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Background: In recent decades, Candida glabrata has emerged as a frequent cause of life-threatening fungal
infection. In C. glabrata, echinocandin resistance is associated with mutations in FKS1/FKS2 (b-1,3-glucan
synthase). The calmodulin/calcineurin pathway is implicated in response to antifungal stress and calcineurin
gene disruption specifically reverses Fks2-mediated resistance of clinical isolates.

Objectives: We evaluated the impact of calmodulin inhibition by fluphenazine in two caspofungin-resistant
C. glabrata isolates.

Methods: C. glabrata isolates were identified by ITS1/ITS4 (where ITS stands for internal transcribed spacer)
sequencing and the echinocandin target FKS1/FKS2 genes were sequenced. Susceptibility testing of caspofungin
in the presence of fluphenazine was performed by a modified CLSI microbroth dilution method. The effect of the
fluphenazine/caspofungin combination on heat stress (37�C or 40�C), oxidative stress (0.2 and 0.4 mM mena-
dione) and biofilm formation (polyurethane catheter) was analysed. A Galleria mellonella model using blasto-
spores (1%109 cfu/mL) was developed to evaluate the impact of this combination on larval survival.

Results: F659del was found in the FKS2 gene of both resistant strains. In these clinical isolates, fluphenazine
increased susceptibility to caspofungin and reduced their thermotolerance. Furthermore, the fluphenazine/
caspofungin combination significantly impaired biofilm formation in an in vitro polyurethane catheter model.
All these features participated in the increasing survival of infected G. mellonella after combination treatment
in comparison with caspofungin alone.

Conclusions: In a repurposing strategy, our findings confirm that calmodulin could provide a relevant target in
life-threatening fungal infectious diseases.

Introduction

Invasive fungal diseases are becoming more common and their
incidence is high due to the increased number of immunocom-
promised patients.1–3 Although the main aetiological agent
remains Candida albicans, the prevalence of non-albicans species
(e.g. Candida glabrata, Candida parapsilosis, Candida tropicalis and
Candida krusei) is increasing. C. glabrata is the second most com-
monly isolated species in North America, the third in Europe and
the fourth in Latin America.1,2 This species is commonly resistant
to fluconazole. In some countries, rates of echinocandin resistance
are very low.3,4 However, this feature is changing and echinocan-
din resistance frequency is increasing, resulting in MDR isolates.1,5,6

Unfortunately, the treatment options for fungal diseases are

limited since there are few classes of antifungal medications and
their increasing use in prophylaxis has led to resistant strain selec-
tion, making treatment a great challenge.7

The study of intracellular signalling pathways (ISPs) as thera-
peutic targets, combined with the chemical design of molecules
that function autonomously or as adjuvants of antifungal drugs,
constitutes a new avenue in the search for therapeutic alterna-
tives.8 Some of the most studied ISPs are the protein kinase C (PKC)
cascade, the mitogen-activated cell integrity (MAP) pathway, the
high osmolarity glycerol (HOG) response and the calmodulin/calci-
neurin (CaM/Cal) pathway, among others.9–12 The CaM/Cal path-
way (Figure 1), formed by a complex of proteins Cnb1, Cna1, Hsp90
and the transcription factor Crz1 in yeast is involved in calcium
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homeostasis, sphingolipid and cell wall biosynthesis, protein traf-
ficking, ubiquitin signalling, autophagy, adaptation to environmen-
tal changes and, even more importantly, the response to
antifungals.11,13–19 The well-recognized inhibitor of the CaM/Cal
interaction, tacrolimus (FK506), has been described as a possible
tool to restore susceptibility in C. albicans isolates resistant to both
azoles and echinocandins, which characterizes this protein–protein
interaction as a potential target for the design of new antifun-
gals.15 In C. glabrata, echinocandin resistance is associated with
mutations in FKS1 and its paralogue FKS2, encoding the dimeric b-
1,3-glucan synthase. Cal gene disruption specifically reverses
Fks2-mediated resistance of clinical isolates.16

Fluphenazine belongs to the phenothiazine family of anti-
psychotic drugs used for management of manifestations of
psychotic disorders. Recently, antipsychotic drugs have been
studied with a view towards repurposing them for antimicrobial
chemotherapies.17 Fluphenazine, being a CaM antagonist, binds to
CaM in a Ca2!-dependent manner and alters its ability to activate
the transcription factor Crz1p responsible for the activation of
the genes involved in the signalling pathway binding to the Cal-de-
pendent response element (CDRE).18

Therefore, the objective of this study was to evaluate the
impact of CaM inhibition of caspofungin-resistant C. glabrata by
fluphenazine on susceptibility, biofilm formation, thermotolerance
and pathogenicity in Galleria mellonella.

