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y a la moral católica y por que las tesis no contengan ataques personales contra
persona alguna, antes bien se vea en ellas el anhelo de buscar la verdad y la justicia ”

Art́ıculo 23 de la Resolución N° 13 de Julio de 1946



Submodularity and combinatorial
representations for the multicommodity

network design problem

Diana Carolina Gutierrez Diaz

Nota: Aprobado

Dirigido por:

Camilo Ortiz Astorquiza, Ph.D

Ivan Contreras, Ph.D

Jurados:

Carlos Armando Zetina, Ph.D.

Rafael Santiago Gonzalez De Leon, Ph.D.

Tesis presentada al Departamento de Matemáticas para optar al grado en Magister
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Chapter 1

Introduction

Combinatorial optimization has its roots in combinatorics, operations research, and
theoretical computer science. A great motivation for studying combinatorial opti-
mization is that thousands of real-life problems can be formulated as abstract com-
binatorial optimization problems. Nonetheless, the mathematical concepts that lie
behind the applications are interesting on their own and have been the focus of atten-
tion of many theoretical researchers for several decades now (see Korte et al. (2018);
Nemhauser and Wolsey (1988);Wolsey (2020)).

In a combinatorial optimization problem one seeks to find the minimum (or max-
imum) value of a function over a domain which is defined as a set of combinatorial
objects. Note that the set function that models the objective of the optimization
problem is not unique. Moreover, it depends on the set of combinatorial objects used
to model the original problem. This observation has proved to be very important
when selecting the model and the corresponding solution approach since the com-
putational e⇤ciency can be significantly a⌅ected and the mathematical properties of
one model versus another can have a tremendous impact when solving the model.

One particular class within combinatorial optimization problems is that referred
to as Network Design Problems (NDPs) which are typically defined over a graph
(or network). Broadly speaking, an NDP can be defined as follows. Given a graph,
one must determine subsets of nodes or edges to activate/install (i.e., the design
of the network) so that some requirement is satisfied while minimizing/maximizing
an objective function usually associated with the costs/profits for opening or using
the arcs/edges and the nodes. The type of requirement to be satisfied in the NDP
provides a way of classifying them. For instance, NDPs are usually known as single
or multicommodity NDPs depending on the characteristics of the requirements, that
is, depending on whether only one type of flow in the network or several are sent.
In multicommodity NDPs, a commodity is typically expressed as a pair of nodes
origin-destination (OD).

NDPs lie at the heart of combinatorial optimization, turning into a major focus of
attention for researchers and practitioners in many areas of knowledge (see Ahuja et al.
(1993)), mainly because they constitute a rich area for several real applications while
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maintaining interesting modeling techniques and various solution methods developed
for NDPs, those methods have been broadly used in di⌅erent areas of Operations
Research and combinatorial optimization.

Some particular cases of NDPs are well-known problems in various fields such
as the shortest path problem ( Nemhauser and Wolsey (1988), Ahuja et al. (1993))
which consist of finding a subset of edges that minimizes the total distance between
pairs of nodes in the network; or the Traveling Salesman Problem which consists
on determining, over a connected graph, a minimum cost Hamiltonian cycle in the
network, (see Korte et al. (2018)).

From the applications perspective, NDPs may address strategical, tactical or oper-
ational decision-making situations. Moreover, because of the large number of practical
problems that can be modeled through NDPs, this field has been constantly increas-
ing over the past decades. As a result of the collective e⌅ort, a considerable amount
of knowledge has been built, aiming to design and operate e⇤cient systems in sev-
eral sectors such as personnel scheduling (Balakrishnan and Wong (1990), Bartholdi
et al. (1980)), service network design (Andersen et al. (2009), Crainic and Rousseau
(1986)), logistics network design (Cordeau et al. (2006), Geo⌅rion and Graves (2010)),
telecommunications and transportation planning (Melkote and Daskin (2001),Mag-
nanti and Wong (1984)), physical networks, route networks and space-time networks
(see Ahuja et al. (1993)).

On the other hand, NDPs are very challenging, in general they belong to the
class of NP-hard problems, but rich problems in terms of mathematical structure.
For instance, nowadays some of the most well-known solution methods in the field of
Integer Programming were first studied for NDPs (see Conforti et al. (2014);Dionne
and Florian (2006)). However, one of the most important properties in combinatorial
optimization, e.g., submodularity (See Korte et al. (2018)), has thus far been elusive
for the general case of NDPs. With this work we intend to fill this gap in the literature.

In this work we focus on one of the most well-known NDPs, the multicommod-
ity uncapacitated network design problem (MUND). The MUND, broadly speaking,
consists of selecting a set of arcs from a directed graph in such a way that all flow
requirements are satisfied at a minimum total cost in the network; here, each flow
requirement is associated to a commodity (pair OD) with a demand to be satisfied
by delivering, from an origin to a destination node. The MUND generalizes a large
class of well-known problems such as the traveling salesman problem, the uncapac-
itated lot-sizing problem, and the Steiner network design problem; see Ahuja et al.
(1993),Nemhauser and Wolsey (1988) and Ortega and Wolsey (2003).

In particular, the contribution of this work is twofold. First, we establish a new
combinatorial representation of the MUND whose objective function satisfies the
submodularity property and second, based on such representation we propose worst-
case bounds for a greedy heuristic that, to the best of our knowledge improve the
current state-of-the-art results for particular cases of the MUND.

Therefore, this document is organized as follows. In Chapter 2 we present well-
known results and the preliminaries needed throughout the rest of the document. In
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Chapter 3 we formally define the MUND and provide a detailed literature review on
the topic. In Chapter 4 we present a submodular representation and a matroid repre-
sentation for the MUND. Then, in Chapter 5, using this submodular representation,
we give a worse-case bound for a greedy algorithm for two special cases of the MUND
problem and finally we state some conclusions and possible future works in chapter
6.
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Chapter 2

Preliminaries

In this chapter we present some important definitions to understand and work with
combinatorial optimization problems; those definitions and mathematical results come
from convex analysis, linear programming, integer programming, combinatorial op-
timization, submodular optimization and complexity theory. The results presented
in this section are derived from the article of Ortiz-Astorquiza et al. (2015) and the
books of Bazaraa et al. (2011); Nemhauser and Wolsey (1988) and Ahuja et al. (1993).

2.1 Convex Analysis

Definition. Convex sets. A set X in Rn is called a convex set if given any two points
x1 and x2 in X, then �x1 + (1� �)x2 ⇥ X for each � ⇥ [0, 1]. Any point of the form
�x1 + (1� �)x2 where 0 ⇤ � ⇤ 1 is called a convex combination of x1 and x2.

x2

x1

(a) Convex set

x2

x1

(b) Nonconvex set

Definition. Extreme point. A point x in a convex set X is called an extreme point
of X if x cannot be represented as a strict convex combination of two distinct points
in X. In other words, if x = �x1 + (1 � �)x2 with � ⇥ (0, 1) and x1,x2 ⇥ X, then
x = x1 = x2.
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x1 Extreme point

x2 Extreme point

x3 Nonextreme point

Figure 2.2: Example drawn on a convex set of extreme and nonextreme points.

Consider now a nonzero vector p in Rn and a scalar k. Then, we have the following
definitions.

Definition. A hyperplane in Rn generalizes the notion of a straight line in R2 and
the notion of a plane in R3. A hyperplane H in Rn is a set of the form {x : px = k}.
Here, p is called the normal or the gradient to the hyperplane.

Definition. A half-space is a collection of points of the form {x : px ⌅ k}. A half-
space can also be represented as a set of points of the form {x : px ⇤ k}. The union
of the two half-spaces {x : px ⌅ k} and {x : px ⇤ k} is Rn.

l

Hyperplane H
Direction of p
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Figure 2.3: Half-spaces

Definition. A polyhedral set (or polyhedron) is the intersection of a finite number of
half-spaces.

Also a polyhedron can be defined as a subset P ⇧ Rn described by a finite number
of linear constraints P = {x ⇥ Rn : Ax ⇤ b}, with A ⇥ Rm◊n and b ⇥ Rm. The
polyhedral set corresponding to the constraints in an optimization problem is called the
feasible region and its elements are called feasible solutions i.e. the points satisfying
all constraints. Finally, we present the formal definition of convex hull.
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Definition. Given a set X ⇧ Rn, the convex hull of X, denoted conv(X) is defined
as:

conv(X) =

�
x : x =

t⇥

i=1

�ix
i,

t⇥

i=1

�i = 1,�i ⌅ 0 for i = 1, · · · , t with
⇤
x1, · · · , xt

⌅
⇧ X

⇧

In other words, the conv(X) is the (unique) minimal convex set containing X.

Figure 2.4: Example drawn of a convex hull

2.2 Linear, Integer and Combinatorial Optimiza-
tion

Definition. Consider a finite set N = {1, · · · , n} with corresponding weights cj for
each j ⇥ N and a set F of feasible subsets of N . The problem of finding a minimum
weight feasible subset is the combinatorial optimization problem

min
S�N

�
⇥

j⇥S

cj : S ⇥ F

⇧

Given the discrete nature of combinatorial optimization problems, they are gen-
erally formulated as binary programs where all the variables must be {0, 1} valued.

Consider the linear mixed integer programming problem defined as follows.

