ocupaciones año 2000

Gráfica No.16, Elaboración propia con base aerofotografía Google Earth
Gráfica 17. Representación actividades año 2000

<table>
<thead>
<tr>
<th>ÁREA TOTAL ha</th>
<th>Agroindustria</th>
<th>Agropecuario</th>
<th>Industrial</th>
<th>Residencial</th>
<th>Comercial</th>
<th>Institucional</th>
<th>Servicios</th>
</tr>
</thead>
<tbody>
<tr>
<td>901,38</td>
<td>6,4%</td>
<td>66,9%</td>
<td>6,8%</td>
<td>14,6%</td>
<td>2,0%</td>
<td>1,9%</td>
<td>1,4%</td>
</tr>
</tbody>
</table>

En un periodo de nuevas tecnologías y con la consolidación de nuevas industrias, se generaron algunas agroindustrias a pesar de representar solo un 6,4% se evidencia cambios, el sector agropecuario sigue ocupando más de la mitad del área de estudio y actividades complementarias al turismo como el comercio presentaron un incremento.
4.1.3 Representación cartográfica periodo 2018

La representación cartográfica de las ocupaciones en el año de 2018, con la digitalización de 1434 elementos de tipo polígono en formato shp los cuales ocupaban un área en el territorio de 1200 ha.

Gráfica 18. Representación ocupaciones año 2018

La ocupación sobre las vías nacionales más consolidada en aglomeraciones como Punta larga y sobre las intermunicipales que representan una ramificación de caminos perpendiculares al circuito.

El incremento de actividades agroindustriales específicamente invernaderos, y algunos de producción de alimentos un poco más tecnificados.
Por otra parte, se empezaron a consolidar servicios complementarios a la industria, ya no solo concentrados en Duitama sino a través del corredor nacional, algunos municipios que se especializaron en actividades como el turismo han implementado el comercio al servicio del turismo a lo largo del corredor.

Gráfica 19. Representación actividades año 2018

Gráfica No.19 Elaboración propia con base Google Earth

<table>
<thead>
<tr>
<th>ÁREA TOTAL ha</th>
<th>Agroindustria</th>
<th>Agropecuario</th>
<th>Industrial</th>
<th>Residencial</th>
<th>Comercial</th>
<th>Institucional</th>
<th>Servicios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200,14</td>
<td>9,5%</td>
<td>69,3%</td>
<td>5,4%</td>
<td>11,3%</td>
<td>1,5%</td>
<td>1,4%</td>
<td>1,7%</td>
</tr>
</tbody>
</table>

El mayor incremento de ocupación es la agroindustria, los flujos se intensificaron en los filamentos de conexión, se generaron unas ocupaciones próximas a estos, las nuevas ocupaciones son de tipo agropecuario, no obstante servicios complementarios a la industria como empresas de transporte y logística.
“El análisis multitemporal permite identificar los elementos que componen la estructura metropolitana, siendo los elementos de la estructura los que representan las funciones del sistema, entonces, los cambios en la estructura modifican las funciones del sistema lo que podría indicar que los elementos generatrices del sistema son los mismos elementos de la estructura.” (González, 2017, p. 92)

Los criterios de selección para identificar los elementos de la estructura se basan en la importancia o jerarquía para el área de estudio, los criterios de selección se dividen en permanecía en sistema, concentración de información, relevancia en los flujos de relaciones de actividades propias del sistema.
Crecimiento De Ocupación Para Los Periodos De Estudio Por Actividad.

<table>
<thead>
<tr>
<th>Período</th>
<th>Ocupación de área por actividades (ha)</th>
<th>Diferencia de la actividad base1970</th>
<th>Diferencia de la actividad progresiva</th>
<th>% Diferencia crecimiento progresivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGROINDUSTRIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>57,39</td>
<td>57,39</td>
<td>57,39</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>113,74</td>
<td>113,74</td>
<td>56,35</td>
<td>98%</td>
</tr>
<tr>
<td>AGROPECUARIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>424,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>603,21</td>
<td>178,67</td>
<td>178,67</td>
<td>42%</td>
</tr>
<tr>
<td>2018</td>
<td>831,33</td>
<td>406,79</td>
<td>228,12</td>
<td>38%</td>
</tr>
<tr>
<td>INDUSTRIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>31,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>61,23</td>
<td>29,33</td>
<td>29,33</td>
<td>92%</td>
</tr>
<tr>
<td>2018</td>
<td>64,84</td>
<td>32,94</td>
<td>3,61</td>
<td>6%</td>
</tr>
<tr>
<td>RESIDENCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>80,75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>131,82</td>
<td>51,07</td>
<td>51,07</td>
<td>63%</td>
</tr>
<tr>
<td>2018</td>
<td>135,23</td>
<td>54,48</td>
<td>3,61</td>
<td>3%</td>
</tr>
<tr>
<td>COMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>3,94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>18,25</td>
<td>14,31</td>
<td>14,31</td>
<td>363%</td>
</tr>
<tr>
<td>2018</td>
<td>18,25</td>
<td>14,31</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>INSTITUCIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>4,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>16,75</td>
<td>12,41</td>
<td>12,41</td>
<td>286%</td>
</tr>
<tr>
<td>2018</td>
<td>16,75</td>
<td>12,41</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>SERVICIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>6,88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>12,73</td>
<td>5,85</td>
<td>5,85</td>
<td>85%</td>
</tr>
<tr>
<td>2018</td>
<td>20</td>
<td>13,12</td>
<td>7,27</td>
<td>57%</td>
</tr>
</tbody>
</table>

Tabla 4. Elaboración propia basada información ArcGIS
4.2 APLICACIÓN TEORÍA GRAFOS

Para el análisis topológico el cual vincula campos de investigación relacionados con la teoría de red compleja, centrados principalmente en las propiedades estadísticas de la red (estructura y topología) . La grafía abstracta de los elementos que tienen relación y generalmente guardan una correspondencia, entendida los nodos como los puntos, que pueden representar intersecciones viales, los puntos de origen y destino según la intensidad de los servicios que prestan, los vectores como las líneas de gran flujo de carga.

