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Abstract
Lipotoxicity is a pathological condition resulting from the excessive accumulation of fatty acids, like palmitic acid (PA), within
the cell. This pathological phenomenon induces deleterious metabolic changes in cells and is associated with neurodegenerative
diseases, dyslipidemia, and obesity. Recent evidence has demonstrated that tibolone, a synthetic steroid, protects cellular damage
through various mechanisms; but its underlying actions upon lipotoxic damage are unknown. In this study, we assessed the
effects of tibolone administration on normal human astrocytes subject to supraphysiological levels of palmitic acid as a model to
induce cytotoxicity. Our results demonstrated that tibolone attenuated lipotoxic damage of PA in normal human astrocytes by
reducing PI uptake in 53%, prevented cardiolipin loss by 17%, reduced fragmented/condensed nuclei by 50.81% and attenuated
the production of superoxide ions by around 20%. In conclusion, these data suggest that protective effects of tibolone against
lipotoxicity may be mediated, in part, through modulation of the different cellular mechanisms of astrocytes.
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Introduction

Lipotoxicity is a metabolic condition resulting from the accu-
mulation of free fatty acids in non-adipose tissues (Unger and
Orci 2000; Savary et al. 2012). This condition involves a
series of pathological responses triggered after chronic expo-
sure to high levels of fatty acids (Unger and Orci 2000;
Estadella et al. 2013). These responses may be detrimental
to cellular homeostasis and cell viability, leading to cellular
dysfunction, lipid droplet formation, and cell death (Ford

2010; Liu et al. 2015). Although the exact mechanisms related
to a lipotoxic event have not been completely characterized, it
is well-known lipotoxicity is involved in neurodegenerative
diseases and obesity (Almaguel et al. 2009; Ortiz-Rodriguez
et al. 2019; Hidalgo-Lanussa et al. 2019).

Obesity is a public health problem and according to the
World Health Organization in 2016, more than 1.9 billion
adults worldwide, 18 years and older, were overweight and
obesity (WHO 2015). It is characterized by an excessive ac-
cumulation of fat in adipose and non-adipose tissue in the
form of saturated free fatty acids, such as palmitic acid (PA)
(Garbarino and Sturley 2009). Intriguingly, palmitic acid
levels in blood and brain are elevated in both obese and neu-
rodegenerative patients (Korbecki and Bajdak-Rusinek 2019),
suggesting an association between high levels of PA, obesity
and neurodegenerative diseases, where obesity exacerbates
neurodegeneration, promotes cognitive decline and increases
vulnerability to brain damage (Ravanan et al. 2008; Miller and
Spencer 2014; van Dijk et al. 2015). In fact, a large number of
studies have demonstrated that subjects who suffer from mid-
life obesity (measured by body mass index or central adipos-
ity) have an increased risk of developing Alzheimer’s disease
(AD) and dementia (Profenno et al. 2010; Ashrafian et al.
2013), again demonstrating a close relationship between obe-
sity and neurodegeneration.
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The precise molecular mechanism underlying obesity and
brain dysfunction is not fully understood, although different
hypotheses have been proposed. There is evidence showing
chronic inflammation in obesity may disturb the proper func-
tion of astroglial cells (Buckman et al. 2014; Farooqui 2014;
Nguyen et al. 2014). It is known astrocytes play a critical role
in the central nervous system (CNS) homeostasis (Swanson
et al. 1997; Alvarez et al. 2013; Cabezas et al. 2014), including
maintenance of brain metabolism (De Keyser et al. 2008),
anti-oxidative and metabolic support to neurons (Raps et al.
1989; Min et al. 2006; Maciejczyk et al. 2018), and triggering
neuroprotection through activation of various survival signal-
ing cascades (Lebon et al. 2002; Allaman et al. 2011). Both
in vitro and in vivo studies suggest that PA stimulation on
astrocytes induces changes in the expression of mitochondrial
genes, pro-inflammatory cytokines, oxidative stress, and mor-
phological changes (Gupta et al. 2012; Liu et al. 2013a;
Sofroniew and Vinters 2010; Sofroniew 2015). Additionally,
saturated fatty acids can activate toll-like receptors (TLR)
leading to the activation of the transcription factor nuclear
factor kappa-light-chain-enhancer (NF-kB) of activated B
cells (Okun et al. 2009; Frenkel et al. 2010; Huang et al.
2012). Upon activation and nuclear translocation, NF-kB
can further induce the production of inflammatory cytokines,
such as tumor necrosis factor (TNF), IL-6, and IL-1 (Okun
et al. 2009). These cytokines have been recognized as impor-
tant mediators in facilitating leukocyte extravasation from the
bloodstream across the blood-brain barrier (BBB) into the
CNS parenchyma (Schnoor et al. 2015; Slowik and Beyer
2015). Experimental evidence has linked NF-kB with mito-
chondrial dysfunction due to a decrease in oxidative phos-
phorylation and ATP production (van Horssen et al. 2019).
Previous findings identify these pro-inflammatory pathways
and astrocytic mitochondrial dysfunction as mains contribu-
tors of various neurodegenerative pathologies (Tatton and
Olanow 1999; Du and Yan 2010; van Horssen et al. 2019).
It is noteworthy the loss of normal astrocyte function can be a
primary contributor to neurodegeneration (Hertz and Zielke
2004; Finsterwald et al. 2015).

