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De novo transcriptome analysis of white teak (Gmelina arborea Roxb) wood reveals 1 

critical genes involved in xylem development and secondary metabolism. 2 
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Abstract 14 

Background: Gmelina arborea Roxb is a fast-growing tree species of commercial 15 

importance for tropical countries due to multiple industrial uses of its wood. Wood is 16 

primarily composed of thick secondary cell walls of xylem cells which imparts the strength 17 

to the wood. Identification of the genes involved in the secondary cell wall biosynthesis as 18 

well as their cognate regulators is crucial to understand how the production of wood occurs 19 

and serves as a starting point for developing breeding strategies to produce varieties with 20 

improved wood quality, better paper pulping or new potential uses such as biofuel 21 

production.  22 

In order to gain knowledge on the molecular mechanisms and gene regulation related with 23 

wood development in white teak, a de novo sequencing and transcriptome assembly approach 24 

was used employing secondary cell wall synthesizing cells from young white teak trees.  25 

 26 

Results: For generation of transcriptome, RNAseq reads were assembled into 110992 27 

transcripts and 49364 genes were functionally annotated using plant databases; 5071 GO 28 

terms and 25460 SSR markers were identified within xylem transcripts and 10256 unigenes 29 

were assigned to KEGG database in 130 pathways. Among transcription factor families, 30 

C2H2, C3H, bLHLH and MYB were the most represented in xylem.  Differential gene 31 

expression analysis using leaves as a reference was carried out and a total of 20954 32 

differentially expressed genes were identified including monolignol biosynthetic pathway 33 

genes. The differential expression of selected genes (4CL, COMT, CCoAOMT, CCR and 34 

NST1) was validated using qPCR.  35 
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Conclusions: We report the very first de novo transcriptome of xylem-related genes in this 36 

tropical timber species of commercial importance and constitutes a valuable extension of the 37 

publicly available transcriptomic resource aimed at fostering both basic and breeding studies. 38 

 39 

Keywords: RNA-seq, xylem, differential gene expression, wood development.  40 

 41 

BACKGROUND 42 

Tree wood is considered as a sustainable alternative source for biofuel production [1] in 43 

addition to its current use in paper and pulp industries. Manipulation of woody biomass for 44 

various applications requires extensive knowledge of the pathways involved in the wood 45 

production [2, 3]. In rice, for instance, edition of a CAD (cinnamyl alcohol dehydrogenase) 46 

encoding gene using CRISPR-CAS (Clustered Regularly Interspaced Short Palindromic 47 

Repeats- CRISPR Associated). technology, altered cell wall compostion, reducing lignin 48 

content and increasing both cellulose and hemicellulose, which enchanced significantly the 49 

saccharification process [4]. A similar result was achieved in poplar,  finding that a reduction 50 

in lignin biosynthesis led to an improvement of the biomass quality with higher 51 

saccharification efficiency[5]. Gmelina arborea Roxb. (white teak, Malay beechwood, 52 

Kashmir tree, gamari or yemane) is a fast-growing tree species belonging to the lamiaceae 53 

family, with tremendous economic importance in several tropical and subtropical areas of 54 

southeastern Asia, Africa and America. Its introduction and excellent adaptation to the 55 

American tropics (Costa Rica, Venezuela, Colombia and Guatemala) is due to the traits like 56 

fast growth, high biomass production (20-25 m3/ha/year), less susceptibility to the local pests 57 

and high yields  in addition to the versatility of its wood use which allow a faster investment 58 
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return [6]. Therefore, it is considered as a species of choice for both reforestation programs 59 

and agroforestry systems in these areas [6,7].  60 

 61 

White teak has also shown natural tolerance to water stress and resistance to fire, both 62 

characteristics of high interest in the context of climate change. This species has been 63 

considered as a tree with higher bioenergetics production, generating an average of 265 m3 64 

of biomass/hectare/year [8]. White teak fruits and seed present interesting potential as sources 65 

of oil for biodiesel production whereas its lignocellulosic wastes serves as a source of 66 

bioethanol [810]. Wood is primarily composed of vascular cambium in the woody plants and 67 

is composed mainly by secondary xylem. Xylem allows water transport through the stem as 68 

well as the tree branches in addition to providing structural support [11].  69 

 70 

Formation of wood xylem cells involves two basic processes occurring simultaneously i.e. 71 

formation of the secondary cell-wall and programmed cell death [11]. The secondary cell 72 

wall is mainly composed of cellulose, hemicellulose and lignin polymers in various 73 

proportions [12]. Cellulose is a linear polymer of beta 1-4 linked glucan units that forms 74 

microfibers structures which interacts with complex polymers collectively called 75 

hemicelluloses in order to form a reticulated matrix [13]. Lignin is a polyphenolic compound 76 

which is hydrophobic in nature filling the spaces between celluloses and hemicelluloses 77 

fibers and conferring additional mechanical support, rigidity and hydrophobicity [14 15] . 78 

After cellulose, lignin is the second most abundant polymer produced  by plants, representing 79 

approximately 30% of the organic carbon in the biosphere [16]. Lignin polymers are 80 

produced from the hydroxycinnamyl alcohol (monolignol) pathway derived from 81 

phenylpropanoid pathway, which is also a source of other compounds such as flavonoids, 82 
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coumarins, phytoalexins and lignans that are important for plant defense against biotic 83 

stressors and commercial biomolecule production [17, 18]. Lignin plays a significant role in 84 

the growth and development of woody species which adds the required strength to grow 85 

upright and withstand against the mechanical pressure [15]. 86 

 87 

Lignin biosynthetic pathway involves eleven enzymes in order to produce three monolignols; 88 

p-coumaryl alcohol, sinapyl alcohol and coniferyl alcohol [19]. Polymerization of these 89 

monolignols produces the three types of lignin units, Hydroxyphenyl lignin (H-lignin), 90 

Syringyl lignin (S-lignin) and Guaiacyl lignin (G-lignin) and the type of lignin varies based 91 

on the species, tissue type and stage of development [12]. The gymnosperm lignin is mainly  92 

composed of H and G units, while angiosperms lignin from monocots is composed of H, G 93 

and S units whereas in dicots it is composed of G and S units [20, 21].  94 

 95 

Various transcription factors have been identified and characterized as key players of wood 96 

development, primarily members of NAC and MYB families involved in the regulation of 97 

monolignol pathway and lignin polymerization [19, 22, 23]. The NAC family, the 98 

transcription factors SND1, NST1, VND6 and VND7 have been recognized as master 99 

switches involved in activation of cascade of transcription factors, converging ultimately into 100 

secondary xylem formation and lignification [23, 24], . The MYB family transcription factors 101 

appears to directly regulate the lignin biosynthetic as well as other cell wall biosynthetic 102 

genes. These MYB transcription factors recognize specific DNA sequence motifs on the 103 

promoter or regulatory regions of target genes and thereby activating or repressing 104 

transcriptional expression [23-25].  105 

 106 
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The monolignol pathway has been mainly studied in model plant species such as Arabidopsis 107 

and poplar [26, 27]. The knowledge generated from these species, has been used to modify 108 

tree species such as poplar and eucalyptus in order to reduce the lignin content [28-30].  109 