Definition. If some but not all variables are integer, we have the (linear) mixed
integer program (MIP)

min
⇤
cx+ dy : Ax+ By ⇤ b, x ⇥ Rn

+ and y ⇥ Zp
+

⌅

where x = (x1, · · · , xn) is a vector of real variables and y = (y1, · · · , yp) is a vector
of integer variables. An instance of MIP is specified by the data (c, d, A,B, b). The
feasible region of MIP is given by the set S =

⇤
(x, y) ⇥ Rn

+ ◊ Zp
+ : Ax+ By ⇤ b

⌅
.
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The function z = cx+ dy is called the objective function and an optimal solution
z⇤ = (x⇤, y⇤) is a feasible point for which the objective value is minimum, i.e.,

cx⇤ + dy⇤ ⇤ cx+ dy, ⌃(x, y) ⇥ S

A special case of MIP is the following linear program.

Definition. If all variables are in R+, we have the linear program (LP)

min {cx : Ax ⇤ b and x ⇥ Rp
+}

Also, a linear programming problem can be described as the optimization prob-
lem of a linear objective function while satisfying a set of linear equality or inequality
constraints. Classical techniques such as the simplex method as well as more sophis-
ticated polynomial time algorithms, such as interior point methods, are nowadays
capable of solving large-scale LP problems with millions of variables and constraints.
When we restrict all the variables to be integer-valued, we have another special case
of a MIP.

Definition. If all variables are in Z+, we have the (linear) integer program (IP)

min
⇤
cx : Ax ⇤ b and x ⇥ Zn

+

⌅

(Note that integer programming is a generalization of combinatorial problems).

In general, the solution of integer programming models is a challenging task. We can-
not use classical machinery of convex optimization because S =

⇤
x ⇥ Zn

+ : Ax ⇤ b
⌅

is not a convex set and a linear function over Zn
+ is convex but non-di⌅erentiable.

Therefore, we must resort to other mathematical techniques to prove that a particu-
lar solution is optimal by arguments other than convexity and di⌅erentiability.

When using integer programming, the first step is usually to represent the set of
feasible solutions of an optimization problem with a polyhedron.

Definition. A polyhedron P ⇧ Rn+p is a formulation for a set X ⇧ Zn ◊ Rp if and
only if X = P ⌥ (Zn ◊ Rp).

From the previous definition, it is clear that there is not a unique formulation for
an optimization problem. This leads us to the following definition in order to be able
to compare between the di⌅erent formulations of a particular problem.

Definition. Given a set X ⇧ Zn and two formulations P1 and P2 for X then we say
that P1 is a better formulation than P2, if P1 � P2.

By this definition, we can conclude that no other formulation for a given set X
is better than conv(X). Given that conv(X) is a polyhedral set, it can be repre-
sented by a finite set of linear constraints and thus, solved as a linear program. For
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some particular classes of combinatorial optimization problems the characterization
of conv(X) is known. However, for the vast majority of the problems that belong to
the class NP -hard, the representation of conv(X) remains unknown.

Several algorithms have been developed to solve MIPs. The key idea to these
methods is usually to construct a sequence of lower bounds z ⇤ z⇤ and upper bounds
z̄ ⌅ z⇤ such that z = z = z̄. In practice, algorithms find an (not necessarily) increasing
sequence of lower bounds and a (not necessarily) decreasing sequence of upper bounds,
and stop when the di⌅erence between the lower bound and the upper bound is within
a threshold value. We then need to find ways for obtaining such bounds. Following
this idea, we must have in mind that in real applications we usually look for a balance
between the time consumed by a model and its exactness. This means, if we can get a
good approximation e⇤ciently, sometimes is better than taking a long time to find the
exact optimal solution. Obviously, this depends on the requirements of the problem
and the particular application.

Many integer programming techniques use the simple idea of replacing a di⇤cult
MIP by an easier optimization problem whose optimal solution value is a lower bound
for the MIP optimal solution value.

Definition. A problem zR = min {f(x) : x ⇥ T ⇧ Rn} is a relaxation of the inte-
ger program (IP) z = min {g(x) : x ⇥ X ⇧ Zn} if the following two conditions are
satisfied:

• X ⇧ T

• f(x) ⇤ g(x) for all x ⇥ X.

An immediate result of this definition is that if (R) is a relaxation of (IP) then
zR ⇤ z. This means that any relaxation of the original problem will give us a lower
bound if we are minimizing (an upper bound if we are maximizing). In the case of
upper bounds when minimizing, every feasible solution is an upper bound and the
problem lies in finding the smallest one. We present some methods to find upper
bounds in later sections.

One of the most common relaxations of integer programs consists in dropping the
integrality conditions.

Definition. For an (IP) z = min{cx : x ⇥ S} with S = X ⌥ Zn
+ the linear program-

ming relaxation is given by zLP = min{cx : x ⇥ X}.

We present in the next proposition a known result that links the comparison
between formulations and the LP relaxations.

Proposition 1. Consider P1 and P2 two di⇥erent formulations for an integer pro-
gram and assume that P1 is better than P2. If zLPi = min {cx : x ⇥ Pi} are the values
of the associated linear programming relaxations, then zLP1 ⌅ zLP2 .
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2.3 Solution methodologies

The straightforward approach for solving a combinatorial optimization problem would
be to list all feasible solutions and evaluate them in the objective function to select
the one with minimum (or maximum) value. However, this brute force enumeration
procedure is ine⇤cient, so much so that even for relatively small instances of some
problems computers can take a large amount of time, more than we are willing or
able to wait. Consequently, several methods have been developed to find an optimal
or near-optimal solution. Those methods that prove the optimality of the solution
are known as exact solution techniques whereas those that find a feasible solution
“hopefully” near the optimal value are usually categorized as (meta)heuristics.

Since most combinatorial optimization problems can be modeled via an IP or a
MIP we mention some of the most important methods in the category of the exact
solution techniques to solve IPs and MIPs, namely: the branch-and-bound method
and the cutting planes algorithm. (see Land and Doig (2010), Gomory (1958)) In
a branch-and-bound method, we would systematically partition the feasible region
F into sub-regions F 1, F 2, F 3, . . . , FK . Let x̄ denote the best feasible solution (in
objective function value) we have obtained in prior computations. Suppose that for
each k = 1, 2, . . . , K, either F k is empty or xk is a solution of a relaxation of the
set F k and cx̄ ⇤ cxk. Then no point in any of the regions F 1, F 2, F 3, . . . , F k could
have a better objective function value than x̄, so x̄ solves the original optimization
problem. If cx̄ > cxk, for any region F k, we would need to subdivide this region by
“branching” on some of the variables. Whenever we have satisfied the test cx̄ ⇤ cxk

for all of the sub-regions (or we know they are empty), we have solved the original
problem.

Proposition 2. Let z = min{cx : x ⇥ F} and F = F1  · · · Fk be a decomposition
of F into smaller sets, and let zk = min {cx : x ⇥ Fk} for k = 1, · · · , K. Then,
z = mink zk.

Now, in order to explain the cutting plane algorithm, we must have in mind that
for a given (IP) min{cx : x ⇥ X} where X =

⇤
x ⇥ Zn

+ : Ax ⇤ b
⌅
we can in theory,

find the convex hull of X, i.e., con v(X) =
⌃
x ⇥ Zn

+ : Âx ⇤ b̂
⌥
, which would lead us

to simply solve its LP relaxation. However, finding conv(X) is not generally an easy
(or e⇤cient) task. What we can do in practice is to reduce the size of the set of
feasible solutions by means of valid inequalities. Valid inequalities that are useful are
the ones that are valid for X but are violated for the linear programming relaxation
of (IP ). To understand the concept we define the concepts of valid inequalities and
separation problems.

Definition. An inequality ⇥x ⇤ ⇥0 is a valid inequality for X ⇧ Rn if ⇥x ⇤ ⇥0 for
all x ⇥ X.

Definition. The cutting plane problem associated to a combinatorial optimization
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problem is the following: if given x⇤ ⇥ Rn, and x⇤ ⌦⇥ con v(X) then find an inequality
⇥x ⇤ ⇥0 satisfied by all points in X but violated by the point x⇤.

Suppose that X = P ⌥ Zn with P a polyhedron and let V be a set of valid in-
equalities of X.

Result: Cutting plane algorithms
Given an initial polyhedron X. Set i = 0, stop = false, P = P 0.
while stop = false do

Solve the linear program zi = min {cx : x ⇥ P i}.
if The optimal solution xi is integer then

stop = true
else

Solve the separation problem for xi and P i.
if There is an inequality that cuts o⇥ xi then

P i+1 = P i ⌥ {x : ⇥ix ⇤ ⇥i
0}

i = i+ 1
else

stop = true
end

end
end

The problem of finding the consecutive cutting planes that should be selected is
di⇤cult, and there is not an e⇤cient way of generating the valid inequalities in order
to get the convex hull of all the integer points contained in a given convex polyhedron
P in “short” time.

Separately, when we are willing to accept a solution with a margin of error, say
a “good solution” but not necessarily the optimal, usually the problem is to find
solutions quickly. Then, we typically look for other methodologies to find feasible
solutions for the IP or the MIP, known as heuristics and metaheuristics.