Recent reports have pointed out the critical role of estro-
gen levels in the proper functioning of astrocytes
(Dhandapani and Brann 2003; Arevalo et al. 2010).
Decreased estrogens levels have been associated with a high
susceptibility to developing Alzheimer’s and Parkinson’s
diseases (Christensen and Pike 2015; Prange-Kiel et al.
2016), and currently, therapeutic strategies have focused on
the search for neuroprotective molecules that aid to recover
or preserve astrocytes functions (DonCarlos et al. 2009; Tian
et al. 2009; Cerciat et al. 2010). There is extensive evidence
from animal studies corroborating that neuroactive steroids,
in particular estradiol, are neuroprotective (Toung et al.
1998; Harms et al. 2001; Simpkins et al. 2012; Acaz-
Fonseca et al. 2014; Arevalo et al. 2015).

It is important to highlight that estrogens have been linked
with diverse side effects (Lundström et al. 2002). For this
reason, other neuroactive steroids are suitable candidates for
possible pharmacological therapies. As an alternative,
tibolone has attracted attention for its beneficial effects in
acute and chronic neurodegenerative diseases (de Medeiros
et al. 2012; Avila Rodriguez et al. 2014; Pinto-Almazán
et al. 2014; Crespo-Castrillo et al. 2018, 2020), and as hor-
monal therapy for postmenopausal women. Tibolone may ex-
ert estrogenic actions in the brain while inducing progestogen-
ic and androgenic effects in the uterus, endometrium, and
breast. Since astrocytes express estrogen receptors (Blurton-
Jones and Tuszynski 2001; Arevalo et al. 2010; Karki et al.
2014; Dietrich et al. 2015), our current hypothesis is that these
cells mediate, at least in part, tibolone’s protective actions in
the brain. In the present study, we tested this hypothesis in
human astrocytes stimulated with palmitic acid, a saturated
fatty acid, to underlie possible protective mechanisms of this
compound on astrocytes in the setting of lipotoxic damage to
mitochondria.

Materials and Methods

Figure 1 shows the summary of the experimental design,
where NHA cells were pretreated with 10 nM tibolone for
24 h followed by 24 h of 2 mM palmitic acid. Thereafter,
different assays for cellular cytotoxicity and mitochondrial
function were performed.

Cell Culture

The Normal Human Astrocyte (NHA, Lonza CC-2565) cell
line was used in this study due to its inherent similarity to
primary astrocytes in terms of morphology and function.
NHA cells do express Glial Fibrillary Acid Protein (GFAP),
a key marker of astrocytes. Three different batches of NHA
cells (#0000612736, #00005656712, #0000514417) were cul-
tured in the ABM medium (Lonza, Basel, Switzerland) sup-
plemented with SingleQuots supplements (Lonza, Basel,
Switzerland). NHA cells were seeded in 48, 24, 12, and 6-
well plates at a confluence of 5000 cells/cm2 and grown for
12 days in a humidified incubator at 37 °C and 5% CO2.