Although white teak woody biomass presents a high potential for novel uses, lack of 110 

knowledge on metabolic and regulatory genes involved in wood development and lignin 111 

biosynthesis impairs it use for biofuel applications. A comprehensive knowledge on 112 

lignification pathways and its regulation is essential for the improvement of commercially 113 

important traits such as wood quality, paper pulping or biofuel production. Therefore, in the 114 

present study we have generated de novo xylem transcriptome and analyzed and identified 115 

xylem specific metabolic and regulatory genes which serves as target genes for future 116 

breeding developments in this species.  117 

 118 

RESULTS 119 

Generation and annotation of de novo reference xylem transcriptome  120 

RNAseq of G. arborea xylem library resulted in approximately 165 million paired reads. 121 

Quality filtration for the low-quality reads (Q<20) and contaminants such as reads of 122 

ribosomal and organellar origin resulted in the removal of total of 18968 paired sequences. 123 

The cleaned reads were assembled using Trinity software to obtain the reference 124 

transcriptome with 110992 transcripts. The assembled transcripts showed a considerably 125 

higher N50 value of 1466 bases with the average transcript length of 864 bases (Table 1). 126 

Various publicly available tools and databases were used to annotation these assembled G. 127 

arborea transcripts. A more popular and conventional homology-based annotation with 128 
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NCBI NR database resulted in 49364 hits whereas using model plant Arabidopsis thaliana 129 

TAIR10 protein database resulted in 45377 hits representing 15445 unigenes. A higher 130 

percentage of transcripts with functional annotation was obtained with HMMER analysis: 131 

64186 transcripts presented hits with PFAM database. Fig. 1 represents the main Gene 132 

ontology (GO) categories assigned for 14155 unigenes. At the level of cellular component, 133 

most of the transcripts were located in the category of organelle whereas at the level of 134 

molecular function, the binding and catalytic function categories were the most 135 

representative. Cellular and metabolic process were among the most significant biological 136 

processes, as well as some categories probably related with dynamic activity in xylem tissue 137 

like cell biogenesis, and development processes. 138 

 139 

Table 1. Summary of assembly and annotation metrics of the reference transcriptome 140 

obtained from G. arborea secondary xylem. 141 

Assembly 

Total number of sequences obtained 164,737,322 

Number of sequences used for the assembly 164,718,354 

Number of transcripts obtained post assembly 110,992 

N50 value (in bp) 1466 

Average contig length (in bp) 864 

Putative gene number 81,269 

Number of bases assembled  ~95 M 

Annotation 

Full length ORFs  17,809 (16%) 

Quasi full length ORFs 14,017 (12.6%) 

Transcripts with hits in the NCBI NR database (BLASTX) 49,364 

Transcripts with hits in TAIR10 (BLASTX) 45,377 

Transcripts with hits in Populus trichocarpa database 46,795 
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Transcripts with hits in the NCBI NR base (BLASTX) 45,708 

Transcripts with PFAM domains 64,186 

Transcripts classified in gene families 48,322 

Transcripts with GO terms 39,465 

Number of GO terms 5701 

Number of KEGG pathways identified 130 

Number of genes associated to KEGG pathways 10,256 

 142 

 143 

 144 

Using the KEGG (kyoto encyclopedia of genes and genomes) database, 10256 genes were 145 

assigned to 130 metabolic pathways (Table 1 and 2).  Biosynthesis of secondary 146 

metabolites, ribosomes and transduction of hormonal signals were the pathways with 147 

highest number of associated genes. Phenylpropanoid biosynthesis was also in the top 20 of 148 

the most representative pathways (Table 2).    149 

 150 

Table 2. Top 20 KEGG pathways identified in the G. arborea xylem transcriptome. 151 

Pathways identified Number of genes 

Metabolic pathways 1841 

Biosynthesis of secondary metabolites 1020 

Ribosome 346 

Transduction of signals of plant hormones 262 

Carbon metabolism 256 

Aminoacid biosynthesis 251 

Protein processing in endoplasmic reticulum    217 

starch and sucrose metabolism 194 
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Spliceosome 189 

RNA transport 165 

Purine metabolism 156 

Plant-pathogen interaction 154 

Phenylpropanoid biosynthesis 152 

Oxidative phosphorylation 149 

Ubiquitin mediated proteolysis 148 

Endocytosis 140 

Amino sugar and nucleotide sugar metabolism 135 

Glycolysis / Gluconeogenesis 113 

Pyrimidine metabolism 112 

Cysteine and methionine metabolism 112 

 152 

Identification of transcription factors, metabolic and regulatory genes involved in the 153 

monolignol pathway 154 

The main families of transcription factors identified in the reference transcriptome are 155 

presented in Fig 2.  101 unigenes were assigned to C2H2, 92 to C3H, 79 to bHLH and 72 to 156 

MYB TF families; whereas 240 genes were assigned to the AP2-EREBP (56 genes), 157 

Homeobox (54 genes), NAC (45 genes), WRKY (43 genes) and bZIP (42 genes) TF families. 158 

Nine biosynthetic genes of the monolignol pathway and transcription factors of different 159 

levels of regulation were identified from the reference transcriptome. 160 

Among the NAC transcription factors, putative orthologs of Arabidopsis VND7, SND2 and 161 

NST1, reported as “master” regulators, were identified. In the case of MYB transcription 162 

factors, MYB46 and MYB83, which were classified as regulators of second level, and MYB20, 163 

MYB69 and MYB85 which are directly related with the activation of biosynthetic genes, were 164 
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identified. Other important transcription factor encoding genes were found like MYB7, 165 

MYB4, MYB32 and KNAT7, all reported as negative regulators, or BES1 a specific activator 166 

of the synthesis of celluloses (Table 3). In order to clarify the relation and identity of NAC 167 

transcription factors identified as VND7, SND2 and NST1, a phylogenetic analysis using 168 

possible orthologs from other species was performed (Fig 3).  169 

 170 

Table 3. Genes related with lignin biosynthesis and its regulation, identified in the 171 

reference transcriptome.  172 

Group Identified genes 

Monolignol pathway 

genes 

Phenylalanine ammonia-lyase    (PAL)  [EC:4.3.1.24] 

Cinnamyl alcohol dehydrogenase (CAD)  [EC:1.1.1.195] 

Ferulate 5-hydroxylase (F5H)   [EC:1.14.-.-] 

Hydroxycinnamoyl-CoA reductase (CCR)  [EC:1.2.1.44] 

Caffeic acid O-methyltransferase (COMT)   [EC:2.1.1.68] 