The most simple type of heuristics are the so-called greedy heuristics, this is an
algorithm that always takes the best immediate, or local, solution while finding an
answer (Black, 2015). For example, the greedy heuristic that we are going to use on
this document follows the next steps: let v(Q) be a real-valued function defined on
all subsets of N and consider the problem max{v(Q) : Q ⇧ N}. The idea of this
greedy heuristic is: for a given set Qt, select the element with the greatest immediate
increase value, provided that such element exists, add it to the previous set Q(t) and
repeat until there is no more feasible elements with positive increase value.
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Algorithm 1:
Result: Greedy Heuristic
Given an initial Q0 = ↵. Set t = 1 and stop = false.
while stop = false do

Let jf = max
j⇥N\Qt�1

v
�
Qt⌅1  {j}

 
.

if v (Qt⌅1  {jt}) � v (Qt⌅1) then
Stop with Qt⌅1 a greedy solution.
stop = true

else
if v (Qt⌅1  (jt)) > v (Qt⌅1), then

set Qt = Qt⌅1  {jt},
t+ t+ 1.

else
if Qt = N then

stop = true
else

t+ t+ 1
end

end
end

end

Recall that (in general) we cannot expect that a greedy algorithm for a combinato-
rial problem yield an optimal solution. Others heuristics are the local search heuristic,
the primal and dual heuristic (see Dı́az et al. (2000), Nemhauser and Wolsey (1988)).

Definition. An algorithm is a factor ⇥ approximation ( ⇥-approximation algorithm)
for a problem if and only if for every instance of the problem it can find a solution
within a factor ⇥ of the optimum solution.

A ⇥-approximation algorithm tries to find a feasible solution, as a heuristic, but
the di⌅erence is that a ⇥-approximation algorithm assures a feasible solution that
is at most at a determinate distance from the optimal. This definition implies that
the solution found by the algorithm is at most ⇥ times the optimum solution. If the
problem is a maximization, ⇥ < 1 and this definition guarantees that the approximate
solution is at least ⇥ times the optimum.

Metaheuristics are special cases of heuristics, they refer to a master strategy that
seeks to overcome local optimality, which is a usual problem of simple heuristics,
and provide a general framework for the development of solution methods (see Gen-
dreau et al. (2010)). One of the most used meta-heuristics is the greedy randomized
adaptive search procedure (see Festa and Resende (2011)).
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2.4 Complexity Theory

Complex theory seeks to analyze and classify problems according to how di⇤cult it
is to find an optimal solution. For each optimization problem, an associated (YES-
NO)-instance decision problem, of the form: “Is there an x ⇥ S with value cx ⇤ k for
a given k ?” is used to define the class of legitimate problems.(An instance means a
specific instance of that problem.). We are interested in complexity theory to be able
to understand and classify the di⇤culty of the optimization problems, more specific
of the muticommodity network design problem.

Definition (Big O notation). For two functions f, g defined on the natural numbers,
f(n) is order g(n), written f(n) = O(g(n)), if there exists a constant C and a real
number n0 such that |f(n)| ⇤ Cg(n) for all n ⌅ n0.

Definition (Running Time). The running time of algorithm A on an instance of size
n is defined as fA(n) = sup{m : � input of size n such that it runs for m steps }

Definition (Polynomial time algorithm). An algorithm A is said to be a polynomial
time algorithm for problem X if fA(n) is O (np) for some fixed p.

Definition (NP). NP is the class of decision problems with the property that: for
any instance for which the answer to the problem is yes, there is a polynomial time
algorithm to proof the yes.

Definition (P). Let P be the class of problems that can be solved in polynomial time.
Problem X is in P if and only if there is a polynomial time algorithm for solving
X. A main theme of computational complexity is the question of inherent di⇥erence
between problems known to be in P and those known to be in NP. By definition we
know P � NP but to this date, there are problems in NP for which an algorithm
running in polynomial time that can answer them has not been found yet. This does
not imply that they do not exist nor that they do, so the question of P = NP remains
open.

Definition. If Q,R ⇥ NP and if an instance of Q can be converted in polynomial
time to an instance of R, then Q is polynomially reducible to R.

Definition. The class of NP-Complete problems, is the subset of problems Q ⇥ NP
such that for all R ⇥ NP, R is polynomially reducible to Q. An optimization problem
for which its corresponding decision problem is NP-Complete is called NP-hard.

The MUND problem, as some others network design problems, is know to be an
NP-hard problems, to see a proof you can see Johnson et al. (1978).
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2.5 Submodularity

Submodularity is a fundamental property of set functions that arises in the context
of combinatorial optimization. In general terms, it can be thought as the analogue
of convexity for continuos functions, although in some cases it resembles concav-
ity for certain properties (see Lovász (1983) Vondrák (2007) ). In particular, the
submodularity property has facilitated the study and development of algorithms for
several classes of discrete optimization problems. For instance, the greedy heuristic
with proven worst-case bounds on the optimal solution value for the general problem
max
S�E
|S|⇧k

f(S) when E is a set and f : 2E � R+ is a nondecreasing submodular function.

(see Nemhauser et al. (1978)). Below is the definition of submodularity for a function
f .

Definition. Let E be a finite set and f be a real-valued function defined on the set of
subsets E and ⇤e(S) = f(S  {e})� f(S) be the incremental value of adding element
e to the set S when evaluating the set function f .

(a) f is submodular if ⇤e(S) ⌅ ⇤e(T ), ⌃S ⇧ T ⇧ E and e ⇥ E\T .
(b) f is nondecreasing if ⇤e(S) ⌅ 0, ⌃S ⇧ E and e ⇥ E.

Proposition 3. (see Nemhauser et al. (1978). Proposition 2.1) Each of the following
statements is equivalent and defines a submodular set function.

(i) z(A) + z(B) ⌅ z(A  B) + z(A ⌥ B), ⌃A,B ⇧ E

(ii) ⇤i(S) ⌅ ⇤j(T ), ⌃S ⇧ T ⇧ E and j ⇥ E � T

(iii) ⇤j(S) ⌅ ⇤j(S  {k}), ⌃S ⇧ E and j ⇥ E � (S  {k})

(iv) z(T ) ⇤ z(S) +
⇥

j⇥T⌅S

⇤j(S)�
⇥

j⇥S⌅T

⇤j(S  T � {j}), ⌃S, T ⇧ E

(v) z(T ) ⇤ z(S) +
⇥

j⇥T⌅S

⇤j(S), ⌃S ⇧ T ⇧ E

Proof. We will prove the equivalence of (i) and (ii), and then (iii) � (ii) � (iv)
� (v)� (iii).
(i) � (ii). Take S ⇧ T, j /⇥ T,A = S  {j} and B = T in (i). This yields

z(S  {j}) + z(T ) ⌅ z(T  {j}) + z(S)

or
⇤j(S) = z(S  {j})� z(S) ⌅ z(T  {j})� z(T ) = ⇤j(T )
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(ii) � (i). Let {j1, . . . , jr} = A� B. From (ii) we obtain

⇤ii (A ⌥ B  {j1, . . . , ji⌅1}) ⌅ ⇤h (B  {j1, . . . , ji⌅1}) , i = 1, . . . , r

Summing these r inequalities yields

z(A)� z(A ⌥ B) ⌅ z(A  B)� z(B)

(iii) � (ii). Take S ⇧ T, j /⇥ T , and T � S = {j1, . . . , jr} . Then from (iii) we have

⇤j(S) ⌅ ⇤j (S  {j1}) , ⇤j (S  {j1}) ⌅ ⇤j (S  {j1, j2}) , . . . ,
⇤i (S  {j1, . . . , jr⌅1}) ⌅ ⇤j(T )

Summing these r inequalities yields (ii).
(ii)� (iv). For arbitrary S and T with T �S = {j1, . . . , jr} and S�T = {k1, . . . , kq}
we have

z(S  T )� z(S) =
r⇥

t=1

[z (S  {j1, . . . , jt})� z (S  {j1, . . . , jt⌅1})]

=
r⇥

t=1

⇤jt (S  {j1, . . . , jt⌅1}) ⇤
r⇥

i=1

⇤jt(S) =
⇥

j⇥T⌅S

⇤j(S)

(2.1)

where the inequality follows from (ii). Similarly

z(S  T )� z(T ) =
q⇥

t=1

[z (T  {k1, . . . , kt})� z (T  {k1, . . . , kt⌅1})]

=
a⇥

t=1

⇤kt (T  {k1, . . . , kt}� {kt}) ⌅
a⇥

i=1

⇤kt (T  S � {kt})

=
⇥

j⇥S⌅T

⇤j(S  T � {j})

(2.2)

We obtain (iv) by subtracting (2.2) from (2.1). (iv) � (v). If S ⇧ T, S � T = ↵ and
the last term of (iv) vanishes. (v) � (iii). Substitute T = S  {j, k}, j /⇥ S  {k} in
(v) to obtain

z(S  {j, k}) ⇤ z(S) + ⇤j(S) + ⇤k(S)

or
⇤j(S  {k}) = z(S  {j, k})� z(S  {k})

= z(S  {j, k})� ⇤k(S)� z(S) ⇤ ⇤j(S).