Tibolone Pre-treatment

Prior to each experiment, astrocytes were washed with PBS1x
and starved in serum-free DMEM without L-glutamine, phe-
nol red, and supplements (Lonza, Basel, Switzerland) for 6 h.
First, tibolone (Sigma–Aldrich, T0827, St. Louis, MO, USA)
was dissolved in 100% DMSO as a stock solution at 40 mM;
further dilutions were made with serum-free DMEM without
phenol red. Cells were treated at different times using various
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concentrations of tibolone. The optimal time and concentra-
tion of tibolone was 10 nM for 24 h. Finally, a concentration
of < 0.01% DMSO was used as a control for tibolone.

Lipotoxic Insult with Palmitic Acid

After tibolone treatment, cells were washed with PBS1X and
then treated with serum-free DMEM containing palmitic acid
(Sigma, St. Louis, MO, USA), BSA (fatty acid-free bovine
serum albumin; Sigma A2153) as a carrier protein and carni-
tine (Sigma, St Louis, MO, USA) to transport the fatty acids
into the mitochondrial matrix. Cells were treated at different
times using distinct concentrations of palmitic acid. Some
preliminary results indicated that the optimal palmitic acid
concentration was 2 mM and the best time of treatment was
24 h. The control group included 1.35% of BSA and 2-mM
carnitine.

Determination of Cytotoxic Effect

To evaluate the cytotoxic effects of the different treatments on
NHA cells, we used the propidium iodide (PI) fluorescence
assay. Cells were seeded in 48-well plates at a density of 5000
cells/cm2 and then treated with palmitic acid and tibolone
according to the experimental design (Fig. 1). PI (Sigma, St
Louis, MO, USA) was used at a concentration of 10 μg by
30 min, which is a stain that penetrates only in injured cellular
membranes (Deitch et al. 1982). The fluorescence was detect-
ed and quantified by FLUOstar Omega microplate reader (ex-
citation 530 nm/emission 590 nm) (BMG LABTECH,
Ortenberg, Germany) and flow cytometry using the Guava
EasyCyte cytometer (Millipore, MA, USA). Results of the
mean fluorescence are presented in arbitrary units (A.U.).

Nuclear Morphology

Staining Hoechst 33342 was used to detect nuclear morpho-
logic aspects like nuclear condensation/fragmentation
(Hidalgo-Lanussa et al. 2017). After serum deprivation and
different experimental paradigms, cells were the cells were
washed and labeled with Hoescht 33,342 (final concentration,
5 mg; Invitrogen) for 5 min. Afterwards, the morphologic
aspect of nuclei was observed and photographed using fluo-
rescence microscopy (ZEISS, Oberkochen, Germany). The

number of fragmented nuclei was determined in at least nine
randomly selected fields of three different wells from each
experimental group. The experiment was repeated three times.
For all experiments, the results were presented as the percent-
age of nuclear-fragmented cells.

Mitochondrial Membrane Potential

Disruption of the mitochondrial membrane potential (Δψm)
was assessed using the lipophilic cationic probe
tetramethylrhodaminemethyl ester (TMRM) as described pre-
viously (Cabezas et al. 2015). After established treatments,
cells were loaded in the dark with 500 nM TMRM at 37 °C
for 20 min. Thereafter, cells were washed and resuspended in
PBS 1X to eliminate all the unsequestered dyes and imaged as
described above. As an experimental control, we used the
protonophoric uncoupler carbonyl cyanide m-chlorophen-
ylhydrazine (CCCP; Sigma-Aldrich; St. Louis, MO, USA)
to dissipate the membrane potential and define the baseline
for the analysis of mitochondrial membrane potential. The
experiments were made by triplicate.