Los nodos no tienen valor, pero si es importante para la aplicación clasificarlos según su jerarquía, la jerarquía se tuvo en cuenta la accesibilidad y conectividad que le llega a cada punto, es decir unos puntos adquieren mayor valor por la intensidad de conexiones directas , así como la accesibilidad es decir las veces que es necesario atravesar de vectores para llegar a un nodo de referencia.

Madrid & Ortiz, (2005) afirma que: No todos los nodos, ni todos los arcos tienen la misma funcionalidad dentro de una red. Algunos nodos adquieren mayor importancia por reunir una buena cantidad de funciones, lo que hace que se conviertan en centros de atracción o de paso obligado para acceder a otros centros o servicios. De otra parte, algunos arcos son de mayor acceso o adquieren más importancia de acuerdo a la cantidad de flujos que por ellos circulan. Se habla entonces, de jerarquía de una red, es decir, del orden que toman cada uno de sus elementos y funciones. (p.2).

Por otro lado, para el análisis se realiza la clasificación de los circuitos:

Los circuitos son un componente de análisis que nace a partir de los elementos generatrices conocidos como vectores y que buscan medir el grado o intensidad de las nuevas formas de ocupación en el corredor de estudio, estos jerarquizados en macro circuitos , meso circuito y micro circuitos. (Triana,2018 ,p.72)
Gráfica 20. Representación abstracta del macro circuito

Relacionado con las vías de carácter nacional que representan las relaciones departamentales y su relación con cascios urbanos, este grafo para el caso de estudio está concentrado en los municipios, sin desconocer la importancia de municipios como Corrales, Tópaga, Monguí, Mongua y Gámeza.
Los meso circuitos son las relaciones que se dan internamente del macro circuito, conformado por las vías nacionales y departamentales, se revisara únicamente las relaciones que estas vías generan al interior de la estructura, los elementos representados por los nodos son los cascos urbanos y también las ocupaciones relevantes urbanas que representa la conexión interna del sistema” (González,2017,p.97)
Los microcircuitos son equivalentes a las vías locales según la intensidad de relaciones, estas relaciones internas en algunos casos se reducen a relaciones independientes, esto significa que son relaciones uno a muchos (unidad de ocupación que conecta con varias unidades muy próximas).

Representan el principio de aglomeración que argumenta las ventajas propias de relaciones personales, sociales, económicas y de poder de forma espacialmente concentrada.
La estructura compuesta por 10 nodos y 12 vértices

Los nodos representados por las 4 cabeceras municipales y los 6 nodos no cabecera, que son los equivalentes a las intersecciones viales.

Para este periodo la estructura varía, compuesta por 12 nodos y 14 vértices las intensidades de los flujos.

Los nodos que incrementaron son nodos no cabecera dados por intersecciones viales.
Para este periodo los flujos se intensifican, lo que genera un cambio en la estructura en algunos nodos, dado que se intensifica su relación en las vías se ampliaron y pavimentaron 13 nodos y 16 vértices.

Gráfica No.23,24,25 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.
Para este periodo el trazado de los caminos transversales, ya está definido pero el intercambio de flujos es mínimo, porque las relaciones se intensifican en el macro circuito.

Para este periodo la estructura varia representada por 9 nodos y 13 vectores.
La estructura varía, las relaciones se intensifican sobre los mismos dado que estos vectores transversales acercan las relaciones intermunicipales. Representada por 10 nodos.
4.2.1 Análisis estático de la conectividad en la estructura macro y meso durante los periodos 1970,2000,2018

Este análisis se realiza con la estructura macro que en los tres periodos presenta unas variaciones físicas que se materializan en el análisis dinámico, al realizar el estudio sobre los tres periodos su valor fue constante lo que quiere decir que en los tres periodos sostiene el mismo índice de conectividad.

El Índice beta describe el grado de conexión de la red mediante el número de (vértices) sobre el número de (nodos), cuando su valor es equivalente a 0, indica una red nula. Si su valor es igual a 1, la red es de un solo circuito, y de 1 a 3 es compleja, es decir a mayor número de vértices mayor es la conexión.

<table>
<thead>
<tr>
<th>ÍNDICE BETA ESTRUCTURA MACRO CIRCUITO</th>
<th>(Nv/Nn)</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIODO</td>
<td>TIPO</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>10</td>
</tr>
<tr>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>12</td>
</tr>
<tr>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabla 5. Fuente elaboración propia basado en la información histórica recopilada IGAC

Índice gamma (γ): se obtiene a partir de dividir el número de vértices existentes en la red entre el máximo posible de vértices sobre el número real de nodos de la red. Su cercanía a un valor de 1 representa una red idealmente más conectada. En los tres periodos su valor no corresponde.

<table>
<thead>
<tr>
<th>ÍNDICE GAMA ESTRUCTURA MACRO CIRCUITOS 2V/(N(n-1))</th>
<th>(v/3(n-2))*100</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIODO</td>
<td>TIPO</td>
</tr>
<tr>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
</tr>
<tr>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
</tr>
<tr>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
</tr>
</tbody>
</table>

Tabla 6. Fuente elaboración propia basado en la información histórica recopilada IGAC
El valor porcentual de la tabla indica el porcentaje de vértices que se deben aumentar en cada nodo para obtener una red más integrada, es decir el número de vértices en los tres periodos debe aumentar el doble para lograr el 100 % que supone una red ideal.

Número ciclomático (μ): corresponde al número de circuitos presentes en un grafo. Un circuito es cada una de las maneras de ir desde un nodo hasta el mismo sin tener que pasar dos veces por la misma arista.