Materials and methods

Strains and drugs

One susceptible and two caspofungin-resistant C. glabrata isolates were
studied. The first one, C. glabrata PUJ/HUSI 0916, was recovered from a
blood culture of an HSCT recipient admitted to the Hospital Universitario
San Ignacio, Bogotà, Colombia. The caspofungin-resistant isolates,
CAGL1875 and CAGL1256, were obtained from blood and urine cultures of
hospitalized patients in the ICU of Centre Hospitalier Universitaire de
Nantes, France. Strains were categorized as susceptible or resistant to
caspofungin according to the interpretative breakpoints of CLSI M60 2017
criteria (�0.5 mg/L: resistant). In addition, the reference C. glabrata ATCC
2001, C. parapsilosis ATCC 22019 and C. krusei ATCC 6258 were used in
some experiments. Caspofungin and fluphenazine were obtained from
Sigma–Aldrich. Drug stocks were prepared in 100% DMSO (Sigma–Aldrich)
and stored at#20�C.

Yeast identification
C. glabrata strains were identified by MALDI-TOF MS19 and by amplification
and sequencing of the internal transcribed spacer (ITS) rDNA regions after
DNA extraction. Amplification of the ITS rDNA was achieved using the uni-
versal ITS1 (TCCGTAGGTGAACCTGCGG) and ITS4 (TCCTCCGCTTATTGATA
TGC) primers.20 Nucleotide sequences were assembled using the SeqScape
software (Applied Biosystems, Foster City, CA, USA) and compared with the
GenBank database using the BLAST algorithm. A similarity of �98% be-
tween the unknown sequence and the closest matching sequence from
the reference database was used as the criterion to identify an isolate to
the species level. To study the resistance mechanisms involved in the
CAGL1875 and CAGL1256 clinical isolates, FKS1 and FKS2 hotspot (HS)1 and
HS2 were analysed by sequencing as previously described.21 Nucleotide
sequences were compared with the reference sequence of a C. glabrata
susceptible strain (GenBank accession HM366440.1 and HM366442.1)
using SeqScape.

Antifungal susceptibility testing
Antifungal susceptibility testing was carried out using the CLSI broth micro-
dilution method, following the M27-A3 guidelines with slight modifications
for the combination of caspofungin with the CaM inhibitor fluphenazine.22

Briefly, strains were subcultured on yeast extract peptone dextrose (YPD)
agar and grown for 24 h at 35�C. The inoculum suspensions were prepared
in liquid RPMI 1640 medium (Sigma–Aldrich) to a final concentration of
0.5%103–2.5%103 cells/mL. A 100 lL volume of yeast inoculum was added
to a 96-well plate containing serial 2-fold dilutions of caspofungin with or
without fluphenazine (15 mg/L). MICs were determined visually and by
densitometry as the lowest concentration of drug that caused a 50% dimin-
ution (MIC-2) compared with that of the drug-free growth control after 48 h
of incubation. The MIC50 value of fluphenazine (50 mg/L) was previously
determined by CLSI. Quality control was ensured by testing the CLSI-
recommended strains C. parapsilosis ATCC 22019 and C. krusei ATCC 6258.23