Determination of Cardiolipin Content of Mitochondria

We employed flow cytometry and fluorometric assays to as-
sess the cardiolipin content using nonyl acridine orange
(NAO) dye (Mileykovskaya et al. 2001). Initially, cells were
stained with 200 nM NAO (Sigma, St Louis, MO, USA) for
30 min in the dark (to 37 °C, 5% CO2 humidified incubator).
Then, cells will be washed twice with PBS and photographed
in a fluorescence microscope. The images were processed
with ZEISS ZEN lite software. For cytometry, cells were de-
tached and resuspended in PBS 1X. Analysis of fluorescence
was performed in the Guava EasyCyte cytometer (Millipore,
MA, USA) using and green channel. Data were expressed as
mean fluorescence.

Determination of Reactive Oxygen Species

Reactive oxygen species (ROS) production was evaluated by
fluorescence microscopy and flow cytometry as previously
described (Avila Rodriguez et al. 2014). In brief, cells were
seeded into 48-well plates in free serum DMEM and then
treated according to design experimental. The effect of

Fig. 1 Timeline of the experimental design. The cells were incubated for 12 days until 80% confluence. Thereafter, cells were serum-deprived for 6 h,
prior to pretreatment with tibolone for 24 h, followed by PA for more 24 h. Cells have been then collected and assayed for different analyses
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tibolone and palmitic acid on superoxide (O22−) and oxygen
peroxide (H2O2) production were measured using
dihydroethidium (DHE) and dichlorofluorescein diacetate
(DCFDA) dyes, respectively. After finishing the pre-
treatment and insult, cells were treated in the dark at 37 °C
for 30 min with 10 μMDHE and 10 μMDCFDA. Then, cells
were washed twice with PBS and photographed in a fluores-
cence microscope. The images were processed with ZEISS
ZEN lite software (Oberkochen, Germany). For cytometry,
cells were detached and resuspended in PBS 1X. Analysis of
fluorescence was performed in the Guava EasyCyte cytometer
(Millipore, MA, USA).

Gene Expression Analysis

The RNA extraction from NHA culture was performed using
the RNeasy mini kit (Qiagen, Hilden, Germany) according to
the manufacturer’s recommendations. The RNA purity and
quantity were assessed in a NanoDrop 2000 (Thermo Fisher
Scientific, Waltham, MA, 174 USA). To remove possible
DNA contamination, RNA was treated with DNase I. Later,
the complementary DNA (cDNA) was obtained with 400 ng
of RNA using oligo (dt)18 (Bioline, London, UK) and the M-
MLV Reverse Transcriptase kit (Invitrogen, Carlsbad, Ca,
USA). RT-qPCR was performed to a final volume of 10 μL;
using Power SYBR® GreenPCR Master Mix 1X (Bioline,
London, UK), 400 nM of forward and reverse primer,
1 μL of cDNA (10 ng of RNA), and water. The qPCR
was performed using Bio-Rad CFX96 (Bio-Rad,
Hercules, CA, USA) and the specific primers are listed
in Table 1. The qPCR conditions contained an initial
denaturation at 95 °C for 10 min, followed by 40 cycles
of 95 °C for 15 s, 58 °C, or 60 °C for 10 s (60 °C for
MFN1, OPA1, DRP1, FIS1, and GAPDH; and 58 °C for
MFN2) and 72 °C for 15 s for each gene. A melting
curve was performed to verify the amplification speci-
ficity (Nolan et al. 2006). To ensure data quality, each
sample was run in triplicates per gene; Ct values were
obtained with the Bio-Rad CFX Maestro software v.1.1.
Therefore, to establish the relative RNA amount of each
gene, we used the 2−ΔΔCT method and GADPH gene as
the normalizing gene.