<table>
<thead>
<tr>
<th>ÍNDICE NUMERO CICLOMATICO ESTRUCTURA MACRO CIRCUITO NC (Nv-(Nn-1))</th>
<th>PERIODO</th>
<th>TIPO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>NUMERO DE NODOS</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>NUMERO DE NODOS</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>NUMERO DE NODOS</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabla 7. Fuente elaboración propia basado en la información histórica recopilada IGAC

Índice alfa (α): se obtiene de la relación entre el número de circuitos existentes y el máximo posible de la red. bajo al número de circuitos ideal que es 26 circuitos.

<table>
<thead>
<tr>
<th>INDICE ALFA ESTRUCUTURA MACRO CIRCUITOS NC/2(N-5)</th>
<th>PERIODO</th>
<th>TIPO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>NUMERO DE NODOS</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>NUMERO DE NODOS</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>NUMERO DE NODOS</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabla 8. Fuente elaboración propia basado en la información histórica recopilada IGAC
Establecen que el número de nodos y canales tienen relación en cantidad cercana de uno por cada vector. En cada uno de los periodos la conexión de la estructura estaba muy por debajo de los rangos ideales.

Análisis estático meso circuitos

Para el análisis de los meso circuitos, se realizó sobre las tres estructuras diferentes de cada periodo, la conectividad para el primer periodo de 1.4 canales por vector indica un nivel bajo de conectividad, pero el cambio sustancial se evidencia en el último periodo 2018.

<table>
<thead>
<tr>
<th>ÍNDICE BETA ESTRUCTURA MESO CIRCUITO (\text{Nv/Nn})</th>
<th>PERIODO</th>
<th>TIPO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NUMERO DE NODOS</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NUMERO DE NODOS</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NUMERO DE NODOS</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Tabla 9. Fuente elaboración propia basado en la información histórica recopilada IGAC

<table>
<thead>
<tr>
<th>ÍNDICE GAMMA ESTRUCTURA MESO CIRCUITOS (2V/(N(n-1)))</th>
<th>PERIODO</th>
<th>TIPO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NUMERO DE NODOS</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NUMERO DE NODOS</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NUMERO DE NODOS</td>
<td>0,29</td>
</tr>
</tbody>
</table>

Tabla 10. Fuente elaboración propia basado en la información histórica recopilada IGAC
Índice numérico ciclomático estructura meso circuito (Nv-(Nn-1))

<table>
<thead>
<tr>
<th>PERIODO</th>
<th>TIPO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>7</td>
</tr>
<tr>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>9</td>
</tr>
<tr>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabla 11. Fuente: elaboración propia basado en la información histórica recopilada IGAC

Índice alfa estrutura meso circuitos

<table>
<thead>
<tr>
<th>PERIODO</th>
<th>TIPO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>NUMERO DE VERTICES</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>7</td>
</tr>
<tr>
<td>2000</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>9</td>
</tr>
<tr>
<td>2018</td>
<td>NUMERO DE VERTICES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>NUMERO DE NODOS</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabla 12. Fuente: elaboración propia basado en la información histórica recopilada IGAC

4.2.2 Análisis dinámico de la conectividad en la estructura macro y meso durante los periodos 1970, 2000 y 2017.

En este subcapítulo se medirá la conectividad, es decir representa las conexiones directas en la estructura, las mediciones se realizan con la estructura de cada período y el método es mediante la matriz de conectividad que sintetiza los vectores que llegan directo a cada nodo, el rango de medición será dado en las siguientes clases.

Las medidas de conexión permiten establecer la relación y los vínculos entre dos nodos específicos. Sus relaciones indican el alcance de un nodo respecto al otro e indican el número de conexiones posibles. De acuerdo con Madrid y Ortiz (2005)

<table>
<thead>
<tr>
<th>Clase</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo</td>
<td>1-2</td>
</tr>
<tr>
<td>Media</td>
<td>3</td>
</tr>
<tr>
<td>Alta</td>
<td>4</td>
</tr>
</tbody>
</table>
Estos indicadores permiten aproximarse a la realidad espacial en relación con la integración del sistema vial con la estructura espacial es decir las ocupaciones, para realizar este indicador se procede a realizar la matriz de conectividad. El método se toman el conjunto de puntos o nodos y se superpone las vías intermunicipales que conectan las 4 cabeceras municipales, sin desconocer las relaciones que les llegan de otras cabeceras municipales.

La construcción de las matrices topológicas consta de 15 filas y 15 columnas para cada uno de los nodos identificados; esto representan los 4 municipios y los 11 cruces o intersecciones que conforman la red vial real.

Se evidencia en general en los tres periodos, que los mayores puntos de conexión están directamente relacionados con los centros principales como Duitama y Sogamoso, Sogamoso particularmente es centro de provincia y tiene conexión con la vía que conduce de los llanos orientales y forma el macro circuito alimentario que recorre Casanare hasta llegar al centro del país, por otro lado, el cruce que conduce a la ciudad de Duitama se integra a la ruta nacional que conduce a Bogotá.
Gráfica No.29 Conectividad macro circuito año 1970

<table>
<thead>
<tr>
<th>CONECTIVIDAD MACROCIRCUITOS</th>
<th>1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>3</td>
</tr>
<tr>
<td>Holcim</td>
<td>3</td>
</tr>
<tr>
<td>Nobsa</td>
<td>1</td>
</tr>
<tr>
<td>Punta larga</td>
<td>2</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>3</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>2</td>
</tr>
<tr>
<td>La y</td>
<td>3</td>
</tr>
<tr>
<td>Duitama</td>
<td>2</td>
</tr>
<tr>
<td>TCM</td>
<td>1</td>
</tr>
<tr>
<td>Caleras</td>
<td>2</td>
</tr>
<tr>
<td>Paipa</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 13. Fuente elaboración propia basado en la información histórica recopilada IGAC
Para el periodo de 1970 los principales nodos cabecera, responden a la prestación de servicios del valle Sugamuxi, las relaciones de los municipios inmersos en el valle como Nobsa y Tibasosa, presentan más intensidad en el macro circuito a pesar que la distancia de recorrido es mayor.