In many cases we consider nondecreasing submodular functions, which, in addition
to (i), satisfy z(S) ⇤ z(T ), ⌃S ⇧ T ⇧ E
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Proposition 4. If z is a submodular set function on E with �⌅ ⇤ ⇤j(S), ⌃S ⇧
E, j ⇥ E � S, then

z(T ) ⇤ z(S) +
⇥

j⇥T⌅S

⇤j(S) + |S � T |⌅, ⌃S, T ⇧ E

Proof. Substitute the bounds on ⇤i into proposition 3, item (iv).

z(T ) ⇤ z(S) +
⇥

j⇥T⌅S

⇤j(S)�
⇥

j⇥S⌅T

⇤j(S  T � {j}), ⌃S, T ⇧ E

⇤ z(S) +
⇥

j⇥T⌅S

⇤j(S)�
⇥

j⇥S⌅T

�⌅

⇤ z(S) +
⇥

j⇥T⌅S

⇤j(S) + |S � T |⌅

2.6 Matroids

There are many equivalent ways to define a finite matroid, we present one that focuses
on independent sets.

Definition. A finite matroid M is defined as a pair (E, I) where E is a finite set,
called ground set, and I is a family of subsets of E, called the independent sets, such
that I satisfies the following axioms:

1. The empty set is independent, i.e. ↵ ⇥ I.

2. If I2 � I1 ⇥ I then I2 ⇥ I

3. If I1 and I2 are in I, with |I2| > |I1| then there exists e ⇥ I2 such that, I1 e ⇥ I

Example.

One trivial example of a matroid M = (E, I) is a uniform matroid in which

I = {X ⇧ E : |X| ⇤ k}

for a given k. It is usually denoted as Uk,n where |E| = n. A base is any set of
cardinality k (unless k > |E| in which case the only base is |E| ). A free matroid is
one in which all sets are independent; it is Un,n.

Example.

A partition matroid, is a matroid in which E is partitioned into (disjoint) sets
E1, E2, · · · , El and

I = {X ⇧ E : |X ⌥ Ei| ⇤ ki for all i = 1, · · · , l} ,

for some given parameters k1, · · · , kl.
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2.6.1 Matroid Optimization

Given a matroid M = (E, I) and a objective function c : E � R, we are interested in

finding an independent set S of M of maximum total value c(S) =
⇥

e⇥S

c(e). This is a

fundamental problem. Note that the objective function c is also an additive function
on the set E.

If all c(e) ⌅ 0, the problem is equivalent to finding a maximum value base in the
matroid. If c(e) < 0 for some element e then, it will not be contained in any optimum
solution, and thus we could eliminate such an element from the ground set. In the
special case of a graphic matroid M(G) defined on a connected graph G, the problem
is thus equivalent to the maximum spanning tree problem which can be solved by a
simple greedy algorithm.

The greedy algorithm we describe actually returns, for every k, a set Sk which
maximizes c(S) over all independent sets of size k. The overall optimum can thus
simply be obtained by outputting the best of these. The greedy algorithm is the
following:

Algorithm 2:
Result: Greedy algorithm for matroids
Sort the elements (and renumber them) such that ;
c (e1) ⌅ c (e2) ⌅ · · · ⌅ c

�
e|M |

 

Given an initial S0 = ↵. Set t = 1 and stop = false.
while stop = false do

if t ⇤ |E| then
if St + ej ⇥ I then

t✏ t+ 1;
St ✏ St⌅1 + ej;
st ✏ ej

end
else

stop = true
end

end
End with result the set St = {s1, s2, . . . , st}

Proposition 5. For any matroid M = (E, I), the greedy algorithm above finds, for
every t, an independent set St of maximum value among all independent sets of size
t.

Proof. We are going to give a contradiction proof. Suppose St is not the set of
maximum value. Let St = {s1, s2, · · · , st} with c (s1) ⌅ c (s2) ⌅ · · · ⌅ c (st), and
suppose Tt has greater value (c (Tt) > c (St)) where Tt = {t1, t2, · · · , tt} with c (t1) ⌅
c (t2) ⌅ · · · ⌅ c (tt). Let p be the first index such that c (tp) > c (sp). Let A =
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{t1, t2, · · · , tp} and B = {s1, s2, · · · , sp⌅1}. Since |A| > |B|, there exists ti /⇥ B such
that B  {ti} ⇥ I. Since c (ti) ⌅ c (tp) > c (sp) , ti should have been selected when it
was considered. To be more precise and detailed, when ti was considered, the greedy
algorithm checked whether ti could be added to the current set at the time, say S.
But since S ⇧ B, adding ti to S should have resulted in an independent set since
its addition to B results in an independent set. This gives the contradiction and
completes the proof.
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Chapter 3

The multicommodity
uncapacitated network design
problem

In this chapter we present a formal definition of the NDP under study, a brief litera-
ture review on the topic and special cases of the problem that are fundamental for the
results presented in the subsequent chapters of this work. In particular, we focus our
attention on the Multicommodity Uncapacitated Network Design Problem (MUND)
which has shown to be central in the area of NDPs. For example, the MUND general-
izes a large class of well-known problems such as the uncapacitated lot-sizing problem
and the Steiner network design problem (Ortega and Wolsey (2003)).

3.1 Problem definition

We define the Multicommodity Uncapacitated Network Design problem (MUND) as
follows. Let G = (N,A) be a directed graph where N is the set of nodes and A is
the set of arcs. Also, let K be a set of commodities where each commodity k ⇥ K
is associated with a triplet (O(k), D(k), dk) , where O(k) is the origin node, D(k) is
the destination node and dk > 0 is a demand to be served between O(k) and D(k).
For each commodity k, we assume that there exists at least one path on G from
O(k) to D(k) and we define the connected subnetwork Gk =

�
Nk, Ak

 
that contains

only nodes and arcs that belong to some path from O(k) to D(k). Also, consider
fij to be the fixed costs for using an arc (i, j) linking node i to node j, ckij be the
costs per unit of commodity k delivered when using the arc (i, j). Hence, the most
common definition of the MUND consists of selecting a subgraph of G, such that, all
commodities are delivered from their origins to their destinations while minimizing
the total cost, which is the sum of the variable cost and the set up cost (see Gendron
et al. (1999) or Zetina et al. (2017)).

However, for the purpose of this research we consider the equivalent maximization
counterpart of the problem. That is, given a revenue ck gained per unit of commodity
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k delivered, the maximization version of the MUND consist of selecting a subgraph
of G, such that, all demands of commodities are satisfied while maximizing the total
profit (consisting of the revenue minus the variable costs) minus the set up cost of arcs
on the subgraph. The equivalence between the maximization and the minimization
problems for the MUND follows if all demands are satisfied at optimality, then the
total revenue is constant because the amount gained by deliver all commodities does
not depend on the subgraph used to deliver them. Thus, the problem of maximizing
a constant value minus the variable cost and the set up cost is equivalent to minimize
the variable cost plus the set up cost, which implies the equivalence between the
minimization and the maximization versions of the MUND.

Note that in this document we only consider the uncapacitated version of the
problem. A natural extension that has also received important attention in the lit-
erature (see Gendron et al. (1999)) is to consider limited capacities in the nodes or
the arcs to fulfill the demands of commodities. Nonetheless, we concentrate in the
MUND since the problem already constitutes a major challenge and as explained in
the following section it has been the focus of main research articles and books. More
importantly, because, to the best of our knowledge, the results obtained in this thesis
have not been published before.

3.2 Literature Review

The MUND has been broadly and deeply studied from di⌅erent authors. One of
the most important lines of research has been through Mixed Integer Programming
(MIP). For example, a well-known MIP formulation for the MUND is the following
(see Magnanti and Wong (1984))

(P) minimize
⇥

(i,j)⇥A

fijyij +
⇥

k⇥K

⇥

(i,j)⇥A

dkc
k
ijx

k
ij

subject to
⇥

j⇥N

xk
ji �

⇥

j⇥N

xk
ij =

⌦
↵

�

�1 if i = O(k)
1 if i = D(k)
0 otherwise

⌃i ⇥ N, k ⇥ K

xk
ij ⇤ yij ⌃(i, j) ⇥ A, k ⇥ K

xk
ij ⌅ 0 ⌃(i, j) ⇥ A, k ⇥ K

yij ⇥ {0, 1} ⌃(i, j) ⇥ A,

where the binary variables yij are one if arc (i, j) is installed and zero otherwise and
and the set of continuous variables xk

ij represent the fraction of demand of commodity
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k routed through arc (i, j). This type of formulation is usually solved by means of
a general purpose solver which typically use, as their main solution technique, the
Branch-and-Bound and Branch-and-Cut methods (see Nemhauser and Wolsey (1988)
and Conforti et al. (2014) ).

We are specially interested in two variants of the MUND problem. The first one is
the restricted path cardinality constraint (MUND-RP) problem which is a special case
of the MUND where a restriction on the total number of paths that can be chosen in
the solution set is included. That is, the solution set is bounded by a natural number
r. This problem has been studied before (see, for instance Bruglieri et al. (2006), they
summarized the state of the art of research on combinatorial optimization problems
with an exact cardinality constraint.)