Statistical Analysis

In the present study, we used the GraphPad Prism version 6.0
for Mac (GraphPad Software, La Jolla, CA, USA) for all anal-
yses. All data were recollected from at least three independent
experiments. Data are presented as mean ± SEM. Levenne
was used to test homogeneity of variance and the Shapiro-
Wilk to test if the data followed a normal distribution. A
one-way ANOVA test was used to evaluate significant differ-
ences between treatments. Post-hoc analysis was performed
using Tukey’s test. To measure a relationship between vari-
ables a Pearson correlation coefficient was performed. A p
value < 0.05 was considered significant.

Results

Effect of Tibolone on Cytotoxicity and Nuclear
Changes Induced by PA in Normal Human Astrocytes

Initially, we established the optimal conditions of PA damage.
We performed a cytotoxic assay using PI and measured sev-
eral concentrations of PA to determine the IC50. Our findings
indicated that 2 mM of PA for 24 h caused a 50% increase in
PI uptake compared with control NHA cells (p < 0.0001; con-
trol VS 2 mM PA). Specifically, we found a concentration-
dependent effect of PA on cell death (Fig. 2A). Based on these
preliminary results, we used these parameters (PA concentra-
tions and time of administration) in the following experi-
ments. To explore the possible protective action of tibolone,
NHA cells were exposed to different doses of this drug.
Figure 2B shows the results of PI uptake when cells were
pretreated with tibolone for 24 h and then subject to 24 h of
palmitic acid. Our findings indicated that 10 nM tibolone in-
duced a decrease of 53% (p = 0.0001) on PI uptake while
tibolone at 100 nM-1 μM induced a decrease of 38% (Fig.
2B). Further, we assessed the effect of tibolone on nuclear
fragmentation under PA treatment using Hoechst 33258 stain-
ing (Hirons 1994) (Fig. 2C and D). A significant increase in
the number of fragmented nuclei in NHA cells treated with PA
was observed (p < 0.0001; control Vs PA). Conversely,
tibolone pretreatment decreased by 50.81% the percentage
of fragmented nuclei in PA-treated cells (p < 0.0001; PA Vs

Table 1 Primers used in the study
Gene Forward primer Reverse primer

MFN1 GAG GTG CTA TCT CGG AGA CAC (21) GCCAATCCCACTAGGGAGAAC (21)

FIS1 GATGACATCCGTAAAGGCATCG (22) AGAAGACGTAATCCCGCTGTT (21)

Drp1 CTGCCTCAAATCGTCGTAGTG (21) GAGGTCTCCGGGTGACAATTC (21)

Opa1 ATTGAAGCTCTTCATCAGGAG (21) TGTATGCAGAGCTGATTATGAG (22)

MFN2 CACATGGAGCGTTGTACCAG (21) TTGAGCACCTCCTTAGCAGAC (21)
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TIB + PA). Although various doses of tibolone were assessed,
10 nM of tibolone was found as the most effective for decreas-
ing both cell death and fragmented nuclei. For this reason, the
next experiments were performed using these concentrations
and time of administration.

Effects of Tibolone and Palmitic Acid onMitochondrial
Parameters

Several previous studies have linked palmitic acid insult with
mitochondrial dysfunction and the production of oxidative
stress (Penzo et al. 2002; Ulloth et al. 2003; González-
Giraldo et al. 2019). To address the actions of 2 mM PA and
10 nM tibolone on mitochondrial function in NHA cells, we
measured the content of cardiolipin,Δψm, and ROS produc-
tion. We first assayed the content of cardiolipin using NAO
staining, a dye that binds to cardiolipin, a key component and
indicator of mitochondrial function. One-way ANOVA anal-
ysis shows 2-mM PA–reduced cardiolipin by 40.7%
(p < 0.0001) compared with controls. On the contrary,
tibolone at 10 nM preserved cardiolipin levels by 17% com-
pared with PA treatment (p < 0.0278; Fig. 3 A and B). Next, to
determine changes in Δψm induced by PA, we assessed the
mean fluorescence of TMRM, a marker of mitochondrial

membrane potential. Although PA significantly reduced the
Δψm by 46.8% (p < 0.033), pretreatment with tibolone was
unable to preserve the loss of Δψm induced by PA (Fig. 3 C
and D). Additionally, we determined the mRNA levels of
FIS1, DRP1, OPA1, MFN1, and MFN2, which all have been
linked to mitochondrial dynamics and functionality.
Treatment with PA and tibolone had no significant impact
on the expression of these mitochondrial genes (Suppl. Fig. 1).