Stress-related phenotypic assays
To examine the potential role of CaM/Cal in C. glabrata cellular protection
from heat and oxidative stresses, the impact of caspofungin, associated or
not associated with fluphenazine, was assessed. For heat-shock stress,
drop tests were performed by spotting serial dilutions of C. glabrata cells
(106 to 103 cells/mL) onto YPD agar plates with fluphenazine (15 mg/L),
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Figure 1. CaM/Cal pathway. In C. glabrata, Cch1-Mid1 channel activation
leads to the accumulation of intracellular Ca2!, which is bound by CaM in
its four calcium domains (encoded by CAM), leading to the activation
of Cal. The molecular chaperone Hsp90 physically interacts with the
catalytic subunit of Cal, Cna1, stabilizing and keeping it poised for activa-
tion. Once activated, Cal dephosphorylates the transcription factor Crz1
as well as other unknown effectors to regulate a myriad of cellular
responses. Red arrows represent positive regulation, black T-lines repre-
sent negative regulation and inhibitors are depicted as green rectangles
[tacrolimus (FK506-FKBP12), cyclosporine A (CsA-cyclophilin A) and flu-
phenazine (Fph-CaM)]. This figure appears in colour in the online version
of JAC and in black and white in the print version of JAC.
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caspofungin (1 mg/L) or both compounds. The plates were incubated at
37�C or 40�C for 24 h. For oxidative stress, YPD plates were prepared as pre-
viously described except that the medium was supplemented with the
naphthoquinone menadione (0.2 and 0.4 mM). The plates were incubated
at 37�C for 24 h.24

Biofilm formation
Briefly, the C. glabrata strains were grown on Sabouraud medium
(bioMérieux, France) and incubated at 30�C for 24 h. Two hundred micro-
litres of Candida cell suspensions (106 cells/mL) in RPMI-1640 with MOPS
adjusted to pH 7 was seeded in 96-well microdilution wells with or without
GDHK-1325 250 mm Gam polyurethane catheter pieces (Hechingen,
Germany) and allowed to adhere for 24 h at 37�C. The non-adherent cells
were then removed by gently washing twice with 300 lL of PBS or by trans-
ferring catheter pieces in new microplate wells. Caspofungin was added at
1 mg/L with and without 15 mg/L of the CaM inhibitor (fluphenazine)
for 24 h incubation at 37�C for the biofilm adhesion phase. Wells or catheter
pieces were then washed twice with PBS and, finally, 100lL of RPMI-1640
plus 10lL of 700 lM resazurin (Sigma–Aldrich) was added to each well
and incubated at 37�C for 4 h.25 Fluorescence was then measured at
560 nm with emission at 590 nm. The results are expressed in arbitrary
fluorescence units (AU). Statistical analysis was performed using PRISM
software version 5.0.

G. mellonella invertebrate model
Killing assays were performed in G. mellonella as described by Fallon et al.26

Briefly, the larvae were obtained from a Scientia breeding facility (Cali-
Colombia); larvae of late stages (fifth and sixth) between 250 and 330 mg
and with a length of approximately 2 cm were selected. A group of 10
larvae was used for each of the controls: absolute control, disinfection and

inoculation. To compare mortality, three biological replicates were per-
formed with 10 larvae for each isolate evaluated. C. glabrata strains were
grown on Sabouraud dextrose agar and incubated for 48 h at 35�C.
Suspensions adjusted to 1%109 cfu/mL using a Neubauer chamber were
used to inoculate 10 larvae per Candida isolate. Larvae received 10 lL of in-
oculum and 10lL of caspofungin (100 mg/L), fluphenazine (15 mg/L) or
their combination by injection into the last left and right proleg using a
0.5 mL gauge insulin syringe. After inoculation, larvae were placed in Petri
dishes and incubated in darkness at 37�C; the number of dead larvae was
recorded daily. Survival analysis was performed using the Kaplan–Meier
method in PRISM software version 5.0.

Results

Resistant C. glabrata isolates harboured FKS2 mutation

MALDI-TOF MS identification of CAGL1875 and CAGL1256 isolates
as C. glabrata was confirmed by ITS sequence. Sequencing of HS1
and HS2 regions of the FKS1 and FKS2 genes exhibited a deletion
(F659del) in FKS2 HS1 that was already implicated in echinocandin
resistance.27

Fluphenazine increased susceptibility of resistant
C. glabrata to caspofungin

Fluphenazine used alone did not show any statistically significant
decrease of C. glabrata growth and addition of fluphenazine to
caspofungin did not modify ATCC 2001 or PUJ/HUSI 0916 suscepti-
bility. In contrast, using caspofungin-resistant (MIC >16 mg/L) iso-
lates (CAGL1875 and CAGL1256), fluphenazine reduced the
caspofungin MIC values to 4 and 8 mg/L, respectively (Figure 2).
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Figure 2. Caspofungin MICs (indicated by stars) alone and in combination with fluphenazine (Fph). The green colour bar indicates relative fold
growth.
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Fluphenazine reduced thermotolerance of
caspofungin-resistant C. glabrata