4-coumarate-CoA ligase (4CL)   [EC:6.2.1.12] 

p-hydro-xycinnamoyl-CoA (HCT)   [EC:2.3.1.133] 

caffeoyl-CoA O-methyltransferase (CCoAOMT)  [EC:2.1.1.104] 

p-coumarate 3-hydroxylase (C3´H)   [EC:1.14.13.36] 

MYB transcription factors 

MYB46 

MYB61 

MYB83 

MYB103 

MYB4 

MYB7 

MYB32 

MYB52 

MYB20 

MYB63 
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MYB69 

MYB85 

NAC transcription factors 

SND2 

VND7 

NST1 

BES1/BZR1 transcription 

factors 

BES1 

KNOX transcription 

factors 

KNAT7 

 173 

 174 

In dendrogram (Fig 3), the transcription factor SND2 of white teak was related orthologs 175 

from other plant species, while NST1 presented a closer phylogenetic relationship with the 176 

NST1 transcription factor of Arabidopsis.  In the case of white teak VND7 transcription 177 

factor, it was least related with the corresponding orthologs from other species.  178 

 179 

Identification of Single Sequence Repeats (SSRs) markers   180 

A total of 25460 SSR markers were identified with 2-5 nucleotides repeat motifs. Among 181 

them, the most predominant repetitions were dinucleotides (DNRs, 20634) and trinucleotides 182 

(TNRs, 4463) (Supplementary Table 2). In case of the DNRs, AT/AG and TC/TC were the 183 

most abundant motifs (33% and 29% respectively). Among TNRs, GAA/AGG (9.9%) and 184 

TTC/CCG (7.7%) were the most abundant motifs. 185 

 186 

Differential expression analysis 187 

With the goal to perform the differential expression analysis between xylem and leaves, we 188 

first generated a unique combined transcriptome using the leaves and xylem reads, since 189 

reference genome sequence is not available for G. arborea. A total of 196,317,195 sequences 190 
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were obtained from leaves; after removal of contaminants and low-quality sequences (about 191 

50 millions of reads), 147,130,884 sequences were obtained. For generation of combined 192 

transcriptome, the sequences obtained from leaves were fused with the sequences obtained 193 

from xylem. The mapping of reads against this transcriptome indicated an average alignment 194 

percentage of 95%, which is indicative of a good representability of expressed transcripts in 195 

the transcriptome. Metrics related with the assembly and annotation of this transcriptome are 196 

shown in supplementary table 1. 197 

Using this unique transcriptome as reference, the differential expression analysis between 198 

leaves and secondary xylem (stem) was performed using leaf tissue as a control. Principal 199 

component analysis (PCA) of transcript expression levels revealed a clear differentiation of 200 

the samples according to the tissue type (supplementary Fig 1). Results, also indicated that 201 

38,350 transcripts were differentially expressed (adjusted p value < 0.05), out of which 202 

20,964 showed log 2 fold change (Log2FC) absolute values higher than 2 as a threshold: 9011 203 

transcripts showed an induction pattern whereas 11953 were repressed in xylem compared 204 

to leaf tissue (Fig 4). Main functional categories of DEGs are shown in supplementary Fig 2.  205 

 206 

To identify overall changes in xylem metabolic pathways encoded by these DEGs, the 207 

Mapman tool was used, using the same Log2FC thresholds values (|Log2FC| ≥ 2). Fig 5 208 

presents a general outlook of induction and repression patterns of transcripts involved in main 209 

primary and secondary cell metabolism. 210 

As expected, genes involved in photosynthetic light reactions were clearly repressed in xylem 211 

compared to leaves, whereas those related to respiration were induced. Accordingly, genes 212 

related to cell wall synthesis tend to show an induction pattern in stem compared to leaves. 213 

Analysis of nine genes of the monolignol pathway showed a clear differential expression 214 
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between leaves and xylem (Fig 6). A general pattern of higher expression was identified for 215 

the PAL, C4H, COMT and CCoAOMT genes in xylem, while the HCT gene was repressed 216 

compared to leaves. In the case of 4CL, F5H, CCR and CAD different transcripts (associated 217 

in various cases with possible splicing isoforms) of the same gene presented a higher 218 

expression in one or other tissue.  219 

Additionally, transcripts encoding transcription factors belonging to MYB, NAC and 220 

homeobox families, were differentially expressed (Fig 7). A clear induction of transcripts 221 

annotated as members of MYB family was observed in xylem. In the case of NAC family, 222 

several transcripts encoding NST1 transcription factor, were induced in xylem whereas one 223 

VND7 homolog showed a repression pattern in xylem. Finally, KNAT7, a member of the 224 

homeobox family, was also induced in xylem tissue. Other genes involved in the 225 

development of secondary cell wall also showed differences between leaves and xylem (Fig 226 

8). These genes were further classified into five groups based on their function: cellulose 227 

synthesis, hemicellulose synthesis, laccases, programed cell death and others.  228 

 229 

Identification of paralogues and their respective splice variants of genes of monolignol 230 

pathway  231 

Genes of monolignol pathway contain several variants or paralogues, which may be involved 232 

in the same function or have different functions. The reference transcriptome and the 233 

differential expression analysis allowed the identification of these paralogues and their 234 

possible splicing isoforms for some of the monolignol pathway genes. In the case of PAL, 235 

two possible paralogues PAL1 and PAL4 were identified and both generated different 236 

splicing isoforms, all of them upregulated in stem. In the case of CAD, possible orthologs of 237 

CAD9 and CAD3 were identified; the putative CAD9 paralogue was expressed in both tissues, 238 



14 

 

whereas the CAD3 was expressed only in stem.  Additionally, other two genes, previously 239 

not reported, showed a contrasting pattern of expression between tissue: for 4CL, two 240 

transcripts 4CL1 and 4CL2 were identified as possible variants; the last one was induced in 241 

leaf, while 4CL1 was mainly induced in stem. Similarly, CCoAOMT presented two possible 242 

variants CCoAOMT1 and CCoAOMT2. No gene or transcript variants were detected for C4H, 243 

COMT, F5H, CCR, and HCT, as a single transcript was identified.  244 

 245 

Phylogenetic analysis 246 

In order to determine the phylogenetic relations of some genes of the monolignol pathway 247 

identified in white teak with homologous sequences reported for different species, a 248 

dendrogram was generated using the protein sequences obtained from G. arborea PAL and 249 

CAD genes with full length ORFs. These genes are the first (PAL) and the last (CAD) ones 250 

to be involved in the monolignol pathway and are key players for the lignin biosynthesis. In 251 

the case of PAL, one variant induced in stem (putative PAL1) was selected, while for CAD, 252 

two variants were included: one upregulated in stem (called CADS and identified as putative 253 

CAD3) and another one upregulated in leaf (called CADL) (Fig 9A and B). 254 

In the case of PAL, white teak protein formed a single cluster with another possible ortholog  255 

of a Lamiaceae family member, Scutellaria baicalensi, and also with  PAL1 of Coffea 256 

arabica (Rubiaceae). For CAD protein, the two evaluated white teak members appeared in 257 

different but closely located clusters where CADS was most related with CAD of Salvia 258 

miltiorrhiza and Sinopodophyllum hexandrum, while CADL was most related with CAD of 259 