The second variant is the MUND with a budget constraints (MUND-BC) problem
where a maximum budget constraint on the total sum of the setup costs is included
and all the set up cost are positive. The constraints of the MUND-BC have an
impact in the way we can express the objective function, changing it for an objective
function for which one no longer needs to consider the sum of the arcs’ setup costs.
Note that the constraint of the MUND-BC implies that the total number of arcs
in the solution is limited to a budget, which directly implies that the number of
arcs, and consequently the number of paths, are restricted for a maximum number
r. The previous observation allows us to say that the MUND-BC can be seen like a
MUND-RP. Some papers have studied the MUND-BC. e.g, Wong (1980) describes a
polynomial time heuristic for the MUND-BC problem whose worst-case error ratio is
two, considering all arcs set up cost equal to one.

There have been many studies about the MUND problem, some authors have
approached this problem from a polyhedral perspective, i.e. incorporating valid in-
equalities (see Balakrishnan et al. (1991), Atamturk and Rajan (2002) splittable and
unsplittable single arc-set relaxations, Raack et al. (2011) using graph connection
properties and Chouman et al. (2017) inequalities related with the strong, cover, min-
imum cardinality, and others. Others authors have focused on the development of
decomposition methods (Randazzo and Luna (2001), Frangioni and Gorgone (2014))
that exploit the problem structure to decompose the model into smaller subprob-
lems using decomposition and relaxation methods like lagrangian relaxation, Benders
decomposition and branch-and-bound or re-formulating the problem.

Another line of study has been the use of heuristics to obtain high quality solu-
tions in short computing time, for the MUND problem the first proposed solution
algorithm is an add-drop heuristic by Billheimer and Gray (1973). Other heuristics
are those of Dionne and Florian (2006), Bo⌅ey and Hinxman (1979) and, some rel-
evant heuristic results are given by Scott (1969), who proposed a greedy heuristic,
which is known as a delete or backward algorithm. Gabrel et al. (2003), who mod-
ified the delete algorithm and proposed a link-rerouting and partial link-rerouting
heuristics. Fragkos et al. (2017) who used Benders decomposition to solve a multi-
period extension of the MUND, they experimented with the use of Pareto-optimal
cuts and with the unified cut approach of Fischetti et al. (2010), obtaining significant
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computational gains. Also it is possible to find heuristics for the multicommodity
capacitated network design problem (MCND), variant that generalizes the multicom-
modity uncapacitated network design problem (MUND), such as Kim and Pardalos
(1999) (using dynamic slope scaling), Crainic et al. (2004) (using slope scaling and
Lagrangean perturbations), Ghamlouche et al. (2003), Paraskevopoulos et al. (2016)
(using scatter search with an iterated local search).

The main objective of this work is not to compare computational e⇤ciency with
other solution techniques but rather, provide a novel theoretical result that may yield
new research directions and solution approaches for the general MUND. In partic-
ular, we introduce a greedy heuristic for variants of the MUND with a guaranteed
worst-case bound, improving on the current state-of-the-art for the MUND problem.
To achive that we give a combinatorial representation for the MUND whose set func-
tion satisfies the submodular property. This work is inspired by Nemhauser et al.
(1978), who proves worst-case bounds for the uncapacitated location problem and
Ortiz-Astorquiza et al. (2017) who proves the submodular property for the Multi-
level uncapacitated facility location problem and proves worse-case bounds for the
corresponding greedy heuristic.
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Chapter 4

Combinatorial Representations for
the MUND

As mentioned above the submodularity property plays a central role in the develop-
ment of the results of this work. In this section we establish that the MUND can
be modeled through di⌅erent combinatorial representations, with di⌅erent representa-
tions of the objective function, which in turn may or may not attain the submodularity
property.

4.1 A natural combinatorial representation

Let G = (N,A) be a graph following the definition on 3.1. Also, let pk be a path with
origin O(k) and destination point D(k) and cpk the profit obtained by delivering one
unit of commodity k using path pk. Define the set function z : 2A � R as:

z(S) =
⇥

k⇥K

dk max
pk⇥S

cpk �
⇥

(i,j)⇥S

fij (4.1)

Then, a natural way of expressing the MUND as a maximization problem over a
set function is the following

max
S�A

{z(S)| � pk ⇥ S for each k ⇥ K}

Proposition 6. The set function z defined in (4.1) is not a submodular function.

Proof. Consider the MUND with a single commodity, fixed costs fij = 0, demand
d1 = 1, and additive profits as shown in the graph of Figure 4.1. where o is the origin
node and d is the destination node. Then, define R � S � A as

R = {(o, a), (a, b), (b, d)}
S = {(o, a), (a, b), (b, d), (c, d)}
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c d
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Figure 4.1: An instance of MUND

then Z(R) = Z(S) = 1, Z(S  {(a, c)}) = 100 and Z(R  {(a, c)}) = 1, then

Z(R  {(a, c)})� Z(R) < Z(S  {(a, c)})� Z(S)

thus, if ⇤e(R) = Z(R  {(a, c)}) � Z(R) and ⇤e(S) = Z(S  {(a, c)}) � Z(S) we
conclude, due to ⇤e(R) ⇤ ⇤e(S) with R � S, by using the definition of submodularity
z is not a submodular set function.

4.2 An alternative representation

Let Q = Q1  Q2 · · ·  Q|K|, be a set of simple paths in G, where Qk is the set of all
possible simple paths from O(k) to D(k), for k ⇥ K and let W = Q  A. Let fij, ckij,
ck as defined in 3.1.

Additionally, for M a subset of W we define S(M) to be the set of all paths in
M , i.e.

S(M) = {p|p ⇥M, p is a path}

and Sk(M) to be the set of all paths from O(k) to D(k) that are in M , that is,

Sk(M) = {p|p ⇥M, p is a path from O(k) to D(k)}.

Then, S(M) = S1(M)  S2(M)  . . . S|K|(M). Moreover, let R(M) be the set of
all arcs that are in M , i.e.,

R(M) = {(i, j) ⇥ A|(i, j) ⇥M}.

In what follows, in order to simplify the notation, we refer to Sk, S and R when
there is no ambiguity on the subset M that we are working on.

Now, let M be a subset of W , then we define:
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f(M) = �
⇥

(i,j)⇥R

fij

h(M) =
⇥

k⇥K

dkh
k(M)

hk(M) =

⌦
����↵

�����

max
p⇥Sk

�
ck � ckp

✏
= max

p⇥Sk

⇣

⌘ck �
⇥

(i,j)⇥p

ckij

✓

◆ if Sk ⌦= ↵

0 if Sk = ↵ and M ⌦= ↵

h(↵) = min
p⇥Q

�
ck � ckp

✏

z(M) = h(M) + f(M)

=
⇥

k⇥K

dkh
k(M)�

⇥

(i,j)⇥R

fij

and we define f(↵) = 0.

Assumption 1. We assume that the cost ckp from the use of a path p to deliver a
unit of commodity k is additive. Then, for each k ⇥ K and p path from O(k) to D(k)
we have

ckp =
⇥

(i,j)⇥p

ckij

Then the MUND can be written as the problem of selecting a set M ⇧ W such
that z(M) is maximum; this is,

max
M�W

⇤
z(M)|A(S(M)) = R(M), |Sk| > 0 for all k ⇥ K

⌅

where A(S(M)) = {(i, j) ⇥ p : p ⇥ Sk(M) for some k ⇥ K}.

Remark 1. The MUND RP can be written as the MUND problem adding the cardi-
nality constraint, thus

max
M�W

⇤
z(M)|A(S(M)) = R(M), |S(M)| ⇤ r, |Sk| > 0 for all k ⇥ K

⌅
(4.2)

Where r is the maximum number of paths on feasible solutions.
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Remark 2. For the MUND BC, we assume that z(M) = h(M), then we can write
the MUND BC as follows

max
M�W

⇤
z(M)|A(S(M)) = R(M), f(M) ⇤ b, |Sk| > 0 for all k ⇥ K

⌅
(4.3)

Where b is the maximum total sum of the setup costs.

A fundamental property of z is that of submodularity.

Proposition 7.

1. h(M) is submodular and nondecreasing.

2. z(M) = h(M) + f(M) is submodular.

Remark 3. Proposition 7 is also true for the objective functions of problems (MUND
RP) and (MUND BC). Note that for the MUND-BC, from proposition 7 we obtain
that z(M) = h(M) is a submodular and nondecreasing function.

Proof. 1. Let e ⇥ W , such that e ⇥ Q. Then in order to proof the first statement
of the proposition we set h⇤e

h⇤e(M) = h(M  {e})� h(M)

=
⇥

k⇥K

dk (h
k(M  {e})� hk(M))

=
⇥

k⇥K

dk


max

p⇥Sk(M⌃{e})

�
ck � ckp

✏
� max

p⇥Sk(M)

�
ck � ckp

✏�

=
⇥

k⇥K

dk max
p⇥Sk(M⌃{e})

⇣

⌘ck �
⇥

(i,j)⇥p

ckij

✓

◆ �
⇥

k⇥K

dk max
p⇥Sk(M)

⇣

⌘ck �
⇥

(i,j)⇥p

ckij

✓

◆

=
⇥

k⇥K

dk ⇧
e
k(M)

Where we define ⇧k as:

⇧ek(M) =

⌦
�↵

��

�
ck � cke

✏
� max

p⇥Sk(M)

�
ck � ckp

✏
if ck � cke = max

p⇥Sk(M⌃{e})

�
ck � ckp

✏

0 other case.