The oxidative stress generated by 0.4 mM menadione showed
a significant growth reduction that was not reverted either by
fluphenazine or caspofungin. The combination did not generate
apparent significant changes in comparison with the control
(Figure 3a). Concerning the heat stress, growth at 37�C under flu-
phenazine was not significantly affected compared with the YPD
control. In contrast, association of the CaM inhibitor with caspofun-
gin seriously compromised growth of caspofungin-resistant strains
either at human body temperature or at 40�C (Figure 3b).

Fluphenazine/caspofungin combination reduced
capacity of biofilm formation

All selected isolates had the capacity to form biofilm in polystyrene
microplate wells and on polyurethane catheter pieces. As previ-
ously described, caspofungin reduced biofilm development of
susceptible strains, activity being more potent in the catheter
model than in the conventional technique (Figure 4a and b). It was
highlighted that the caspofungin/fluphenazine combination sig-
nificantly reduced biofilm formation compared with caspofungin
alone.

Fluphenazine/caspofungin combination increased
G. mellonella survival

C. glabrata strains led to complete mortality 4–6 days post-
infection in the G. mellonella infection model. No larval killing was
observed in control larvae injected with an equivalent volume of
PBS (Figure 5). Treatment with caspofungin at 100 mg/L increased
the survival rate of larvae infected by susceptible strains, but
did not exhibit, as expected, any statistical modification for
caspofungin-resistant strains. However, in this last experiment,
addition of fluphenazine to caspofungin proved to be effective in
prolonging survival (P < 0.05) compared with caspofungin alone.

Discussion

Since CaM regulates crucial adaptive cellular responses to stress
conditions, compromising its function reduces echinocandin resist-
ance of clinical isolates.28 Due to 92% homology with human CaM,
we assume that its fungal counterpart is the protein target of flu-
phenazine, an antipsychotic drug that acts as a CaM inhibitor.29 In
a repurposing strategy, our results establish a role for fluphenazine
in countering echinocandin resistance in the pathogenic yeast
C. glabrata. Indeed, in an invertebrate model of disseminated
C. glabrata infection, the caspofungin/fluphenazine combination
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Figure 3. Stress responses. Strains were grown in the presence of 0.2 or 0.4 mM menadione (MED), with or without 1 mg/L caspofungin (CAS) and
were heat-shocked at 37�C or 40�C. Fph, fluphenazine.
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enhances the efficacy of caspofungin alone, allowing a significant
increase in larval survival. This highly encouraging in vivo result
was supported by some of our findings implicating CaM as the key
mediator upstream of Cal. Previous data have evidenced by a
proteomic approach the down-regulation of proteins implicated in
the fungal CaM/Cal pathway and the convergent evolution of the
Cal pathway role in the virulence of C. glabrata.30 The activation of
cellular protection mechanisms represents an important survival
strategy in yeast.31 Furthermore, the CaM/Cal pathway crosstalks
with other stress response pathways, such as the PKC pathway.32

Here, CaM inhibition was studied using fluphenazine in two stress
conditions. The results agree with those of previous studies, which
showed that the CaM/Cal pathway is involved in yeast thermotol-
erance.30 The importance of Ca2! homeostasis in the mainten-
ance of mitochondrial integrity was described previously.33

However, according to our results the inhibition of CaM does not af-
fect the growth in oxidative stress conditions as described for C.
glabrata by Juvvadi et al.34 and Ghosh et al.35

Formation of Candida biofilms on medical device surfaces such
as catheters is a fundamental element in the appearance and
persistence of invasive candidiasis, with this clinical condition being
characterized by high mortality.36,37 Biofilm eradication as a
therapeutic strategy is generally effective using echinocandin
drugs provided the isolate is susceptible to the drug.38 Indeed,
planktonic caspofungin-resistant cells maintain this characteristic
in the biofilm community state, even in the presence of high doses
of caspofungin. Nevertheless, this situation can be reversed by
addition of fluphenazine, as demonstrated in the in vitro model
using polyurethane catheter pieces. In conclusion, our findings