Sesamum indicum and CAD4 of Tectona grandis (teak), two species belonging to lamiales 260 

order . CAD1 and CAD4 from Tectona grandis (Lamiaceae), a species closely related to G. 261 
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arborea, were located in distant clusters, indicating a high degree of divergence amongst 262 

homologous members of this protein family. 263 

 264 

Diiferential expression validation using quantitative reverse transcription PCR (RT- 265 

qPCR) 266 

In order to validate the patterns of differential expression observed, a total of 12 genes (10 267 

upregulated and 2 downregulated) were selected for qPCR validation: seven from metabolic 268 

genes of the monolignol pathway, two from regulatory genes (transcription factors) and three 269 

genes related with synthesis of celluloses and hemicelluloses. For each case, the genes were 270 

selected based on the Log2FC values obtained previously. Comparing the values between the 271 

fold change observed in RT-qPCR and the fold change of gene expression obtained by 272 

RNAseq, a concordance was found between the values for the COMT, CCR and NST1 genes. 273 

A similar trend in the expression pattern was found for CCoAOMT, 4CL, HCT and CAD 274 

genes (induced in leaf) (Fig 10) however, no concordance between Log2FC values was found 275 

for the MYB85, PAL, CESA, FRA8 and PGSIP3 genes. Correlation analysis between the 276 

values of Log2FC of genes with concordant patterns indicated a moderate general correlation 277 

coefficient of 0.50.  278 

 279 
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DISCUSSION 280 

In Colombia, white teak plantations are located mainly in the dry tropical Caribbean zone 281 

area, characterized by the presence of a bimodal rainfall pattern, in which the plants are 282 

frequently subjected to drought periods that can affect the establishment of new plantations 283 

and yields [31]. During water stress conditions, it is common to find that the wood 284 

lignification patterns are also modified; these modifications have been related with 285 

morphological changes in structures like vessels, necessary to an adequate hydraulic 286 

conductivity  [32] . However, the molecular mechanisms involved in this type of responses 287 

are not very clear yet; therefore, it is important to bring the knowledge about this type of 288 

mechanisms, especially in timber species of high importance whose plantations are 289 

frequently under stress conditions like white teak.  There are only a few species such as 290 

Eucalyptus sp [33], Populus sp [34] and Pinus radiata [35] with reported transcriptomic data 291 

from xylem, probably due to the difficulty in tissue collection. Further, for tropical timber 292 

non-model species, genomic information is still scarce except for some species like Acacia 293 

[36] and teak [37-39],. Hence, this pioneering study provides information at genomic level 294 

associated with development of wood in non-model tropical species like Gmelina arborea 295 

Roxb.    296 

 297 

The xylem transcriptome contains 110,992 transcripts, up to 60% of these could be annotated 298 

using different annotation methods (GO, protein domains, BLASTX, KEGG), and also 299 

generated a high percentage of transcripts with full length ORFs (16%) and quasi full length 300 

ORFs (12,6%). GO annotation revealedbinding and catalysis as main enriched molecular 301 

functions In the binding category, genes related to transcription factors predominated, 302 
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indicating that this function is critical for the development of white teak’s xylem., while in 303 

the catalysis GO category, the importance of different metabolic processes is reflected in this 304 

tissue. One of the most represented category in KEGG pathway was the phenylpropanoid 305 

pathway which gives rise to secondary metabolites that are important for different biological 306 

processes like pigmentation, UV protection, or  responses to pathogens [17]. Additionally, 307 

this pathway also produces the monolignols, which are the components of the lignin 308 

polymers. Therefore, the results obtained indicate, as expected, a high activity for the 309 

pathways involved in the formation of lignin in the developing wood. The de novo 310 

transcriptome assembly approach used allowed to identify and annotate nine of the ten 311 

metabolic genes of the monolignol pathway, which are involved not only in lignin formation 312 

but also in other biological processes [40]. Further functional characterization of these 313 

individual genes and their variants will provide more information on their biological 314 

importance.  315 

 316 

Analysis and identification of exonic SSR markers.  317 

Identification of genetic polymorphisms from transcriptomic data, like SSRs markers, , is 318 

also relevant for a non-model species as it can be used in future studies for associating 319 

genotype/phenotype oriented towards germplasm bank characterization and breeding 320 

processes. The analysis of SSRs markers in the white teak xylem-transcriptome indicated a 321 

predominance of the dinucleotides AT and AG, which is in accordance with studies in 322 

different dicot and gymnosperms species[41]. The xylem transcriptome of white teak showed 323 

the GAA/AGG (9.9%) repetitions and TTC/CCG (7.7%) as the most common SSRs. The 324 

AGG motif has been reported as highly frequent in monocot species [42], while GAA has 325 

been identified mainly in regulatory regions in Arabidopsis [43].. It has been reported that 326 



18 

 

trinucleotides are less common than dinucleotides; however, their presence in  coding 327 

regions, may be related to functional polymorphisms while maintaining intact open reading 328 

frames.  329 

 330 

Analysis of wood and secondary cell wall developmental genes 331 

In order to identify genes more specifically related with the wood development in white teak, 332 

the transcriptional profiles of growing trunks (secondary xylem) and leaves from young trees 333 

were contrasted. Differential expression analysis evidenced that, in the case of leaves, various 334 

transcription factors, predominantly upregulated, were related to leaf development and 335 

photomorphogenesis processes such as KAN family members that have been related to the 336 

abaxial identity [44], MYB-like related to foliar senescence [45] and ELF3 related to 337 

development and flowering [46]. In the case of xylem, the significant activation of genes 338 

related to development of secondary cell wall was evidenced, which is in accordance with 339 

the developmental stage or maturity of the sampled trees. Analysis of the transcription factors 340 

involved in the regulation of secondary cell wall biosynthesis showed that C2H2 and C3H, 341 

which are involved in the hormonal signal transduction process and different processes of 342 

development and response to stress in plants were the most abundant [47, 48] . Further, the 343 

MYB and NAC families, which are involved in different biological processes like response to 344 

biotic and abiotic stress, cell cycle control, amongst others [49, 50] were highly represented. 345 

These transcription factor families act like “master” regulators at different levels in the 346 

secondary cell wall development. Particularly, members of the NAC family of transcription 347 

factors such as SND2, VND7 and NST1  act as activators in the third and second level of the 348 

regulatory network [51]. The MYB transcription factors act as activators and repressors of 349 
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secondary cell wall biosynthetic genes [52, 53]. Interestingly, members of all the above 350 

families were represented and upregulated the stem xylem of white teak. 351 

 352 

The secondary cell wall master regulator NAC transcription factors showed a general 353 

significant pattern of induction in stems was observed for NST1 and SND2 genes, whereas 354 

the transcript annotated as VND7 was downregulated. NST1 is involved mainly in the 355 

regulation of development of xylem fibers as has been reported for different species like 356 