Note that if e ⇥ A then h⇤e(M) = 0 for all M ⇥ W .

h⇤e(↵) =
�
ck � cke

✏
�min

p⇥Q

�
ck � ckp

✏
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Note that ⇧ek(M) ⌅ 0 for all M � W . Therefore, if M1 ⇧M2 ⇧ W and e ⇥ \M2

we want to deduce that h⇤e(M1) ⌅ h⇤e(M2). Since the inequality is obtained if
M1 = ↵, we can assume M1 to be non empty.

Case 1. If �
ck � cke

✏
= max

p⇥Sk(M2⌃{e})

�
ck � ckp

✏
(4.4)

due to M1 ⇧M2 we get:

�
ck � cke

✏
= max

p⇥Sk(M1⌃{e})

�
ck � ckp

✏
(4.5)

On the other hand, note
M1 ⇧ M2

then,
max

p⇥Sk(M1)

�
ck � ckp

✏
⇤ max

p⇥Sk(M2)

�
ck � ckp

✏

� max
p⇥Sk(M1)

�
ck � ckp

✏
⌅ � max

p⇥Sk(M2)

�
ck � ckp

✏
(4.6)

from 4.5 and 4.6 we get

�
ck � cke

✏
� max

p⇥Sk(M1)

�
ck � ckp

✏
⌅

�
ck � cke

✏
� max

p⇥Sk(M2)

�
ck � ckp

✏
(4.7)

and we get
⇧k(M1) ⌅ ⇧k(M2).

Case 2. If �
ck � cke

✏
⌦= max

p⇥Sk(M1⌃{e})

�
ck � ckp

✏

as M1 ⇧M2 we get:

�
ck � cke

✏
⌦= max

p⇥Sk(M2⌃{e})

�
ck � ckp

✏

thus, by definition
⇧k(M1) = ⇧k(M2) = 0

Case 3. If �
ck � cke

✏
= max

p⇥Sk(M1⌃{e})

�
ck � ckp

✏

and, �
ck � cke

✏
⌦= max

p⇥Sk(M2⌃{e})

�
ck � ckp

✏
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then by definition of ⇧k we get

⇧k(M1) ⌅ 0 = ⇧k(M2)

Therefore, from those three cases we have shown that ⇧k(M1) ⌅ ⇧k(M2) for
M1 ⇧M2 and k ⇥ K, hence:

⇥

k⇥K

dk ⇧k(M1) ⌅
⇥

k⇥K

dk ⇧k(M2) ⌅ 0

h⇤e(M1) ⌅ h⇤e(M2) ⌅ 0

then h is submodular and nondecresing.

2. In order to prove the second statement we will proof that f is a submodular
function.
Note that, for e ⇥ A \R(M):

f(M  {e}) = �
⇥

(i,j)⇥R(M⌃{e})

fij = �
⇥

(i,j)⇥R(M)

fij � fe

then
f(M  {e})� f(M) = �fe

thus for M1 ⇧ M2 ⇧ W with M1 ⌦= ↵ (if M1 = ↵ we can replace and get easily
the inequality) and e ⇥ W\M2 we get

�fe = �fe
f(M1  {e})� f(M1) = f(M2  {e})� f(M2)

f⇤e(M1) = f⇤e(M2)

which implies that f is submodular. Thus, z is the sum of two submodular
function, then z is submodular.

4.3 Matroid representation for the MUND

Let G = (N,A) be a directed graph for a MUND problem, the sets W ,Q,A, the
values fij, ckij, c

k, and the functions S(M), Sk(M), R(M), f(M), h(M), hk(M), z(M)
be defined as in 4.2.

Proposition 8. Define I as the set family of subsets of W such that I1 ⇥ I if for
each k ⇥ K there is at most one path from O(k) to D(k) in I1, i.e. |Sk(I1)| ⇤ 1 for
all k ⇥ K and if p belongs to S(I1) then z⇤p(I1 \ {p}) > 0. The pair (W, I) have the
following three properties:

1. ↵ ⇥ I
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2. If I2 � I1 ⇥ I then I2 ⇥ I

3. If I1 and I2 are in I, with |I2| > |I1| then there exists e ⇥ I2 such that, I1 e ⇥ I

then the pair (W, I) is a finite matroid.

Proof. 1. Note ↵ fills the requirements to belong to I, then ↵ ⇥ I.

2. If I2 � I1 ⇥ I then I1 does not have more than one path for each pair origin-
destination, if I2 � I1 then I2 does not have more than one pair either. Further-
more, if p ⇥ I2 � I1 then z⇤p(I1 \ {p}) > 0, due to z is a submodular function
(proposition 3) then z⇤p(I2\{p}) ⌅z ⇤p(I1\{p}) > 0. Hence, we conclude I2 ⇥ I.

3. If I1 and I2 are in I, with |I2| > |I1| then there exist an arc or a path such that
e ⇥ I2 but e ⌦⇥ I1. In the case e is an arc then I1  {e} still have no more than
one path for each k ⇥ K and for all paths in I1 we have

z⇤p(I1  {e} \ {p}) = z(I1  {e})� z(I1  {e} \ {p})
= (h(I1  {e}) + f(I1  {e}))� (h(I1  {e} \ {p}) + f(I1  {e} \ {p}))

Note that f(I1 {e}\{p}) = f(I1 {e}) and since e is an arc, then h(I1 {e}) =
h(I1) and h(I1  {e} \ {p}) = h(I1 \ {p}). Thus,

z⇤p(I1  {e} \ {p}) = (h(I1) + f(I1  {e}))� (h(I1 \ {p}) + f(I1  {e}))
= h(I1)� (h(I1 \ {p})
= h(I1) + f(I1)� (h(I1 \ {p}) + f(I1 \ {p}))
=z ⇤p(I1 \ {p}) > 0.

In the case e is a path, then e ⇥ I2 and e ⌦⇥ I1. Therefore there exist one pair
origin-destination (O(k⇣), D(k⇣)) for some k⇣, such that I1 does not have a
path with those origin-destination. Then, applying the item 2 we have {p} ⇥ I
then

z⇤p(↵) = z(p)� z(↵) = dk⇤[c
k⇤ � ck⇤p ]�

⇥

(i,j)⇥p

fij � [min
p⇥Q

ck � ckp] > 0

Moreover,

z⇤p(I1  e \ {p}) = z(I1  e)� z(I1  e \ {p})
= dk⇤[c

k⇤ � ck⇤p ]

⌅ dk⇤[c
k⇤ � ck⇤p ]�

⇥

(i,j)⇥p

fij

⌅ dk⇤[c
k⇤ � ck⇤p ]�

⇥

(i,j)⇥p

fij � [min
p⇥Q

ck � ckp]

=z ⇤p(↵) > 0

(4.8)

Thus, we conclude (W, I) is a matroid.
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Assumption 2. The MUND problem can be written as the problem of selecting a
set I ⇥ I such that z(I) is maximum; that is,

max
I�I

⇤
z(I)|A(S(I)) = R(I), |Sk| > 0 for all k ⇥ K

⌅

Proposition 9. Define I⇤ as the set family of subsets of Q such that I1 ⇥ I⇤ if for
each k ⇥ K there is at most one path from O(k) to D(k) in I1, i.e. |Sk(I1)| ⇤ 1 for
all k ⇥ K. Then, for the pair (Q, I⇤) we have

1. ↵ ⇥ I⇤

2. If I2 � I1 ⇥ I⇤ then I2 ⇥ I⇤

3. If I1 and I2 are in I⇤, with |I2| > |I1| then there exists e ⇥ I2 such that,
I1  {e} ⇥ I⇤

then the pair (Q, I⇤) is a finite matroid.

Proof. 1. Note ↵ fill the requirements to belong to I⇤, then ↵ ⇥ I⇤.

2. If I2 � I1 ⇥ I⇤ then I1 do not have more than one path for each k ⇥ K. Since
I2 � I1, then I2 do not have more than one path for each k ⇥ K either, this
imply I2 ⇥ I⇤.

3. If I1 and I2 are in I⇤, with |I2| > |I1| then there is at least one commodity k⌥

such that there is a path pk⇥ for commodity k⌥ in I2 but there is not path for
commodity k⌥ in I1; then, as I1 ⇥ I⇤ we know I1 have at most one path for each
commodity and it do not have path for commodity k⌥, then the set I1  {pk⇥}
have at most one path for each commodity, then I1  {pk⇥} ⇥ I⇤

thus, we conclude (Q, I⇤) is a matroid.

Assumption 3. We define the set function z⇤ : Q� R as:

z⇤(I) = z(I  A(I))

then, the MUND problem can be written as the problem of selecting a set I ⇥ I⇤ such
that z⇤(I) is maximum; that is,

max
I�I⇤

⇤
z⇤(I) : |Sk| > 0 for all k ⇥ K

⌅
. (4.9)

note that if there is at least one path for each commodity such that the revenue cost
minus the costs paid for using and deliver the commodity for all the arcs on the paths
is greater than zero then the requirement is not needed. This implies that, in this case,
the MUND problem can be written as the problem of selecting a set I ⇥ I⇤ such that
z⇤(I) is maximum; that is,

max
I�I⇤

{z⇤(I)} . (4.10)
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Remark 4. Note that we can not apply the proposition 5 to the matroid (Q, I⇤) with
objective function z⇤ because to apply this proposition we need the objective function
to be an additive function (which is not z⇤) but if we consider the case the very
specific case of the MUND where we omit the sum of the set up costs in the objective
function, that is, we can take z⇤(I) = h⇤(I) = h(I) and add a cardinality constraint
on the number of paths. Then, since h is an additive function, we can use the greedy
algorithm and the proposition 5 to get the optimal solution (we assume there is not
paths with negative or zero values of the objective function on each iteration, in case
that there are, we remove them from the set of available paths).