40 000

96-well plates

Catheter

1256

1875

*

2001

0916

1256

1875

2001

0916

30 000

Fl
uo

re
sc

en
ce

 (A
U

)

20 000

10 000

0

40 000

30 000

Fl
uo

re
sc

en
ce

 (A
U

)

20 000

10 000

0

Contro
l

Contro
l

CAS
Fp

h

CAS+
Fp

h

CAS
Fp

h

CAS+
Fp

h

(a)

(b)

*

Figure 4. Biofilm formation of C. glabrata isolates in microplate wells (a)
and on catheter pieces (b), exposed to fluphenazine (Fph), caspofungin
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confirm that the CaM/Cal pathway may provide a highly relevant
target for life-threatening fungal infectious diseases. However, the
utility of Cal inhibitors such as tacrolimus in antifungal therapy
has been complicated by their immunosuppressive effects.39

Otherwise, it was demonstrated that in vitro exposure to fluphena-
zine induces multidrug transporters Cdr1 and Cdr2 in C. albicans,
which could negatively impact fluconazole efficacy.40 Thus, the
challenge in successfully exploiting this strategy lies in developing
more selective inhibitors of these two fungal targets or in focusing
on the transcription factor Crz1,41 which is present in yeasts,
but not in humans.41 C. glabrata Crz1 is implicated in the expres-
sion of the gene FKS2, which is involved in resistance to the
echinocandins.42
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29 LéJohn HB. Structure and expression of fungal calmodulin gene. J Biol
Chem 1989; 264: 19366–72.

30 Chen Y-L, Konieczka JH, Springer DJ et al. Convergent evolution of calci-
neurin pathway roles in thermotolerance and virulence in Candida glabrata.
G3 (Bethesda) 2012; 2: 675–91.

31 Longo VD, Fabrizio P. Regulation of longevity and stress resistance: a mo-
lecular strategy conserved from yeast to humans? Cell Mol Life Sci 2002; 59:
903–8.

32 Levin DE. Cell wall integrity signaling in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev 2005; 69: 262–91.

33 Choudhary R, Mishra KP, Subramanyam C. Interrelations between oxida-
tive stress and calcineurin in the attenuation of cardiac apoptosis by eugenol.
Mol Cell Biochem 2006; 283: 115–22.

34 Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a multifunctional
regulator: unraveling novel functions in fungal stress responses, hyphal
growth, drug resistance, and pathogenesis. Fungal Biol Rev 2014; 28: 56–69.

35 Ghosh MC, Wang X, Li S et al. Regulation of calcineurin by oxidative stress.
Meth Enzymol 2003; 366: 289–304.

36 Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global
problem of antifungal resistance: prevalence, mechanisms, and manage-
ment. Lancet Infect Dis 2017; 17: e383–92.

37 Rajendran R, Sherry L, Nile CJ et al. Biofilm formation is a risk factor for
mortality in patients with Candida albicans bloodstream infection—Scotland,
2012–2013. Clin Microbiol Infect 2016; 22: 87–93.

38 Wiederhold NP. Antifungal resistance: current trends and future strat-
egies to combat. Infect Drug Resist 2017; 10: 249–59.

39 Reedy JL, Husain S, Ison M et al. Immunotherapy with tacrolimus (FK506)
does not select for resistance to calcineurin inhibitors in Candida albicans iso-
lates from liver transplant patients. Antimicrob Agents Chemother 2006; 50:
1573–7.

40 Karababa M, Coste AT, Rognon B et al. Comparison of gene expression
profiles of Candida albicans azole-resistant clinical isolates and laboratory
strains exposed to drugs inducing multidrug transporters. Antimicrob Agents
Chemother 2004; 48: 3064–79.

41 Karababa M, Valentino E, Pardini G et al. CRZ1, a target of the calcineurin
pathway in Candida albicans. Mol Microbiol 2006; 59: 1429–51.

42 Singh-Babak SD, Babak T, Diezmann S et al. Global analysis of the evolu-
tion and mechanism of echinocandin resistance in Candida glabrata. PLoS
Pathog 2012; 8: e1002718.

Fluphenazine against resistant Candida glabrata JAC

7 of 7

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/advance-article-abstract/doi/10.1093/jac/dkz565/5721438 by U

N
IVER

SID
AD

 JAVER
IAN

A user on 03 February 2020