Gráfica 30. Conectividad macro circuito año 2000

Gráfica No.30 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

<table>
<thead>
<tr>
<th>CONECTIVIDAD MACROCIRCUITOS</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>3</td>
</tr>
<tr>
<td>Holcim</td>
<td>3</td>
</tr>
<tr>
<td>Nobsa</td>
<td>1</td>
</tr>
<tr>
<td>Caleras</td>
<td>2</td>
</tr>
<tr>
<td>Ucuengá</td>
<td>2</td>
</tr>
<tr>
<td>Punta larga</td>
<td>2</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>3</td>
</tr>
<tr>
<td>Coimproriente</td>
<td>0</td>
</tr>
</tbody>
</table>
Dada la intensidad de relaciones en el macro circuito, nodos no cabecera adquieren mayor jerarquía, porque son intersecciones que conectan los flujos de centros poblados consolidados con el macro circuito, Tibasosa por ser un cruce obligado del macro circuito y las conexiones nuevas que llegan de otros municipios de la provincia adquiere una mayor jerarquía.

Tabla 14. Fuente: elaboración propia basado en la información histórica recopilada IGAC.
Gráfica No. 31. Conectividad macro circuito año 2018

Tabla 15. Fuente elaboración propia basado en la información histórica recopilada IGAC
Para este periodo las relaciones del macro circuito se transforman, hay una conexión directa entre los nodos cabecera como Sogamoso y Nobsa adquiere una mayor jerarquía dado que supera las relaciones intermunicipales y sus flujos se intensifican.

Sogamoso es la entidad territorial mejor conectada, con potencialidades significativas por disponer de mejores condiciones de integración y ventajas de localización en el marco de la estructuración topológica de la red.

Gráfica 32. Análisis dinámico de la conectividad estructura macro -tecnica interpolación

1970

Gráfica No. 32, Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

La dimensión de las áreas estimadas respecto a los mayores puntos de conexión no es mayor, su forma es concentrada sobre los nodos cabecera y no tiene influencia sobre otros nodos, esto se debe a que las distancias de la conexión vial son mayores.
Gráfica 33. Análisis dinámico de la conectividad estructura macro-tecnica interpolación 2000

En este periodo el área de mayor conectividad se dispersa, y tiene influencia sobre otros nodos cabecera, no obstante el área representada por la mancha roja está reducida en la zona los nodos de Tibasosa, Duitama y Sogamoso.
Este período incorpora un cambio significativo, esto se debe a la ampliación de la vía doble calzada que conecta a Sogamoso con Nobsa con un recorrido aproximadamente de 4 km en un tiempo estimado de 8 minutos, las áreas con mayor ventaja de conectividad se concentran en lo que podemos denominar el triángulo de Sogamoso, Holcim y Belencito, zona reconocida por su vocación industrial, un valle que no está ocupado ni una tercera parte pero con la interconexión vial queda inmerso en las zonas más conectadas, municipios como Sogamoso ya plantean nuevos proyectos de infraestructura la servicio del transporte como la terminal en esa zona.

Gráfica No. 34 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.
Las relaciones de conexión se presentan en Tibasosa, aumentan mediante las vías transversales, en esa época estaban representadas por caminos, no obstante, la jerarquía está presente en los principales cascos urbanos. Los nodos con mayor distancia pierden jerarquía.

<table>
<thead>
<tr>
<th>MESOCIRCUITOS</th>
<th>1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>2</td>
</tr>
<tr>
<td>Holcim</td>
<td>2</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>3</td>
</tr>
<tr>
<td>Punta larga</td>
<td>2</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>4</td>
</tr>
<tr>
<td>Lay</td>
<td>2</td>
</tr>
<tr>
<td>Caleras</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabla 16. Fuente elaboración propia basado en la información histórica recopilada IGAC
Para el periodo del 2000, las conexiones que se dan internas llegan al nodo de Tibasosa, evidencian una aglomeración paralela a esos filamentos internos, su ocupación se da principalmente por actividades agropecuarias, respecto al nodo de Sogamoso sucede un fenómeno parecido un aumento lineal al filamento intermunicipal.

<table>
<thead>
<tr>
<th>MESOCIRCUITOS</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>2</td>
</tr>
<tr>
<td>Holcim</td>
<td>2</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>4</td>
</tr>
<tr>
<td>Punta larga</td>
<td>3</td>
</tr>
<tr>
<td>Ucuengá</td>
<td>3</td>
</tr>
<tr>
<td>Caleras</td>
<td>3</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>4</td>
</tr>
<tr>
<td>Lay</td>
<td>2</td>
</tr>
<tr>
<td>Santa rosa</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 17. Fuente elaboración propia basado en la información histórica recopilada IGAC
En el año 2018 los nodos cabecera como Tibasosa adquieren una mayor jerarquía que representa un aumento en la intensidad de flujos, dado que esa vía intermunicipal adquiere una categoría mayor porque pasa de camino a una vía pavimentada con alto flujo vehicular, este fenómeno dio origen a que la mayor intensidad de relaciones se den en el meso circuito conformado entre Tibasosa, Punta larga y Ucuengá, respecto al meso circuito del nodo Caleras, dado que la vía paralela adquiere una mayor jerarquía y pasa de un camino a una vía doble calzada trasladando así las relaciones que se dan en el meso circuito de las caleras al filamento paralelo.