Remark 5. We can get the same results, the alternative representation, the proposi-
tion 7 and the matroid representation in the case that the graph G is an underacted
graph; the di⇥erence relies on the set W of all possible paths, from a origin to a
destination, on the graph.
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Chapter 5

Worst-Case Bounds

In this chapter we describe a greedy heuristic for the special cases of MUND, namely
the MUND-RP and the MUND-BC. Moreover, we also present worst-case bounds
for the corresponding greedy heuristics based on the results obtained in the previous
chapters.

5.1 Greedy Heuristics for Special Cases of MUND

Let M t denote the current solution at the iteration t, ⇤A(M) = z(M  A) � z(M)
be the incremental value of adding the subset A to the set M and ⇤t the maximum
possible increment at the iteration t. We consider a heuristic that stops after a specific
fixed number r and constructs a feasible solution by adding at each iteration a subset
of elements of W satisfying the feasibility condition, i.e., A(S(M)) = R(M). This is
done by considering a candidate subset that contains exactly one path q ⇥ Q with
its corresponding arcs A({q}). Thus, we define Aq = {q} A({q}). For the following
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heuristics we suppose there exist at least one path on every Qk such that ⇤p(↵) > 0.

Algorithm 3: Greedy heuristic for the MUND-RP
Result: A greedy solution for the MUND
Let M0 ✏ ↵,W 0 ✏ W and t✏ 1;
initialization;
while t < r + 1 and W t⌅1 ⌦= ↵ do

Select q⇤ ⇥ W for which;
⇤Aq⇤ (M

t⌅1) = max
q⇥W t�1

⇤Aq(M
t⌅1);

Set ⇤t⌅1 ✏ ⇤Aq⇤ (M
t⌅1);

if ⇤t⌅1 ⇤ 0 then
Stop with M t⌅1 as the greedy solution ;

else
Set M t ✏M t⌅1  Aq⇤ ;
W t ✏ W t⌅1 \ q⇤;

end
t✏ t+ 1;

end
Stop with M t⌅1 as the greedy solution;

Since the budget constraint directly restricts the arcs that can be opened and hence
the paths that can be selected, the MUND-BC can be seen as a MUND-RP, then this
algorithm can be used for both variants but it is necessary to have a stopping criterion
accordingly with the specific case that we are working on to obtain the worst-case
bound results that are presented later in this chapter.

For the MUND-RP we use the objective function specified in remark 2, and for
MUND-BC we use the the objective function specified in remark 1, and the constant r
also depends on the variant, for the MUND-RP r is the number of the restriction of the
maximum number of path and, for the MUND-BC, the r is obtained by finding which
is the maximum number of arcs that can be selected such that hold the minimum set
up cost and the budget constraint.

We also consider an independent algorithm for the MUND-BC, let’s define z as
in remark 2 and b as the budget constraint, then
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Algorithm 4: Greedy heuristic for the MUND-BC
Result: A greedy solution for the MUND-BC
Let M0 ✏ ↵,W 0 ✏ W and t✏ 1;
initialization;
while t < r + 1 and W t⌅1 ⌦= ↵ do

Select q⇤ ⇥ W for which;
⇤Aq⇤ (M

t⌅1) = max
q⇥W t�1

⇤Aq(M
t⌅1);

Set ⇤t⌅1 ✏ ⇤Aq⇤ (M
t⌅1);

if ⇤t⌅1 ⇤ 0 or f(M t⌅1  Aq) > b then
Stop with M t⌅1 as the greedy solution ;

else
Set M t ✏M t⌅1  Aq⇤ ;
W t ✏ W t⌅1 \ q⇤;

end
t✏ t+ 1;

end
Stop with M t⌅1 as the greedy solution;

The following results are valid for both algorithms.

Remark 6. The greedy heuristic stops after r iterations for the MUND-RP or MUND-
BC.

Proposition 10. The greedy heuristic for the MUND can be executed in O(r|A||K|(1+
|N |)) time.

Proof. At each iteration we have to identify the paths with maximum increment in
the set W t⌅1. First of all, we identify q⇤ such as ⇤Aq⇤ (M

t⌅1) = max
Aq⇥W t�1

⇤q(M
t⌅1), to

do this consider the auxiliary graph Gt = (N,Arct) where Arct = R(M t)  R(W t)
with R(W t) set of available arcs to enter in the solution set at the t + 1 iteration
and M t solution set at t iteration. For each commodity k ⇥ K we define for each
wij ⇥ Arct a length given by:

wij =

⌦
↵

�

fij + ckij if (ij) ⌦⇥ R(M t)

ctij if (ij) ⇥ R(M t).

This operation takes O(|A||K|) and we compute a candidate path qk solving the
shortest path problem from O(k) to D(k), where k is not supplied yet, this can be
done by using the Fifo label- correcting algorithm in O(|K||N ||A|) (Ahuja at 1993),
then select the path q⇤ from q⇤ = max

k⇥K
⇤Aqk

(M t⌅1). Thus, each iteration of the greedy

heuristic takes a total of O(|A||K|(1+ |N |)), given that there are at most r iterations,
then the greedy heuristics takes O(r|A||K|(1 + |N |)).
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5.2 Worst-case Bound Results

Proposition 11. For M1 ⇧M2 ⇧ W and any subset A ⇧ W \M2,

⇤A(M1) ⌅ ⇤A(M2).

Proof. The result follows directly from Proposition 7

Moreover, since the set W is finite and given the definition of the function z, there
exists a ⌅ ⌅ 0 for which ⇤A(M) ⌅ �⌅ for M ⇧ W and A ⇧ W\M. In the case of
having a nondecreasing set function (e.g. h) ⌅ = 0

Proposition 12. For allM1,M2 ⇧ W such that A(S(M1)) = R(M1) and A(S(M2)) =
R(M2), let’s denote S1 = S(M1) and S2 = S(M2),

z(M2) ⇤ z(M1) +
⇥

q⇥S2\S1

⇤Aq(M1) + |S1 \ S2|⌅

Proof. Let M1,M2 ⇧ W, with |S1\S2| = ⌃, |S2\S1| = ⇥. Consider the sets Aq with
q ⇥ S2\S1 and similarly Bs = As with s ⇥ S1\S2, as defined before. Also, we
enumerate the paths q ⇥ S2\S1 as q = 1, . . . ,⇥ and similarly those in S1\S2 as
s = 1, . . . , ⌃. Then

z(M1  M2)� z(M1) ⇤
⇥

q⇥S2\S1

⇤Aq(M1), (5.1)

since z(M1  M2)� z(M1)
= z (M1  A1)� z(M1) + z (M1  A1  A2)
�z (M1  A1) + · · ·+ z (M1  A1  · · ·  A�)
�z (M1  A1  · · ·  A�⌅1)

=
�⇥

i=1

⇤Ai ((M1)  A1  · · ·  Ai⌅1)

⇤
�⇥

i=1

⇤Ai(M1) =
⇥

q⇥S2\S1

⇤Aq(M1)

where the inequiality follows from Proposition 11. Similary,

z(M1  M2)� z(M2) ⌅
⇥

s⇥S1\S2

⇤Bs (M2  M1\Bs) , (5.2)
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since: z(M1  M2)� z(M2)
= z (M2  B1)� z(M1) + z (M2  B1  B2)
�z (M2  B1) + · · ·+ z (M2  B1  · · ·  B⇥)
�z (M2  B1  · · ·  B⇥)

=
⇥⇥

i=1

⇤Bi ((M2)  B1  · · ·  Bi⌅1)

⌅
⇥⇥

i=1

⇤Bi(M1  M2 \Bi) =
⇥

s⇥S1\S2

⇤Bs (M2  M1\Bs)

where the inequiality follows from Proposition 11. Substracting (5.1) from (5.2),
we obtain

z(M2) ⇤z(M1) +
⇥

q⇥S2\S1

⇤Aq(M1)�
⇥

s⇥S1\S2

⇤Bs (M2  M1\Bs) .

Since ⇤ ⌅ �⌅, it follows that:

z(M2) ⇤ z(M1) +
⇥

q⇥S2\S1

⇤Aq(M1) + ⌃⌅

Let Z be the optimal solution value of an instance of the MUND and let ZG be
the value of a solution obtained using Algorithm 1. Thus, ZG = z(�) + ⇤0 + ⇤1+
· · ·+ ⇤t⇤⌅1, with t⇤ ⇤ r.