Effect of Tibolone and Palmitic Acid on Oxidative
Stress

Previous studies have shown that PA induces ROS production
in astrocytes (Carta et al. 2017; Ramírez et al. 2019), suggest-
ing it as a possible underlying mechanism involved in cell
death. To assess whether PA can induce cell damage through
increased production of ROS inNHA cells, we determined the
levels of superoxide and hydrogen peroxide in astrocytes.
One-way ANOVA showed that PA induced a significant in-
crease of 127% in superoxide levels by measuring DHE fluo-
rescence intensity (p < 0.0001; control Vs PA, Fig. 4A). In
contrast, superoxide content was attenuated by 20% when
cells are pretreated with tibolone at 10 nM (p < 0.0001),
1 μM (p = 0.0017), and 100 nM (p = 0.033) (Fig. 4B).

Fig. 2 Effects of tibolone and palmitic acid (PA) on propidium iodide
(PI) uptake and nuclear fragmentation on NHA cells. (a) 2 mM PA in-
creased PI uptake in NHA cells (p < 0.0001) relative to control; in con-
trast, (b) Pretreatment with 10 nM tibolone attenuated PI uptake in those
cells stimulated with PA (p < 0.0001). (c) PA increased the number of
cells with fragmented/condensed nucleus (p < 0.0001), whereas 10 nM

tibolone significantly reduced the number of condensed nuclei
(p < 0.0001) in PA treated cells. (d) The panel shows representative ex-
amples of Hoechst 33258 stained NHA cells pretreated with 10 nM
tibolone for 24 h and subject to 2 mM PA for 24 h. Data are represented
as the mean ± SEM of three independent experiments. Cells were
photographed at magnification of × 20. Scale bar, 20 μm
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Interestingly, we observed a significant negative correlation
between cardiolipin content and superoxide ion (r = − 0.9666,
p = 0.0026) (Fig. 5A). Furthermore, a significant positive cor-
relation was observed between superoxide levels by DHE
fluorescence intensity and PI uptake (r = − 0.7966, p = 0.04,

Pearson’s correlation) (Fig. 5B). As regards to hydrogen per-
oxide levels, no significant differences in DCFA-DA fluores-
cence intensity were observed when cells are treated with
different doses of tibolone in the presence of 2 mM PA (Fig.
4 C and D).

Fig. 4 Actions of palmitic acid (PA) and tibolone over ROS production
in NHA cells. Flow cytometry plots of NHA cells stained with DHE
(superoxide) (a). Analysis of plots shows that PA at 2 mM promotes a
rise in superoxide production (p < 0.0001) compared to control and that
10 nM tibolone reduced superoxide levels by 22% relative to PA levels

((p < 0.0001) (b). Flow cytometry plots of NHA cells stained with DFCA
(hydrogen peroxide) (c). Neither 2 mMPAnor 10 nM induced significant
changes in hydrogen peroxide levels in NHA cells. (d) Data are repre-
sented as the mean ± SEM of three independent experiments

Fig. 3 Effects of palmitic acid (PA) and tibolone over Δψm and
cardiolipin content. TMRM fluorescence analysis (a) suggests that
2 mM PA dampened Δψm by 46.8% (p = 0.033), while no significant
effects when tibolone is added in were observed (b). Representative im-
ages of NAO staining (c). 2 mM PA caused a significant reduction by

40.7% in cardiolipin fluorescence with (p < 0.0001), and tibolone at
10 nM attenuated cardiolipin loss by 17% (p = 0.0278) (d). Data are
represented as the mean ± SEM of three independent experiments. Cells
were photographed at × 20 magnification. Scale bar, 20 μm
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Discussion

In the present study, we assessed the actions of tibolone in
normal human astrocyte following lipotoxic insult with
palmitic acid. Our findings indicated that tibolone at 10 nM
attenuated lipotoxic damage by preventing cardiolipin loss,
reducing fragmented/condensed nuclei, and decreasing super-
oxide ions. These results suggest that tibolone may induce
protective actions in astrocytes subjected to inflammatory
and toxic damage.