<table>
<thead>
<tr>
<th>MESOCIRCUITOS</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>2</td>
</tr>
<tr>
<td>Holcim</td>
<td>2</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>4</td>
</tr>
<tr>
<td>Punta larga</td>
<td>3</td>
</tr>
<tr>
<td>Ucuengá</td>
<td>3</td>
</tr>
<tr>
<td>Caleras</td>
<td>3</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>3</td>
</tr>
<tr>
<td>La y</td>
<td>2</td>
</tr>
<tr>
<td>Santa rosa</td>
<td>2</td>
</tr>
<tr>
<td>Coomproriente</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 18. Fuente elaboración propia basado en la información histórica recopilada IGAC

Gráfica No.35,36,37 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.
Gráfica 38. Análisis dinámico conectividad meso circuitos 1970

El área estimada lo que determina para este periodo es que los vínculos de los meso circuitos, no presenta una intensidad considerable, el rango se mantiene intermedio por toda la zona de estudio, como se observaba en la interpolación del macro circuito para el periodo de 1970 el intercambio se da en todo el macro circuito.
Para el periodo 2000 el cambio es considerable los vínculos se intensifican y la zona determinada por los puntos de Ucuenga, Tibasosa, Caleras y Sogamoso, sus relaciones se intensifican en el meso circuito, generando así un área relativamente homogénea de una conectividad en el meso circuito.
El área de mayor conectividad concentrada sobre el nodo de Tibasosa al cruzar la interpolación del macro circuito para el año 2018 y el meso circuito 2018, se determina que el área conformada por los nodos por Tibasosa, Santa rosa y Ucuengá es un área con mayor conectividad sobre el meso circuito y sus relaciones son de menor jerarquía, contrario a lo que sucede en la interpolación de macro circuito del triángulo de Sogamoso, Holcim y Belencito en donde las relaciones están vinculadas a una mayor escala, generando así un área intermedia entre los dos polígonos que se beneficia de relaciones de meso circuitos y macro circuitos.
4.2.3 Análisis accesibilidad estructura macro y micro circuitos 1970.2000,2018

La accesibilidad es el índice que precisa el número de veces que es necesario atravesar un vector para llegar al nodo que es tomado como referencia, la accesibilidad permite determinar la mayor jerarquía de los mismos cuando la cantidad de vectores es menor y es más fácil acceder al nodo.

La accesibilidad se determina por la mayor o menor cantidad de aristas y nodos que es necesario atravesar para llegar al nodo tomado como referencia, la representación se realiza mediante una matriz de accesibilidad.

Esta matriz se realiza basada en el conteo de nodos y aristas por donde pasa el recorrido por el camino más corto para llegar del nodo evaluado a cada uno de los nodos de la estructura, el producto final de esta matriz es un valor que representa la suma de los nodos y vértices que se deben atravesar para comunicar el nodo evaluado así sucesivamente para todos los nodos.

Gráfica 41. Accesibilidad estructura macro circuitos 1970
Los puntos de mayor accesibilidad representados por los puntos amarillos, es decir que no es necesario atravesar varios vectores para llegar a los nodos, esto directamente relacionado con que cuenta con diversas posibilidades de interconexión vial.

<table>
<thead>
<tr>
<th>ACCESIBILIDAD MACRO CIRCUITOS</th>
<th>1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>29</td>
</tr>
<tr>
<td>Holcim</td>
<td>27</td>
</tr>
<tr>
<td>Nobsa</td>
<td>34</td>
</tr>
<tr>
<td>Punta larga</td>
<td>27</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>21</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>22</td>
</tr>
<tr>
<td>La y Duitama</td>
<td>26</td>
</tr>
<tr>
<td>TCM</td>
<td>33</td>
</tr>
<tr>
<td>Firavitoba</td>
<td>29</td>
</tr>
<tr>
<td>Paipa</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabla 19. Fuente elaboración propia basado en la información histórica recopilada IGAC
Gráfica No.42 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

<table>
<thead>
<tr>
<th>ACCESIBILIDAD MACRO CIRCUITOS</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>44</td>
</tr>
<tr>
<td>Holcim</td>
<td>40</td>
</tr>
<tr>
<td>Nobsa</td>
<td>50</td>
</tr>
<tr>
<td>Caleras</td>
<td>40</td>
</tr>
<tr>
<td>Ucuengá</td>
<td>42</td>
</tr>
<tr>
<td>Punta larga</td>
<td>40</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>34</td>
</tr>
<tr>
<td>Coomproriente</td>
<td></td>
</tr>
<tr>
<td>Tibusosa</td>
<td>34</td>
</tr>
<tr>
<td>Santa Rosa</td>
<td>41</td>
</tr>
<tr>
<td>La y</td>
<td>43</td>
</tr>
<tr>
<td>Duitama</td>
<td>49</td>
</tr>
<tr>
<td>TCM</td>
<td>43</td>
</tr>
<tr>
<td>Firavitoba</td>
<td>51</td>
</tr>
<tr>
<td>Papa</td>
<td>62</td>
</tr>
</tbody>
</table>

Tabla 20. Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.
Gráfica No.43 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

<table>
<thead>
<tr>
<th>ACCESIBILIDAD MACRO</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>48</td>
</tr>
<tr>
<td>Holcim</td>
<td>42</td>
</tr>
<tr>
<td>Nobsa</td>
<td>49</td>
</tr>
<tr>
<td>Caleras</td>
<td>42</td>
</tr>
<tr>
<td>Ucuengá</td>
<td>44</td>
</tr>
<tr>
<td>Punta larga</td>
<td>45</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>34</td>
</tr>
<tr>
<td>Coomproyente</td>
<td>35</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>36</td>
</tr>
<tr>
<td>Santa Rosa</td>
<td>45</td>
</tr>
<tr>
<td>La y</td>
<td>46</td>
</tr>
<tr>
<td>Duitama</td>
<td>54</td>
</tr>
<tr>
<td>TCM</td>
<td>48</td>
</tr>
<tr>
<td>Piravitoba</td>
<td>47</td>
</tr>
<tr>
<td>Paipa</td>
<td>67</td>
</tr>
</tbody>
</table>

Tabla 21. Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth
Gráfica 44. Accesibilidad macro circuneto -técnicas interpolación 1970

Gráfica 45. Accesibilidad macro circuneto técnica interpolación 2000
A medida que las conexiones llegan a un nodo la accesibilidad se desconcentra, las cabeceras localizadas en la zona central del valle tienen mayor posibilidad de accesibilidad relativa, cabe señalar que estos municipios hacen parte y se vinculan directamente con los corredores viales regionales. Los nodos contenidos en la zona azul progresivamente son de difícil acceso. Los nodos con mayor accesibilidad en términos topológicos son Sogamoso, los resultados son inferiores en relación al número de vectores que son necesarios recorrer para alcanzar el nodo más distante por el camino más corto.

