DIAGNÓSTICO TÉCNICO Y ECONÓMICO DEL APROVECHAMIENTO DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN EN EDIFICACIONES EN LA CIUDAD DE BOGOTÁ.

TRABAJO DE GRADO - TESIS
PREGRADO EN INGENIERÍA CIVIL

JUAN CAMILO ESCANDON MEJIA

PONTIFICIA UNIVERSIDAD JAVERIANA
FACULTAD DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA CIVIL
BOGOTÁ D.C.
DICIEMBRE DE 2011
DIAGNÓSTICO TÉCNICO Y ECONÓMICO DEL APROVECHAMIENTO DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN EN EDIFICACIONES EN LA CIUDAD DE BOGOTÁ.

Trabajo para optar por el título de

INGENIERO CIVIL

Directora del trabajo

INGENIERA MARIA PATRICIA LEON NEIRA

PONTIFICIA UNIVERSIDAD JAVERIANA
FACULTAD DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA CIVIL
BOGOTÁ D. C.
DICIEMBRE DE 2011
TABLA DE CONTENIDO

ÍNDICE DE TABLAS ... 5

ÍNDICE DE FIGURAS .. 6

1. **INTRODUCCIÓN** ... 8

2. **DIAGNÓSTICO DE LA GESTIÓN Y EL APROVECHAMIENTO DE RCD EN BOGOTÁ** 13

 2.1. Diagnóstico de la gestión integral para el manejo de RCD en Bogotá ... 13

 2.2. Tipificación y la cuantificación de RCD generado en Bogotá .. 20

 2.2.1. Tipificación de RCD en Bogotá ... 21

 2.2.2. Cuantificación de RCD en Bogotá ... 25

 2.3. Diagnóstico del Aprovechamiento de RCD en Bogotá ... 27

3. **IDENTIFICACIÓN DE APLICACIONES PARA EL APROVECHAMIENTO DE RCD** 37

 3.1. Aplicaciones de materiales reciclados de RCD, en el mundo ... 37

 3.1.1. Agregados reciclados de concreto hidráulico ... 39

 3.1.2. Concreto Hidráulico con sustitución de agregados naturales por agregados reciclados 42

 3.1.3. Ladrillos y Bloques de concreto con agregado reciclado ... 51

 3.1.4. Agregados reciclados provenientes de concreto, ladrillos y bloques de arcilla 56

 3.1.5. Ladrillos y Bloques de concreto con agregado reciclado compuesto por residuos de concreto y bloques y ladillos de arcilla ... 57

 3.1.6. Bases y sub – bases conformadas por agregados reciclados de concreto, ladrillo y materiales cerámicos triturados ... 61

 3.2. Aplicaciones de materiales reciclados de RCD, en Colombia ... 65

 3.2.1. Concreto hidráulico con agregados reciclados ... 65

 3.2.2. Bloques y adoquines prefabricados de concreto reciclado .. 67

4. **PLANTEAMIENTO DE UNA METODOLOGÍA PARA EL APROVECHAMIENTO DE RCD EN BOGOTÁ** ... 69

 4.1. Separación y recolección selectiva de RCD en obra (Gestión Interna en obra) 72

 4.2. Proceso de transformación y reciclaje de los RCD ... 74

5. **EVALUACIÓN DE DIFERENCIAS ECONÓMICAS ENTRE LA GESTIÓN TRADICIONAL DE RCD Y UNA GESTIÓN INTEGRAL DE RCD QUE INCLUYE EL APROVECHAMIENTO DE ESTOS** ... 77
5.1. Beneficios económicos bajo la situación actual de aprovechamiento en la ciudad de Bogotá. .. 81

6. CONCLUSIONES Y RECOMENDACIONES ... 84

7. BIBLIOGRAFÍA .. 87
INDICE DE TABLAS

Tabla 1 Índices de generación de escombros m³/m² promedio...26
Tabla 3 Tipos y precios de los productos que se venden en la planta Reciclados Industriales. 35
Tabla 4 Tipos de agregado reciclado y aplicaciones...39
Tabla 5 Propiedades físicas y mecánicas de agregados reciclados provenientes de concretos
hidráulicos de varias resistencias...40
Tabla 6 Propiedades físicas del agregado reciclado de concreto hidráulico40
Tabla 7 Propiedades físicas de ciertos agregados reciclados provenientes de concreto
hidráulico ..40
Tabla 8 Parámetros de sustitución de agregados finos y gruesos reciclados para mezclas de
concreto hidráulico por diferentes países...43
Tabla 9 Retracción por secado para concretos con agregados naturales, finos reciclados y
gruesos reciclados a diferentes relaciones a/c...47
Tabla 10 Propiedades mecánicas de concretos con diferentes porcentajes de agregado
reciclado y aditivo plastificante..50
Tabla 11 Porcentajes recomendados de sustitución de agregados reciclados para cumplir
especificaciones..56
Tabla 12 Propiedades de agregados reciclados de ladrillo de arcilla57
Tabla 13 Propiedades de agregados finos y gruesos reciclados de ladrillo de arcilla58
Tabla 14 Porcentajes recomendados de sustitución de agregados reciclados para cumplir
especificaciones..61
Tabla 15 Tipos de mezcla realizadas...65
Tabla 16 Tipos de mezcla realizadas...66
Tabla 17 Tipos de RCD usados en las mezclas y resultados de resistencia a compresión......67
Tabla 18 Costos totales del proyecto del puerto de Glasgow...81
ÍNDICE DE FIGURAS