Arabidopsis and Poplar [15, 54]. In case of VND7, although, it has been mainly related to 357 

regulation processes in the secondary cell wall formation in vessels [53], its low expression 358 

in stem could indicate that its role may be dynamic.  This is in agreement with the observation 359 

by Mitsuda et al.  [54], who affirm that although NST and VND are similar in their functions, 360 

there are some differences in the way in which they act during the formation of the secondary 361 

cell wall, being the NSTs factors more constant in its expression and VNDs more variable. 362 

However, it is necessary to validate the identity of this transcription factor, because the 363 

phylogenetic analysis was inconclusive. The direct downstream targets of NST1, MYB 364 

family of transcription factors such as MYB46, MYB61, MYB83 and MYB103 were 365 

significantly induced in stem. These transcription factors are involved in regulating other 366 

factors such as MYB52 and SND2, related with the direct regulation of biosynthetic genes of 367 

the secondary cell wall [52], as well as  MYB family belonging repressors like MYB4, MYB7 368 

and MYB32.  Other downstream acting MYB factors, directly related with the regulation of 369 

the lignin synthesis, were upregulated in stems, such as MYB20, MYB63, MYB69 and 370 

MYB85. Interestingly, the repressor genes KNAT7 and MYB4 were also found to be 371 

significantly induced in stem, which suggest the presence of negative control feedback loops 372 

induced along the development processes of G. arborea secondary cell wall. 373 
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 374 

Analysis of lignin biosynthetic genes 375 

Specifically, the phenylpropanoids pathway showed a clear pattern of upregulation in xylem 376 

compared to leaves, as exemplified  by PAL, C4H, COMT and CCoAOMT genes (Fig 377 

6)However, some variants of biosynthetic genes  behave differently. Homologous genes or 378 

transcript variants contribute to functional redundancy as well as phenotypic plasticity, where 379 

specialization may take place, giving rise to organ or environmental dependent expression. 380 

In the case of the PAL gene, four variants have been reported in Arabidopsis (PAL1, PAL2, 381 

PAL3 and PAL4) [55], all of them with high importance in the process of lignin biosynthesis. 382 

Whereas in tobacco, it has been reported that PAL2 is more related to processes of 383 

development of leaves and flowers as well as pollen viability [40]. In our transcriptomic 384 

profiling, unique white teak´s variants for COMT and C4H were identified and both were 385 

significantly upregulated in stem, whereas F5H and 4CL were expressed in both tissues, 386 

which does not exclude the possible presence of other variants or multi-functionality of a 387 

same variant in other tissues or developmental process.   388 

 389 

In the case of CAD enzyme, which catalyzes the last step of the biosynthesis of monolignols 390 

for the formation of the alcoholic forms, 9 different members have been reported in 391 

Arabidopsis and 12 in rice, some of them with different patterns of expression among 392 

different types of tissues [40, 56]. In the xylem of white teak 4 possible variants of CAD gene 393 

were identified, among which CAD3 showed a predominant expression in stem and CAD9 394 

was equally expressed in both tissues, which could indicate a multifunctional role for this 395 

gene. CAD9 has been related mainly to the lignification processes [57], with a gradual 396 

induction pattern during stem developmental stage succession [58], although its expression 397 
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has also been evidenced in leaves and as part of stress response mechanisms [58-60]. The 398 

identity of the other two possible CAD members was not determined, however both of them 399 

were predominantly expressed in leaves of white teak. Besides, some Arabidopsis variants 400 

of CAD (i.e. CAD2 and CAD3) are poorly or not expressed during lignification processes, 401 

thereby indicating probable different roles in other biological processes [40]. . Phylogenetic 402 

analysis showed the relationship of two variants of CAD proteins found in white teak,with 403 

other possible homologs; the CADs variant (putative CAD3) was tightly related with Salvia 404 

milthiorrhiza CAD, whereas CADL grouped together  with CAD4 of Tectona grandis and 405 

CAD of Sesamum indicum, indicating its possible relation with other  members of thelamiales 406 

order. However, a more in-depth analysis is necessary to determine the specific identity, 407 

ortholog relationship, and biological function of all these members found in white teak.  408 

Differential expression analysis showed that a unique HCT gene was significantly 409 

upregulated in white teak leaves. According to Besseau et al. [61], under certain conditions, 410 

HCT may have a key role in the synthesis of flavonoids which may be the case in the leaves 411 

of white teak. Xylem expression of HCT, although lower, could be enough to maintain the 412 

lignification process.  413 

 414 

Biosynthetic genes involved in non-lignin components of secondary cell wall  415 

Development of the xylem cells requires coordinated synthesis of the different elements 416 

constituting the secondary cell wall and programmed cell death. Some of the genes involved 417 

in these processes showed highly specific expression patterns. This is the case of IRX 418 

(Irregular xylem) genes, whose mutations affect the phenotypic development at the level of 419 

xylem cells [62] as well as PGSIP (plant glycogenin-like starch initiation proteins) genes, 420 

also known as Gux, that constitute a group of genes involved in xylan synthesis and whose 421 
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function has been specifically related with secondary wall formation [63]. The IRXs genes 422 

are involved in synthesis of celluloses and hemicelluloses: IRX1, IRX3 and IRX5, for 423 

example, are celluloses synthases (CesA) specifically expressed in secondary cell wall [64]. 424 

Interestingly, key protease encoding genes such as XCP1, XCP2 and VPE, known to be 425 

involved in programmed cell death during xylem development, have been identified amongst 426 

xylem upregulated genes [65].. Furthermore, concomitant upregulation of transcription 427 

factors like VNI2 and XND1, reported as specifically involved in the tight regulation of this 428 

process, has also been observed in our transcriptomic profile. [11].  429 

On the other hand,, specific activation of laccase genes such as LAC4, LAC11, LAC17, 430 

LAC10 and LAC2, known to be involved in monolignol polymerization [66-68], may reflect 431 

the importance of these enzymes for xylem formation,.  Finally,  upregulation of the FLA11 432 

gene in xylem is in accordance with previous reports of its induction during the biosynthesis 433 

of the secondary cell wall in Arabidopsis and Eucalyptus, where a key role for these 434 

fasciclin‐ like arabinogalactan proteins in cell wall development biomechanics and 435 

development has been proposed[64]. 436 

 437 

Other key genes showed a different pattern of expression like those coding for cellulose 438 

synthases (CESA), and cellulose synthase-like proteins (CSL), for which a significant 439 

downregulation in stem was observed. This could be related to fluctuations in the expression 440 

of these genes according to the type of cell wall, and the developmental stage.  In Arabidopsis 441 

for example, expression of CesA1, CesA2, CesA3, CesA5, CesA6 and CesA9 genes was 442 

shown to be related to formation of primary cell wall, rather than secondary cell wall [69]. 443 