Gráfica No.44,45,46 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.
Gráfica 47. Accesibilidad estructura meso circuitos 1970

Gráfica No. 47. Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

<table>
<thead>
<tr>
<th>ACCESIBILIDAD MESOCIRCUITO</th>
<th>1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>12</td>
</tr>
<tr>
<td>Holcim</td>
<td>12</td>
</tr>
<tr>
<td>Caleras</td>
<td>9</td>
</tr>
<tr>
<td>Punta larga</td>
<td>11</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>9</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>11</td>
</tr>
<tr>
<td>La y</td>
<td>13</td>
</tr>
</tbody>
</table>

Tabla 22. Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth

La intersección de Sogamoso es el punto más accesible, dado que las conexiones directas que llegan no requieren atravesar la mayoría de vértices.
Las diferencias evidencian que en la medida que más conexiones llegan a un nodo proporcionalmente disminuye su accesibilidad.
Gráfica No. 49 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

<table>
<thead>
<tr>
<th>ACCESIBILIDAD MESOCIRCUITOS</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belencito</td>
<td>21</td>
</tr>
<tr>
<td>Holcim</td>
<td>25</td>
</tr>
<tr>
<td>Caleras</td>
<td>18</td>
</tr>
<tr>
<td>Ucuengá</td>
<td>18</td>
</tr>
<tr>
<td>Punta larga</td>
<td>21</td>
</tr>
<tr>
<td>Sogamoso</td>
<td>19</td>
</tr>
<tr>
<td>Coomproriente</td>
<td>19</td>
</tr>
<tr>
<td>Tibasosa</td>
<td>18</td>
</tr>
<tr>
<td>Santa Rosa</td>
<td>25</td>
</tr>
<tr>
<td>La y</td>
<td>27</td>
</tr>
</tbody>
</table>

Tabla 24. Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth

Los nodos como Holcim y Punta larga disminuyen su accesibilidad, e inmediatamente concentran su accesibilidad en el polígono formado por los nodos de Sogamoso, Tibasosa, Caleras, Ucuengá, trasladando la accesibilidad media en los extremos de la estructura.
Las zonas con mayor accesibilidad están concentrados en el polígono formado por los nodos cabeceras de Tibasosa y Sogamoso, no obstante el meso circuito formado por los nodos de Tibasosa, Ucuenga y Santa Rosa concentran un flujo de alta accesibilidad.

El método utilizado es la interpolación kriging que realiza una estimación de la influencia del nodo sobre un área determinada.
A medida que aumentan los vértices disminuye la accesibilidad, esto se puede visualizar en el cambio del periodo de 1970 a 2018, en el periodo de 2018 el aumento de vértices género que algunos nodos que en el periodo de 1970 se convirtieran de difícil acceso por la cantidad de vértices necesarios para atravesar.

Para el periodo 1970 no se realizó la técnica de interpolación porque la información no presentaba mayores cambios.
Gráfica 51. Accesibilidad estructura meso circuitos 2018-tecnica de interpolación

Gráfica No. 51 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

El meso circuito mantiene su estructura, pero los vínculos son más intensos, a diferencia del nodo de Belencito que se encuentra en el extremo de la estructura y está en el rango de accesibilidad media, el nodo de la Y, que refleja la influencia de mayor accesibilidad que tiene el nodo de Tibasosa.
4.2.4 Análisis De Micro Circuitos: Relaciones Individuales De Menor Escala. Principio De Aglomeración

El método utilizado a partir de puntos determina la densidad de los mismos, lo que denomina el principio de aglomeración, siguiendo a Roberto Camagni la población han encontrado más ventajoso y eficiente gestionar las propias relaciones personales, sociales, económicas y de poder de forma espacialmente concentrada. No obstante, también establece relación entre la interconexión vial, es decir esos filamentos donde tienden a aglomerarse.

Gráfica 52. Análisis dinámico microcircuitos 1970

Gráfica No. 52 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.
Para este periodo las relaciones de menor escala, se concentran especialmente en el área intermedia de los municipios de Sogamoso y Nobsa, estas relaciones que se generan próximos a los filamentos de la zona, relacionada a una actividad agropecuaria, las aglomeraciones concentradas de forma lineal paralela al que para la época se denomina corredor industrial en un 30% son de industria. La configuración de los microcircuitos en la zona se da especialmente interrelacionada con los meso circuitos de Sogamoso.

Gráfica 53. Análisis dinámico microcircuitos 2000

Gráfica No. 53 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.
Las relaciones de aglomeraciones en torno al área de Sogamoso y Nobsa se consolidan, no obstante, las nuevas aglomeraciones relacionadas con caminos para el acceso de actividades agrícolas en el municipio de Tibasosa. El crecimiento urbano de Sogamoso genera una influencia en la intensidad de relaciones en la zona de intersección entre Nobsa y Sogamoso. La consolidación de la aglomeración sobre el corredor industrial no solo de actividades al servicio de estos, los centros poblados empiezan a consolidarse sobre la vía y son referentes de actividades comerciales al servicio del turismo.
Gráfica No. 54 Elaboración propia con base a la información recopilada de las bases IGAC y Google Earth.