Astrocytes play a key role in the central nervous system as
these cells help to the survival and maintenance of neurons
and other non-neuronal cells (Nedergaard et al. 2003; Parpura
et al. 2012). Astrocytes impairment may be an initial contrib-
utor to different neurodegenerative disorders (Barreto et al.
2011; Wang et al. 2014). It has been reported that elevated
levels of palmitic acid trigger a tau hyperphosphorylation and
BACE1 overexpression in primary cortical neurons through
astrocyte-mediated oxidative stress (Patil et al. 2006, 2007;
Gupta et al. 2012; Liu et al. 2013b). It is also well known that
PA induces a rise in the inflammatory response, ROS, endo-
plasmic reticulum stress, and mitochondrial dysfunction
(Penzo et al. 2002; Kim et al. 2017). Based on this assump-
tion, we thoroughly addressed the actions of palmitic acid on
normal human astrocytes by initially evaluating plasma mem-
brane integrity and nuclear morphology (Kroemer et al. 2009).
As expected, PA affected membrane integrity by inducing
cytotoxic damage to NHA cells in a dose and time-
dependent manner. We also observed a considerable rise in
the percent of cells with condensed/fragmented nuclei, sug-
gesting that palmitic acid was highly cytotoxic to NHA cells
(Cummings et al. 2004). All previous data are consistent with
those obtained in other studies with PA as an inflammatory
challenge in both primary neurons and microglial cells (Park
et al. 2011; Broniarek et al. 2016; Yan et al. 2016).
Importantly, our results suggest that pre-treatment with
10 nM tibolone reduces PA deleterious actions on normal
human astrocytes. Cytotoxic assays demonstrated that
tibolone (10 nM) for 24 h decreased the lipotoxic damage in
NHA. Nuclear fragmentation induced by palmitic acid was

significantly attenuated when cells are pretreated with
tibolone (10 nM). This is consistent with previous findings,
where tibolone protects neurons and astrocytes against oxida-
tive stress and cellular death through increased expression of
antioxidant enzymes and modulation of mitochondrial func-
tion (Gorina et al. 2010; Farfán-García et al. 2014; Pinto-
Almazán et al. 2014; Avila Rodriguez et al. 2014). It is note-
worthy tibolone may have protective actions on astrocytes
possibly via activation of anti-apoptotic pathways and PI3K-
Akt pathways (Ajuwon and Spurlock 2005; Li et al. 2006;
Dhandapani et al. 2013).

In this current study, we centered on the actions of both PA
and tibolone on mitochondria (García-Ruiz et al. 2015).
Studies on human brain microvascular endothelial cells, glial,
and neural cells exposed to PA demonstrated a loss of mΔΨ,
alteration on mitochondrial structure, increase of oxidative
stress and consequently release of pro-apoptotic molecules
(Horner et al. 2000; Di Paola and Lorusso 2006; Park et al.
2011; Estadella et al. 2013). Against our expectations, PA and
tibolone produced no significant changes in the expression of
genes related to mitochondrial dynamics and functionality.
Future studies should focus on understanding the regulatory
mechanisms involved in mitochondrial dynamics (Post-
transcriptional regulation) and how they might be linked to
mitochondrial dysfunction induced by palmitic acid. PA has
also a deleterious effect on the inner mitochondrial membrane
due to its ability to promote the opening of the permeability
transition pore and dissipation of the electrochemical proton
(Penzo et al. 2002; Rial et al. 2010). Our data show that PA
resulted in a significant mΔΨ decrease at 24 h in NHA cells,
suggesting a relationship between the mitochondrial mem-
brane and cytotoxic effects elicited by PA. Surprisingly,
tibolone did not improve Δψm in NHA cells upon PA. It is
possible that tibolone does not revert this decline due to the
profound loss of mitochondrial membrane potential in severe-
ly damaged cells induced by 24 h of exposure to 2 mM of
palmitic. PA can generate alterations in the structure of mito-
chondrial membranes, especially affecting cardiolipin content.
Cardiolipin has a key role in mitochondrial architecture, mi-
tochondrial bioenergetics, and in the organization of the