In rice and Eucalyptus camaldulensis, differences in the patterns of expression of some CesA 444 

were found in different types of tissue,cell wall or development stages [70, 71]. In the case 445 
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of the CSL genes, in white teak most of them presented a predominant expression in leaves. 446 

About this, Lerouxel et al.[72],  and Muthamilarasan et al. [73], indicate that these proteins 447 

have a relevant role in the synthesis of polysaccharides that are not necessarily part of the 448 

secondary cell wall hemicellulose matrix, and that environmental factors may affect their 449 

expression patterns.    450 

Thus, xylem differentially expressed genes bring molecular knowledge on key functional and 451 

anatomical processes seemingly important for white teak’s secondary xylem development, 452 

like the activation of programmed cell death, the activation of biosynthetic pathways related 453 

to lignin formation and other components of the secondary cell wall, or other associated 454 

regulatory processes. 455 

 456 

CONCLUSIONS 457 

Transcriptomic profiling of leaves and wood of young white teak (Gmelina arborea Roxb.) 458 

trees was carried out, which constitutes an important genomic resource for this tropical 459 

timber. Differential expression analysis allowed to identify for the first time in this species, 460 

major genes related with lignin biosynthesis and other components of the secondary cell wall, 461 

as well the main transcription factors implicated in its regulation. Also, a catalog of intragenic 462 

microsatellite markers was obtained that may be useful in the future establishment of 463 

strategies for marker assisted selection of traits related with lignin formation, wood and/or 464 

secondary cell wall development in this economically important tree species. The 465 

transcriptome obtained could contribute significantly to increase the knowledge on wood and 466 

lignin formation that is still scarce in white teak, and will be highly useful for other non-467 

model tropical wood tree species.  468 

 469 
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METHODS 470 

Plant material and RNA isolation 471 

Plant material was obtained from approximately one-year-old trees, located in the 472 

commercial plantation “El Neme”, located at Coello (Tolima, Colombia).of municipality of 473 

Coello (Tolima, Colombia). Leaves and stem cuttings from six different individual plants 474 

were collected and stored in liquid nitrogen. For RNA isolation from stem (with secondary 475 

xylem), external tissues that constitute the bark (phloem and periderm), and pith were 476 

removed from stems. Wood was chopped into small pieces using a sterile scalpel and 477 

grounded in liquid nitrogen. Total RNA was obtained using the protocol developed for RNA 478 

extraction from the pine wood by Chang et al. [74]. The leaf RNA was isolated using the 479 

Isolate I RNA isolation kit (Bioline, BIO-52040). RNA samples were quantified using a 480 

Nanodrop spectrophotometer (2000, Thermo Scientific, USA) and its integrity was verified 481 

using 1% agarose gel electrophoresis in denaturing conditions. 482 

Library preparation and RNAseq 483 

RNA samples with best integrity and concentration values were further validated using a 484 

bioanalyzer (2100 Agilent, USA) and samples with a RIN value > 7 were selected for 485 

sequencing. Nine RNA samples of each, xylem and leaves, were used to make 3 pools of 3 486 

different individuals for each tissue type. From each pool of RNA, sequencing libraries were 487 

generated using the TruSeq library prep kit (Illumina, catalog no. RS-122-210, USA), 488 

obtaining six indexed libraries with three replicates for each tissue. All the libraries were 489 

sequenced using the NextSeq500 platform (Illumina, USA) to generate paired-end reads of 490 

2 x 150 bases length.  491 
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Bioinformatic analysis and de novo assembly of reference transcriptomes 492 

Raw reads were evaluated for quality, and sequences with a Q score < 20 were eliminated. 493 

Adapters were eliminated by trimming the 10 bp from the 5’ ends of the reads using 494 

Trimmomatic (version 0.36) [75]. Additionally, the reads corresponding to rRNAs were 495 

aligned and eliminated using the program bowtie2 (version 2.3.5) [76] and the SILVA 496 

database [77]. Finally, overrepresented sequences identified as contaminants or low 497 

complexity sequences were also eliminated from the further processing.   498 

  499 

A de novo transcriptome assembly strategy was chosen discarding the alternative of  500 

reference genome-guided assembly, because the most closely related genome sequence 501 

available belongs to a relatively distant member of the Lamiaceae family, and a different 502 

genus (Tectona grandis). Thus, de novo assembly of the reference transcriptome was 503 

performed using Trinity (version 2.1.1) [78], setting as parameters a minimum length of 200 504 

bases and a k-mer value of 25. To obtain the reference transcriptome of secondary xylem, 505 

only the reads from stem were used in the assembly process. Additionally, a de novo 506 

assembly using the pooled filtered reads from xylem (stem) and leaves was also performed 507 

for the differential expression analysis. All the necessary programs for the computational 508 

analysis were run using the High-Performance Computational Center (HPCC) at the Texas 509 

Tech University and the ZINE Cluster of Xavierian University.   510 

Annotation of reference transcriptome 511 

Reference transcriptome was annotated using the public databases (TAIR10, NR, and 512 

UNIPROT/SWISSPROT) using the BLASTX similarity search program [79] with an e-value 513 

of 1e-5. Categories of gene ontology (GO) were assigned using the GO annotation tool in 514 
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TAIR [80]. For visualization of GO categories, the system of classification of Wego was used 515 

[81]. TAIR annotation was also used for the identification of transcription factors using the 516 

AGRIS transcription factors database [82]. KO identifiers necessary for the annotation in 517 

KEGG pathways were obtained using the Uniprot tools [83]. PFAM domains were identified 518 

using HMMER tools [84]. Additionally, the TRAPID tool was used to perform a quick 519 

annotation based in RAPSearch and identify ORFs in the transcripts [85]. For the validation 520 

of the identity of some genes with full length ORFs, a multiple alignment–based phylogenetic 521 

analysis of their derived protein sequences was performed with selected homologous 522 

sequences of plant model and tree species obtained from gene bank, Uniprot, TAIR, 523 

PlantTFDB and  iTAK plant transcription factor database, using the MEGA 7 software [86] 524 

. 525 

SSRs identification 526 

The reference transcriptome was further analyzed for the presence of microsatellite markers 527 

using the MISA tool [87], considering a minimum of 5 motif repetition for the dinucleotides 528 

(DNRs), trinucleotides (TNRs), tretranucleotides (TtNRs), pentanucleotides (PNRs) and 529 

hexanucleotides (HNRs).   530 

Differential expression analysis 531 

For differential expression analysis, the transcriptome assembly generated from the pooled 532 

reads of xylem (stem) and leaf tissues were used as reference transcriptome. Reads from each 533 

replicate and tissue were mapped against this transcriptome assembly using bowtie2 and 534 

samtools [88] and the counts of the mapped sequences were obtained using bedtools [89]. 535 

Counts were normalized to RPKMs (Reads Per Kilobase per Million mapped reads) and the 536 

differential expression analysis was performed using DESeq package [90] with the leaves 537 
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transcripts used as control tissue. A principal component analysis (PCA) of expression levels 538 

and using transcripts counts was performed to assess the variance in transcript profiling 539 

simultaneously amongst  samples (replicates) and treatments (i.e. tissues: xylem and leaves). 540 

