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Abstract

This research proposes a novel cognitive radio architecture for massive
Internet of Things (IoT) services over TV White Spaces (TVWS). The
proposal considers TVWS as suitable frequency bands for facing the limited-
spectrum problem for massive IoT services. The architecture provides the
available list of channels to IoT devices and its access mechanisms have
Quality of Service (QoS) constrains. We define a novel access mechanism
that is based on regulatory policies by interacting with TVWS Geolocation
Database (GLDB) through the Protocol to Access White-Space (PAWS)
for providing the available list of channels to IoT devices. Regarding
QoS constraints, we explore different types of deployments and reference
coverage areas considering a packet loss probability model. In addition, the
research describes the optimization process to obtain the maximum service
area while maintaining an outage probability below a given objective.
Moreover, we applied a macro-diversity mechanism for improving the
packet loss probability with respect to our proposal and one Master Device
(MD) topology. We can evidence that the average packet loss probability is
reduced in 26% when the load is equal to 80% in our proposal.
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1Introduction

1.1 Motivation and Problem Statement

In the last 20 years, the Internet has changed the way people communi-

cate, work and do business. Nowadays, the communication paradigm has

changed because not only people establish connection to Internet but the

things too. The things are de�ned as virtual or physical objects, such as

household appliances, wearable and means of transport, among others.

This new communication paradigm has caused an impact on different sec-

tors of the society, for instance, energy, transport, health, and manufacture

of goods or services [1, 2, 3, 4, 5]. The impact of this technology can

be measurable according to information about different processes over

Internet that could report the behavior of physical or chemistry variables.

These variables in a process could be effective early warnings that may

improve the quality of the life of population. The applications are classi�ed

in �elds, for instance, smart agriculture and smart environment as shown

in Figure 1.1. These �elds have applications such as water quality, air pol-

lution reduction, forest �re, landslide, earthquake early detection, smart

greenhouses, agricultural automation and robotics, and toxic gas levels,

among others.

The concept of IoT was initially de�ned by the International Telecommuni-

cation Union ( ITU) in 2005 in the world summit on information society

[6]. According to [7], IoT is de�ned as a global infrastructure for the in-

formation society, enabling advanced services by interconnecting physical

and virtual things through the interoperability of the Information and Com-

munications Technologies (ICT). The ITU also states thatIoT adds a third

dimension to ICT about the communication with any object [7]. Moreover,

Cisco [8] presents IoT as the next evolution of the Internet that represents

1



(a) Smart agriculture (b) Smart environment

Fig. 1.1.: Examples of IoT �elds

a massive leap in the intrinsic capacity of the Internet to gather, analyze

and distribute data that can become information and knowledge.

Moreover, IoT devices have wireless access networks for accessing Inter-

net. Therefore, the radielectric spectrum is an important resource in this

technological paradigm. The IoT could access to Industrial, Scienti�c and

Medical (ISM) bands (i.e. unlicensed bands) or licensed bands. The main

disadvantage of licensed bands is the access cost and of unlicensed bands

is that these bands are overcrowded withIoT services and other services

[9, 10, 11].

A wide area network in unlicensed bands has a band of frequencies with a

central frequency of 915 MHz and bandwidth equal to 6 MHz in Americas,

and 866,5 MHz with bandwidth of 3MHz in Europe [12]. Then, when

the number of IoT devices increase, frequency bands congestion increases.

For this reason, these band of frequencies have challenges, particularly for

massive IoT services with special requirements such as low cost, low energy

consumption, delay-tolerance, and Quality of Service (QoS) [13].

In this aspect, massiveIoT networks have substantial challenges regarding

scalability, restrictions on the headers size of the protocols messages and

QoS. In addition, due to the exponential growth of IoT services [14],

additional issues arise regarding spectrum access such as (i) congestion

2 Chapter 1 Introduction
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