Proposition 13. If the greedy heuristic for the MUND stops after t⇤ ⇤ r iterations
then:

Z ⇤ z(�) +
t⌅1⇥

i=0

⇤i + r⇤t + t⌅ t = 0, . . . , t⇤ � 1. (5.3)

and also:

Z ⇤ z(�) +
t⇤⌅1⇥

i=0

⇤i + t⇤⌅ if t⇤ < r. (5.4)

Proof. By Proposition 7 we have z(M2) ⇤ z(M1) +
⇥

q⇥M2\M1

⇤q(M1) + |M1 \M2|⌅ .

Now consider M2 ⇧ W to be the optimal solution (i.e., Z = z(M2)) and M1 = M t.
Then, for q ⇥ M2\M t at iteration t, ⇤q(M t) ⇤ ⇤t, ⌅ ⌅ 0, |M t\M2| ⇤ t, |M2\M t| ⇤ r,

and z
�
M t

 
= z(�) +

t⌅1⇥

i=0

⇤i, we have:

Z =z(M2) ⇤ z(�) +
t⌅1⇥

i=0

⇤i + r⇤t + t⌅ for t = 0, . . . , t⇤ � 1
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If t⇤ < r and M1 = M t⇤ then,

Z ⇤ z(�) +
t⇤⌅1⇥

i=0

⇤i + t⇤⌅

since ⇤t⇤ ⇤ 0.

Thus, if the greedy heuristic is applied to MUND, using t = 0 in (5.3) and the
fact that in this case ZG = z(�) + ⇤0, we obtain

Z � ZG

Z � z(�)
⇤ r � 1

r

Proposition 14. If the greedy heuristic is applied to MUND, using t = 0 in (5.3)
and the fact that in this case ZG = z(�) + ⇤0, we obtain

Z � ZG

Z � z(�)
⇤ r � 1

r

Proof. The inequality for t = 0 of (5.3) yields Z � z(↵) ⇤ r⇤0 ⇤ r
�
ZG � z(↵)

 
or,

equivalently,
Z � ZG

Z � z(↵) ⇤
r � 1

r

A more general result for t⇤ > 0 can be obtained by using the results described
above, as well as those of Lemma (4.1) and Theorem (4.1) part (a) from Nemhauser
et al. (1978). Now we are going to resume those results.

Lemma 15. See Nemhauser et al. (1978), Lemma (4.1) Let ⇥ = (r � 1)/r. Given
positive integers j and r, j < r, and a non-negative real number b, let

P (b) = rb+min
L⇥

i=0

xi (5.5)

t⌅1⇥

i=0

xi + rxt ⌅ 1� (r + t)b, t = 0, . . . , j

j⇥

i=0

xi ⌅ 1� (r + j + 1)b

(5.6)

then

P (b) =

�
1� (j + 1)b if b ⇤ ⇥j+1/r

1 + (r � j � 1)b� ⇥j+1 if b ⌅ ⇥j+1/r

37



and

min
b�0

P (b) = 1�
�
j + 1

r

⌫
⇥j+1

If the last constraint is omitted from 5.6, then P (b) = 1 + (r � j � 1)b� ⇥j+1 for all
b ⌅ 0.

Proof. The dual of problem 5.6 is

W (b) = rb+max
i+1⇥

t=0

{1� (r + t)b}ut

rui +
j+1⇥

t=i+1

ut = 1, i = 0, . . . , j

ut ⌅ 0, t = 0, . . . , j + 1

(5.7)

We now are going to calculate W (b), thus by LP duality P (b).
Let � = 1�uj+1 in (5.7). Then we can notice that the feasible values of the remaining
variables ut, t = 0, . . . , j, are uniquely determined with ut = (�/r)⇥j⌅t and

j⇥

t=0

{1� (r + t)b}ut = �
�
1� ⇥j+1 � (j + 1)b

✏

Therefore

W (b) = max
0⇧⇤⇧1

⇤
rb+ �

�
1� ⇥j+1 � (j + 1)b

✏
+ (1� �)[1� (r + j + 1)b]

⌅

= max
0⇧⇤⇧1

⇤
1� (j + 1)b+ �

�
rb� ⇥i+1

 ⌅

It follows immediately that � = 0 (uj+1 = 1), if rb < ⇥j+1, and � = 1 (uj+1 = 0) if
rb > ⇥j+1. Therefore

W (b) = max
⇤
1� (j + 1)b, 1 + (r � j � 1)b� ⇥j+1

⌅

and

P (b) = W (b) =

�
1� (j + 1)b, if b ⇤ ⇥j+1/r

1 + (r � j � 1)b� ⇥j+1, if b ⌅ ⇥j+1/r
(5.8)

Now we observe that as j + 1 > 0 and r � j � 1 ⌅ 0

min
b�0

P (b) = P

�
⇥j+1

r

⌫
= 1�

�
j + 1

r

⌫
⇥j+1

Consider now the case where the last constraint of (5.6) is omitted. Dropping this
constraint is equivalent to finding an optimal dual solution with uj+1 = 0. But then
from (5.8) we obtain P (b) = 1 + (K � j � 1)b� ⇥j+1
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Proposition 16. (see Nemhauser et al. (1978), Theorem 4.1). If the greedy heuristic
for the MUND PR (or for the MUND BC) terminates after r⇤ iterations, then

Z � ZG

Z � z(↵) + r⌅
⇤

�
r⇤

r

⌫
⇥r⇤

Proof. First we consider the case ⌅ < 0. Let z⌥(S) = z(S)+ |S|⌅. Then note that z⌥ is
nondecreasing, Z�ZG = Z ⌥�Z

⇥G and Z� z(⌅)+ r⌅ = Z ⌥� z⌥(⌅).Therefore applying
the result for ⌅ = 0 to z⌥ yields the desired conclusion for z. For the remainder of the
proof we assume that ⌅ ⌅ 0.

Now applying Lemma (15) with

b =
⌅

Z � z(↵) + r⌅
and xi =

⇤i
Z � z(↵) + r⌅

We get from equation 5.5

P (b)(Z � z(↵) + r⌅) ⇤ r⌅ +
j⇥

i=0

⇤i (5.9)

Now for j < r⇤,
i⇥

i=0

⇤i ⇤ ZG � z(↵) and (5.9) yields

P (b)(Z � z(↵) + r⌅) ⇤ r⌅ + ZG � z(↵) (5.10)

The proof is now separated into two parts. (r⇤ < r) . Here with j + 1 = r⇤ all of
the inequalities of (5.6) are valid and from Lemma 15,

P (b) ⌅ 1�
�
r⇤

r

⌫
⇥r⇤ (5.11)

By substituting (5.11) into (5.10) and doing some algebraic manipulation we ob-
tain the result.

(1�
�
r⇤

r

⌫
⇥r⇤)(Z � z(↵) + r⌅) ⇤ P (b)(Z � z(↵) + r⌅) ⇤ r⌅ + ZG � z(↵)

(Z � z(↵) + r⌅) ⇤ (Z � z(↵) + r⌅)(
r⇤

r
)⇥r⇤ + r⌅ + ZG � z(↵)

Z ⇤ (Z � z(↵) + r⌅)(
r⇤

r
)⇥r⇤ + ZG

Z � ZG ⇤ (Z � z(↵) + r⌅)(
r⇤

r
)⇥r⇤

Z � ZG

Z � z(↵) + r⌅
⇤

�
r⇤

r

⌫
⇥r⇤
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(r⇤ = r) . Here with j + 1 = r only the first r inequalities of (5.6) are valid and from
Lemma 15

P (b) ⌅ 1 + (r � r)b� ⇥r = 1� ⇥r (5.12)

Now substituting (5.12) into (5.10) and doing some algebraic manipulation yields the
proposition.

Remark 7. Appling the Proposition 16 on the greedy heuristic for the MUND BC
and for the MUND RP we conclude

Z � ZG

Z � z(↵) + r⌅
⇤ ⇥r⇤

Remark 8. If we let r � ⌘ and r⇤ � ⌘ (in the case that the heuristic can chose
an unlimited number of path, or a “big” one) on Remark 7 then we get, since r⇤ ⇤ r

Z � ZG

Z � z(↵) + r⌅
⇤

�
r⇤

r

⌫
⇥r⇤ ⇤ ⇥r⇤ =

�
r⇤ � 1

r⇤

⌫r⇤
r⇤ ⌦����� 1

e
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Chapter 6

Conclusion

In this document, after giving a definition and a brief introduction to the MUND
problem solution methods, we presented a new combinatorial representation of the
MUND such that its objective function satisfies the submodularity property. This
allowed us to present two heuristics for two variants of the problem, we could prove
that those heuristics are polynomial approximation algorithms, for which we were able
to establish a worst-case bound of

�
r⌅1
r

 r
(where r is a stop criterion) and reaching

a bound of 1/e in the case of large instances which is more precise than the one
that, for the best of our knowledge, were the most accurate one used before in this
problem (see Wong (1980)). We were also able to provide, thanks to the submodular
representation, a matroid structure for the MUND.

For future works, one interesting line of research is to computationally compare
the e⇤ciency and behavior of the greedy heuristic based on the new combinatorial
representation and the existing ones; such as exact algorithms based on Benders
decomposition (Zetina et al., 2019), heuristics as the presented in (Crainic et al.,
2004) or those algorithms exposed on Gendron et al. (1999),(Yaghini and Akhavan,
2012) among others. Also, it is possible to look after the matroid nature of the MUND
in order to propose new ways to solve the MUND or new approximation algorithms
for the MUND.
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