PCA plot was obtained using ggplot2 R package [91].  541 

Selection of differentially expressed genes between xylem and leaf tissue was done using a 542 

binomial test with an adjusted p-value (p < 0.05) and values of logarithmic change in fold 543 

expression (Log2 Fold change) ≥ 2 indicating up- or down-regulation of the xylem genes in 544 

comparison with leaves. The functional annotation of differentially expressed transcripts was 545 

performed using the Mercator [92] and TRAPID  tools. Visualization of the key metabolic 546 

pathways with differentially expressed genes was performed using the MapMan program 547 

[93]. 548 

Differential expression validation of genes using RT-qPCR 549 

To validate the differential expression of a selection of genes upregulated in xylem, RT- 550 

qPCR was performed. cDNA of xylem (stem) and leaves were prepared using the 551 

Transcriptor first strand cDNA synthesis kit (Roche, USA): 1µg of total RNA per 40 µl final 552 

reaction volume was used following manufacturer operating procedure. Primers were 553 

designed for the selected 13 candidate genes related to the monolignol biosynthetic pathway, 554 

cellulose and hemicellulose synthesis, and transcription factors involved in the regulation of 555 

secondary cell wall biosynthesis. UBIQUITIN5 (UBQ5), β-TUBULIN (β-TUB) and 556 

HISTONE3 (HIS3) genes were evaluated as reference genes based on the transcriptome data 557 

and finally UBIQUITIN5 (UBQ5) was used for the normalization of RT-qPCR data. Primer3 558 

tool was used for the primer designing taking into account the criteria for qPCR primers [94] 559 

(Supplementary Table 3).  560 
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RT-qPCR was run in a Lightcycler 96 real time PCR (Roche, USA) using the Fast start TM 561 

SYBR green  (Roche, USA in a 96-well plate with 3 biological replicates and 3 technical 562 

replicates for each gene. Reactions were performed by manufacturer operating procedure in 563 

a final volume of 20 µl with 10 µl of SYBR mix, 5 µl of five-fold diluted cDNA (equivalent 564 

to 25 ng of reverse transcribed total RNA) and primers at a final concentration of 0.5 pmol/µl. 565 

Three negative template controls per primer pair were included in each plate. Running 566 

conditions were: a pre incubation phase at 95°C for 10 minutes, 45 cycles of amplification 567 

with 3 steps: 95°C for 10 seconds, 58°C for 10 seconds and 72°C for 10 seconds, a melting 568 

phase with 3 steps: 95°C for 10 seconds, 65°C for 60 seconds and 97°C for 1 second, finally 569 

a cooling phase at 37°C for 30 seconds. Melting curves were analyzed to verify the presence 570 

of only one product and the absence of primer dimers. The ΔΔCt comparative method [95]  571 

was used for the estimation of the change of gene expression between the two tissues.  572 
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Figures. 1000 

 1001 

Fig 1. Main GO categories assigned to xylem reference transcriptome of Gmelina arborea. 1002 
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 1003 
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Fig 2. Main families of transcription factors identified in the xylem transcriptome. Blue bars 1004 

indicate the number of transcripts belonging to each family. 1005 

 1006 

 1007 

 1008 

Fig 3. Phylogenetic analysis of G. arborea NAC transcription factors:  VND7, NST1 and 1009 

SND2 protein sequences identified from the reference transcriptome of Gmelina arborea 1010 

(Ga) were compared to homologs from other species: At: Arabidopsis thaliana (Q9C8W9, 1011 



49 

 

Q84WP6, O49459), Bd: Brachypodium distachyum (Bradi1g04150.1.p, Bradi1g06970.1.p, 1012 

Bradi1g37898.1.p), Cp: Carica papaya (XP_021889039), Gm: Glycine max 1013 

(XP_006589457.1, Glyma.01G046800.1.p, Glyma.01G005500.1.p), Nt: Nicotiana tabacum 1014 

(XP_016440678.1), Pa: Picea abis (MA_101849g0010), Pt: Populus trichocarpa 1015 

(XP_024447115.1, Potri.001G061200.1, Potri.001G343800.1), Si: Sesamum indicum 1016 

(XP_011096365), Sly: Solanum lycopersicum (Solyc01g009860.2.1, Solyc01g102740.2.1), 1017 

Vv: Vitis vinifera (GSVIVT01000940001, XP_002267383, GSVIVT01015274001). The 1018 

clustering method used for dendrogram construction was neighbor-joining. Line length 1019 

indicates the evolutionary distance.  Uniprot, NCBI protein, TAIR and PlantTFDB accession 1020 

IDs are shown in parenthesis. In the case of Picea abis, accession was obtained from iTAK 1021 

plant transcription factor database (http://itak.feilab.net/cgi-1022 

bin/itak/db_gene_seq.cgi?trans_ID=MA_101849g0010 ). 1023 

 1024 

Fig 4. Distribution of differentially expressed transcripts (DEG) with a p-value < 0.05. 1025 

DEG are shown in red and the non-DEG are shown in black. 1026 
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 1027 

Fig 5. Differential expression between leaf and stem according to the main metabolic 1028 

processes in which they are involved. The logarithm of changes of expression for each 1029 

transcript is represented in red color (induction in stem, Log2FC ≥ 2) and blue (repression in 1030 

xylem, induction in leaf, Log2FC ≤ 2). Analysis was performed using MapMan software. 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 
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 1038 

Fig 6. Differential expression of genes of the monolignol pathway, according to the 1039 

logarithm of fold change (Log2FC). Transcripts corresponding to each gene are represented 1040 

in squares. In red are represented the Log2FC values ≥ 2 (induction in xylem) and in blue 1041 
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the Log2FC values ≤ 2 (repressed in xylem). Pathway analysis was performed using 1042 

MapMan software. 1043 

 1044 

Fig 7. Differential expression of different transcripts identified as transcription factors 1045 

involved in the regulation of the monolignol pathway.  In red are shown the Log2FC values 1046 
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≥ 2 (induction in xylem) and in blue the Log2FC values ≤ 2 (repressed in xylem, induction 1047 

in leaf).  1048 

 1049 
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Fig 8. Genes related to the synthesis of other elements of the secondary cell wall with 1050 

differential gene expression between stem and leaf. Red color represents Log2FC values ≥ 2 1051 

(induction in xylem), blue colors Log2FC values ≤ -2 (repressed in xylem). 1052 

 1053 
 1054 
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 1056 

 1057 
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 1066 
 1067 

Fig 9. Phylogenetic analysis of G. arborea PAL (A) and CAD (B) proteins. Protein sequences 1068 

of PAL and CAD enzymes obtained from G. arborea full length cognate transcripts were 1069 

compared to homologous sequences belonging to other plant species. Dendrograms were 1070 

constructed using the neighbor-joining clustering method. Line length indicates the 1071 

evolutionary distance.  1072 

B 
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In addition to G. arborea (Ga)   putative PAL1 sequence, other protein sequences used in 1073 