Fig. 5 Correlation analysis of
superoxide levels (DHE) with
both cardiolipin content (NAO)
and propidium iodide (PI) levels.
Both strong r value (r = − 0.96)
and statistical significance (p =
0.0026) is observed when DHE is
correlated with NAO (a). A value
of r = 0.79 and a p value equal to
0.0416 was observed when DHE
is matched with PI uptake (b)
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electron transport chain complexes (Buratta et al. 2008;
Paradies et al. 2014; Dudek 2017). We assessed the
cardiolipin content and observed that PA reduced the level
of cardiolipin, indicating an association between cardiolipin
content and an increase in cytotoxicity by palmitic acid in
NHA, which is in accordance with previous studies showing
a decrease in cardiolipin may release cytochrome c leading to
apoptosis (McMillin and Dowhan 2002; Schug and Gottlieb
2009; Wong et al. 2014; González-Giraldo et al. 2017;
Hidalgo-Lanussa et al. 2017). Pre-treatment with 10 nM
tibolone for 24 h partially preserved cardiolipin in PA-
treated NHA cells, as observed previously in works from our
group (González-Giraldo et al. 2017; Hidalgo-Lanussa et al.
2017). It seems like the preservation of cardiolipin content
may help to conserve inner membrane fluidity and osmotic
stability (Chicco and Sparagna 2007), improving mitochon-
drial functionally even in challenging microenvironments.
Finally, a correct astrocytic mitochondrial integrity and fluid-
ity has been associated with neuroprotection in different neu-
rodegenerative models (Aschner and Kimelberg 1991;
Cabezas et al. 2012; Kim et al. 2013).

Our study reports tibolone’s ability to attenuate superoxide
production by palmitic acid in NHA cells. Our hypothesis is
that one of the main mechanisms by which PA can induce cell
death is through ROS generation. We investigated this next
and observed tibolone significantly reduced superoxide levels
in human astrocytes when exposed to PA, as observed in other
in vitro models (Avila Rodriguez et al. 2014; Hidalgo-
Lanussa et al. 2017). One possible explanation is that tibolone
might trigger PI3K and MAPK activation, producing a down-
stream activation of mitochondrial enzymes, e.g. catalase and
glutathione peroxidase, thereby reducing oxidative radicals
(Armogida et al. n.d.; Goodman et al. 1996; Gurgul et al.
2004; Gehrmann et al. 2015). In contrast to our initial hypoth-
esis, PA did not generate a significant rise in hydrogen perox-
ide levels in normal human astrocytes. Based on this, we
speculated hydrogen peroxide levels might depend on chang-
es in antioxidant content (e.g. catalase levels). Although not
observed on human astrocytes, experiments with pancreatic
cells have shown that overexpression of catalase decreased
hydrogen peroxide formation and protected cells against
lipotoxicity by palmitic acid (Gurgul et al. 2004; Elsner
et al. 2011). This suggests a possible relationship between
palmitic and catalase levels, which might, at a certain point,
explain our results.

In conclusion, the exposure of normal human astrocytes to
palmitic acid induces the lipotoxic mechanisms associated
with ROS production, loss of mitochondrial structure, and
functionality, potentially leading to cellular death. Moreover,
we suggest that tibolone is a protective agent against
lipotoxicity induced by palmitic acid, possibly by increasing
cell viability, partially preserving the mitochondrial structure,
and by reducing ROS levels. All these findings show that

tibolone is a promising neuroprotectant aimed for brain tissue
recovery, but further studies are necessary in order to deeply
elucidate the signaling mechanisms involved in the actions of
this synthetic steroid.
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