En el periodo de 2018 las actividades sobre el corredor se diversifican, si bien Camagni habla sobre las ventajas de aglomeración, la conectividad y accesibilidad que tiene el nodo de Sogamoso atrae una localización de actividades que dada su proximidad al casco urbano de Sogamoso prácticamente se unen y presentan un escenario tendencial de una posible conurbación entre los municipios de Nobsa y Sogamoso, una zona con altos niveles de conectividad.

Las ventajas de la aglomeración perenemente ayudan a ampliar el mercado, facilitan la posibilidad de especializar sus procesos de producción más tecnificados, en especial en esa zona que está próxima a un corredor nacional, y que en lo posible minimicen los costes de transacción y costes de mano de obra.
En la etapa final se identifica la unidad mínima en donde se evidencian las características de organización, agrupadas, lineales, dispersas, todas influenciadas por una red vial.

Gráfica 56, 57, 58. Ocupaciones lineales, dispersas, agrupadas

<table>
<thead>
<tr>
<th>Lineales</th>
<th>Dispersas</th>
</tr>
</thead>
<tbody>
<tr>
<td>La tendencia de localización de las formas lineales, se identifica que el gran porcentaje de estas están relacionadas con las vías de carácter nacional, es decir su valoración de interrelación es mayor.</td>
<td>La tendencia de localización de las formas dispersas, esta directamente relacionada con los filamentos de menor interrelación.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agrupadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>La tendencia de localización, próxima a los centros urbanos consolidados.</td>
</tr>
</tbody>
</table>

Grafica 56 ,57 ,58 Fuente elaboración propia
CONCLUSIONES PARA REFLEXIONAR SOBRE PLANIFICACIÓN

Se han realizado diversos estudios en torno a la caracterización de las nuevas ocupaciones generadas en los territorios, no obstante, este trabajo es un aporte que surge de la inquietud de lo que tradicionalmente se plantea en los instrumentos de planeación, evidenciando como las formas de ocupación interpretadas desde el enfoque de sistemas aporta elementos para futuros procesos de planeación urbana y regional.

Mediante el análisis multitemporal de las formas de ocupación, se pueden interpretar como los elementos de accesibilidad, conectividad, aglomeración determinan la incidencia de los mismos, lo que se denomina ventajas de localización generadas por elementos funcionales.

Los análisis de conectividad determinan la localización en el territorio de grandes infraestructuras viales, mediante el análisis de Isócronas tiempo-distancia de acceso a centros urbanos relevantes, esta investigación se diferencia porque busca determinar cómo se constituye la estructura territorial formada por la interrelación de los corredores en distintos puntos en el territorio, en el que cada uno tiene la función de movilizar bienes, servicios, personas e información, no obstante no se trata de un elemento físico, Figueroa, Rozas (2005) plantea que se asume de manera dinámica, es decir, asumiendo el hecho que por dichos arcos se mueven flujos de distinta índole que son los que otorgan el carácter definitivo a la red.
Las diferentes técnicas utilizadas en el contexto de estimar las áreas de influencia son cruzadas con los filamentos y permite entender como ha sido el proceso y un probable escenario tendencial, a partir de los resultados es un ejercicio previo para un proceso de planeación dado que son canales para la movilización de personas, bienes, mercancías entre otros influyen directamente en la estructuración del territorio e incentivan la integración regional.

La interconexión por medio de infraestructura vial ha evidenciado que es elemento que ha incidido en las trasformaciones del territorio estudios como el realizado por Bautista, (2018) considera que : “Estos sistemas pueden considerarse potencialmente estratégicos al fungir como verdaderos articuladores del espacio urbano y regional”

La aplicación de la teoría de grafos facilita no solo la identificación de problemáticas espaciales entre redes de transporte y centros a partir de sus propiedades topológicas, sino que individualiza elementos como la distancia, la distribución y la jerarquía, necesarios para comprender las interacciones que establece la red con su “espacio topológico”.
CONCLUSIONES RESULTADOS DE APLICACIÓN CASO DE ESTUDIO VALLE SUGAMUXI.

En lo que se refiere a las actividades residenciales estas se aglomeran próximas a los centros especializados de mayor jerarquía, esto se justifica con el principio de aglomeración, ese conjunto de relaciones que se desarrollan establece una serie de comportamientos individuales en los que no necesariamente y explícitamente se determinan en un área dado que constantemente creamos una serie de redes que sobrepasan las fronteras.

La actividad agroindustrial presento un incremento del 98% para el periodo 2018, respecto al año 1970 con un total de 113 h.

La actividad agropecuaria presento su mayor incremento en el año 2000 con un crecimiento de 42% no obstante este se ha mantenido constante.

La actividad industrial tuvo su mayor crecimiento en el periodo 2000 con 92%, para el periodo 2018 aumento solo un 6%, al igual que lo residencial que de 2000 a 2018 solo incremento un 3%.

La actividad de servicios en el periodo 2000 aumento en un 85% respecto al periodo de 1970, esta ha venido aumentado progresivamente.

El uso más frecuente es el agropecuario mantiene un porcentaje de crecimiento exponencial, no obstante, la localización de actividades industriales en el corredor se consolidó en el periodo de 1970 a 2000.

Al realizar la identificación de los circuitos, correlacionados con la intensidad de los flujos, éstos esbozan unos patrones espaciales que permiten identificar, cómo el vector de largo alcance dinamiza las ocupaciones por actividades de tipo industrial, sin desconocer que estas ocupaciones de igual forma son producto de la interdependencia de diversas variables como la extracción del recurso en la zona.
La aglomeración de población de cada centro urbano será directamente proporcional a sus escalas de producción, dadas por sus economías internas y externas. Esto hace relevante su análisis porque de sus resultados se podrá identificar y determinar cuáles son las variables más incidentes en la dinámica del territorio y desarrollar una comprensión de los flujos de población según los requerimientos de acceso a servicios; así se podrá prever las demandas futuras.