PAL phylogenetic analysis were: Ath: Arabidopsis thaliana, with four paralogs of PAL 1074 

included in the analysis, AthPAL1 (P35510), AthPAL2 (OAP06573), AthPAL3 (OAO94639) 1075 

and AthPAL4 (OAP02490.1). Car: Coffea arabica (AEL21616), Lca: Lonicera caerulea 1076 

(ALU09327), Nta: Nicotiana tabacum (NP_001312352.1), Min: Mangifera indica 1077 

(AIY24975.1), Mof: Melissa officinalis (CBJ23826.1), Pfr: Perilla frutescens (AEZ67457.1),  1078 

Psc: Plectranthus scutellarioides (AFZ94859.1), Pca: Pogostemon cablin (AJO53272.1 ), 1079 

Ptri: Populus trichocarpa  (P45730), Rco: Ricinus communis (AGY49231.1), Smi: Salvia 1080 

miltiorrhiza (ABD73282), Sba: Scutellaria baicalensis (ADN32766.1), Sin: Sesamum 1081 

indicum (XP_011094662), Vvi: Vitis vinifera (ABM67591),   1082 

Protein sequences used in CAD phylogenetic analysis, included two possible variants of 1083 

Gmelina arborea (Ga), the first one induced in stem (CADS, putative CAD3) and the second 1084 

one induced in leaves (CADL). Other CAD protein sequences used were:  Ath: Arabidopsis 1085 

thaliana CAD1 (OAP16446.1) and CAD2 (NP_179765), Egr: Eucalyptus grandis 1086 

(XP_010024064.1), Jcu: Jatropha curcas (XP_012086572.1), Jre: Juglans regia 1087 

(XP_018827699.1), Lp: Lolium perenne (AAB70908), Ote: Ocimum tenuiflorum 1088 

(ADO16245.1), Os: Oryza sativa (Q6ZHS4), Pni: Populus nigra (AFR37935.1), Pto: 1089 

Populus tomentosa (AAR83343.1), Rs: Rauvolfia serpentine (ALW82980.1), Sm: Salvia 1090 

miltiorrhiza (ADN78309.1), Sin: Sesamum indicum (XP_011097452.1), She: 1091 

Sinopodophyllum hexandrum (AEA36767.1), Tgr: Tectona grandis (ANG60951.1, 1092 

ANG60952.1, ANG60953.1, ANG60954.1),  Vvi: Vitis vinifera (RVW57228.1), Zm: Zea mays 1093 

(NP_001105654). Different CAD members were included for some species. Accession IDs 1094 

from protein NCBI database are shown in parenthesis.  1095 

 1096 
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 1097 

Fig 10. RT-qPCR differential expression validation of a selection of seven G. arborea 1098 

genes. Bars indicate log2FC of xylem expression compared with leaf expression: black 1099 

bars, mean log2FC values obtained from RT-qPCR assays; gray bars, mean log2FC values 1100 

obtained from RNA-seq data. 1101 
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 1120 

Supplementary figures and tables 1121 

 1122 

 1123 

Supplementary Fig 1. Principal component analysis (PCA) of G. arborea expressed 1124 

transcripts.  Transcript read counts obtained in each sample were used. Difference between 1125 

plant tissues (condition) is highlighted.  1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 
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1133 

Supplementary Fig 2. Main functional categories represented by DEG.  1134 

 1135 

Supplementary table 1. Summary of G. arborea de novo transcriptome assembly  metrics 1136 

combining leaves and xylem RNaseq data.  1137 

Assembly 

Total number of sequences obtained 147,130,884 

  

Number of sequences used for the assembly 311,868,206 

Number of transcripts obtained post assembly 151,229 

N50 value (in bp) 1332 

Average contig length (in bp) 782.84 

Number of bases assembled 118,457,690 

Annotation 



60 

 

Full length ORFs 20,156 

Quasi full length ORFs 16,706 

Transcripts with   hits in  TAIR10 (blastx) 53,537 

Transcripts with Interpro domains 47,884 

Transcripts classified in gene families 57,075 

Transcripts with GO terms 41,674 

Number of GO terms 3106 

 1138 

Supplementary table 2. Frequency in the number of repetitions found for SSRs 1139 

microsatellite markers. 1140 

 1141 

 1142 

 1143 

 1144 

Supplementary table 3. Primers used for RT-qPCR validation of differentially expressed 1145 

genes between xylem and leaf tissues. 1146 

Gene /Primer Sequence  5´-3´ Amplicon 

Size 

PAL-F AAGGCATTGCATGGAGGGAA 201 

PAL-R CTCAGCACCCTTGAACCCAT 

4CL-R TTGACGGTGATGACGAGCTC 209 

4CL-F CTCAGTGACAGCGGAACCAT 

CADx-F GACTCAACAAACCTGGTATGCACA 392 

CADx-R CGTCTCTTTCATCCCTCCAATGC 

CADl-R GATAGGCACAATGGATGGTATCG 171 

CADl-F GCGCTTCCAACTATCGCCC 

COMT-F GACAGGGTCTTGATGGAGGC 232 

COMT-R CACCACCAACATCGACCAGA 

CCoAOMT-F GCATCAGGAGGTTGGGCATA 238 

CCoAOMT-R AGAGTAGCCGGTGTAAACGC 

CCR-F CTGGAACAGTGATGGGTCCT 232 

Unity Size Number of SSRs 

2 20,634 

3 4463 

4 319 

5 17 

6 27 
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CCR-R GCCACCTTAGCAGCAAAATC 

HCT-F CTTTGTGTGGCGAACTCGTA 229 

HCT-R TTACCCCATCCAAAATCTGC 

NST1-F ATGGCCAGAAATCAGACTGG  

NST1-R ATGAAGTGAGGGGGCTTTCT 177 

MYB85-F AGCTGCCTATTCAGGGATGA 

MYB85-R TGTCGCTGAAACAATCGAAG  

FRA8-F TGGCTGGCTGACTTTTTCTT 213 

FRA8-R ATCCTCCATGGTGTGAAAGC 

PGSIP3-R CAGCTCACCGACTACGACAA 230 

PGSIP3-F TCGTTCAGAAAACCCTGGTC 

Ces-R TTCCGAAGGCAAGCTCTTTA 169 

Ces-F AGGCATCTCTGTGCTTCGAT 

UBQ5-F GATAGAGGTGGTGCTGAACGA 179 

UBQ5-R AGTCCTTGAGGGTGATGTGG 

HIST3-F GTTGCCTTGAGGGAGATCAG 176 

HIST3-R TCTTAGCGTGAATCGCACAC 

βTUB-F TGGTGATCTCAACCACCTCA 211 

βTUB-R GATACTGCTGGGAGCCTCTG 

 1147 