La incidencia de una infraestructura vial interconectada con zonas más productivas del país, el valle no solo cuenta con ese modo de transporte en el área de estudio la vía férrea en su época, fue un factor importante en las ocupaciones.

El valle del Sugamuxi tiene altos índices de productividad y recursos, cada municipio se ha especializado en diferentes actividades, que guardan cierta correspondencia, no obstante, los límites político-administrativos conservan la rigidez del actual Ordenamiento Territorial, desconociendo la importancia de comprender que las fronteras “deben ser dinámicas y flexibles social, económica y ambientalmente para responder a las complejas relaciones sociales que se dan territorialmente”. (González, 2017)

El análisis multitemporal que se realizó, busca interpretar los cambios relevantes que ha tenido la estructura y la influencia de los mismos en la generación de las ocupaciones, una realidad poca estudiada que además de comprender la estructura territorial evidencia los vínculos intermunicipales como la dependencia de unos nodos de menor jerarquía con el nodo de mayor especialización de servicios.

El valle del Sugamuxi particularmente cuenta con modos de transporte ferroviario y carretero la potencialización de los mismos contribuye a la estructura territorial, si se implementara una estrategia de transporte multimodal, la conectividad del territorio incidiría en nuevas ocupaciones.
El documento de diagnóstico revisión POT Sogamoso plantea, “Que el intento por aumentar la densificación de la ciudad permitiendo mayores alturas y la liberación consecuente de espacios libres, lo cual sería óptimo si se proyectaran siguiendo una estructura, pensando en la articulación de la ciudad, no de manera desordenada como se encuentra, mientras tanto la ciudad sigue su curso acelerado de expansión en áreas periféricas y rurales; lo que de una u otra forma sería inevitable la ocupación del sector del valle permitiendo en un futuro la conurbación sobre ejes principales y la ocupación y liquidación de suelo agro productivo”
BIBLIOGRAFÍA

- Bernal, G.D .(2009). Lineamientos para una política regional de potenciación territorial para el sistema integrado de Boyacá .Pontificia Universidad Javeriana, Maestría en Planeación Urbana y Regional

CONSULTAS WEB

- Alcaldía municipio de Nobsa.(2018) Diagnostico territorial – Componente físico- espacial Revisión General del plan básico de ordenamiento territorial
- Cámara de Comercio De Duitama.(2018) Caracterización socioeconómica y empresarial jurisdicción periodo 2018

- Cámara de comercio de Sogamoso. (2019) Estudio de percepción económica del municipio de Sogamoso 2019

- Departamento Administrativo Nacional de Estadística .(2019) Geo portal
- Corpoboyacá.(2016)Fichas Municipales

- Marcelo ,A & Osorio ,F . Introducción a los conceptos básicos de la teoría general de sistemas. Departamento de antropología. Universidad de Chile
TEORÍA DE LA ECONOMÍA ESPACIAL- JOHANN HEINRICH VON THÜNEN.

Dicho modelo histórico del año 1826, ligado al análisis del principio de accesibilidad, de este modelo derivan, “directa o indirectamente, todos los modernos tratamientos pata la localización urbana de las actividades económicas basados en el principio de accesibilidad es el modelo de localización de las actividades agrícolas alrededor de un núcleo urbano” (pág. 53)

Su aplicación está relacionada con la localización de actividades agrícolas, las principales características están relacionados con una distribución equitativa, es decir:

•Se configura en llanura homogénea con la misma fertilidad del suelo e infraestructuras de transporte en todas las direcciones.
•Un único centro hacia el cual todos los productos deben ser transportados
•Coste de transporte unitario es constante.
TEORÍA DE LA LOCALIZACIÓN INDUSTRIAL ALFRED WEBER 1909
Su teoría se basa en un espacio isotrópico, “la industria está situada en el interior del triángulo formado por dos lugares distintos de extracción de materia prima y un único lugar de salida del producto (la ciudad centro)”. La mejor localización es aquella que minimiza los costes de producción. Según Weber, la localización industrial depende fundamentalmente del coste de los transportes de las materias primas y de la energía, del mercado y de la abundancia de la mano de obra.
Los costes de transporte eran el factor decisivo de la localización y esos costes resultan del peso de las materias primas transportadas y de las distancias recorridas (pág. 442 conceptos y prácticas en geografía humana Manuel Antoni zarate Martín María Teresa Rubio Benito), esto se debe a las ventajas de localización y principios como conectividad y accesibilidad.
W, CHRISTALLER 1933 TEORÍA DEL LUGAR CENTRAL
Aplicación regional red hexagonal de ciudades

Según Christaller, la función esencial de un asentamiento de población es servir de “lugar central de un determinado espacio rural, al que proporciona bienes y servicios de las características principales es que parte de la existencia de una llanura y en la que las características agrícolas y de dotación de recursos naturales y accidentes son similares para toda ella” es decir conserva uno de los principios de las teorías vistas anteriormente la distribución equitativa en un espacio isotrópico.
También asume tratan de explicar la distribución espacial de las actividades económicas, de la población y de las unidades de producción suponiendo que se ha partido de una llanura plana con factores y recursos. Es así que, partiendo de un espacio isótropo, homogéneo en todas las direcciones tanto en términos de densidad geográfica como de característica físicas y de infraestructuras, y confirmando la valoración sobre la eficiencia espacial de una estructura de concentraciones productivas equidistante y de áreas de mercado hexagonal para cada bien.

Cristaller se propone examinar como productos y funciones diferentes, se articulan en el territorio dando origen a una jerarquía urbana, es necesario definir una jerarquía de bienes y servicios a través de dos conceptos: el alcance que básicamente es la distancia máxima a la que puede ser vendido cada bien y el umbral o sea la distancia (o el área) correspondiente a la cantidad mínima de cada bien producido eficiente, por lo tanto, el alcance debe superar el umbral.