Figura 1 Esquema de la gestión integral tradicional de RCD. ... 15

Figura 2 Número de Establecimientos (Escombreras) para periodos entre 2008 y 2011. ... 19

Figura 3 Diagrama de la tipificación de RCD según el uso de la edificación.................................. 22

Figura 4 Diagrama de la tipificación de RCD según el estrato socio económico en donde se construye la edificación .. 22

Figura 5 Diagrama de la tipificación de RCD según la etapa constructiva de la edificación ... 23

Figura 6 Diagrama de la tipificación de los residuos de demolición ... 23

Figura 7 Tipificación general de RCD .. 24

Figura 8 Metros cúbicos de RCD esperados para el periodo entre julio-2010 y jul-2011. ... 27

Figura 9 Líndero norte de la planta de procesamiento. ... 31

Figura 10 Estado del material al entrar a la planta. .. 32

Figura 11 Material almacenado para posterior procesamiento .. 32

Figura 12 Equipos para el proceso de trituración. .. 33

Figura 13 Equipos para el proceso de trituración. .. 34

Figura 14 Pilas de agregado producto de la trituración de concreto. .. 35

Figura 15 Resistencia a la compresión de concretos con diferentes porcentajes de sustitución de agregado grueso reciclado ... 44

Figura 16 Resistencia a la compresión a 28 días de concretos con agregados finos reciclados para diferentes relaciones agua cemento. ... 45

Figura 17 Retracción por secado vs. Edad del concreto con diferentes proporciones de agregado reciclado .. 46
Figura 18 Módulo de elasticidad de concretos con diferentes porcentajes de agregados reciclados

Figura 20 Resistencia a la tracción relativa para diferentes porcentajes de agregado reciclado

Figura 21 Resistencia residual a la compresión de concretos con diferentes porcentajes de agregado grueso reciclado

Figura 22 Resistencias a la compresión y a la tracción para bloques con diferentes porcentajes de agregados gruesos reciclados

Figura 23 Resistencias a la compresión y a la tracción para bloques con diferentes porcentajes de agregados finos reciclados

Figura 24 Tasa de absorción de bloques y ladrillos de concreto

Figura 25 Resistencias a la compresión y a la tracción para bloques con diferentes porcentajes de agregados gruesos reciclados de ladrillo

Figura 26 Resistencias a la compresión y a la tracción para bloques con diferentes porcentajes de agregados finos reciclados de ladrillo, tomado de (Soutsos, Tang, & Millard, Concrete building blocks made with recycled demolition aggregate, 2010)

Figura 27 Tasa de absorción de bloques y ladrillos de concreto con agregados reciclados de ladrillo

Figura 28 Relación Humedad – densidad para siete tipos de mezclas con agregados reciclados

Figura 29 Relación Humedad – densidad para siete tipos de mezclas con agregados reciclados

Figura 30 Gestión integral tradicional de RCD

Figura 31 Gestión integral para el aprovechamiento de RCD

Figura 32 Esquema de planta de procesamiento para la producción de agregados reciclados

Figura 33 Esquema del planteamiento para el plan de gestión integral de RCD
1. INTRODUCCIÓN

En el mundo, debido a las preocupaciones por los impactos ambientales que generan alteraciones en los ecosistemas, principalmente por las construcciones de infraestructura, están tomando fuerza y ganando credibilidad las propuestas de recuperación y conservación del medio ambiente a través de proyectos de construcción sostenible. Este movimiento denominado Built Green o Green Buildings, se compone por un gran grupo de organizaciones como la U.S. Green Building Council en Norte Americana, Waste and Resources Action Programme (WRAP) para el Reino Unido y Europa, BREEAM que funciona de forma mundial y el Green Building Council Australia que como su nombre lo dice funciona en Australia y Nueva Zelanda. Estas organizaciones se han destacado porque han creado una serie de pautas para la construcción consignadas en sistemas de calificación como el denominado LEED (Leathership in Energy & Environmental Design) y el Green Star, con el propósito de tener construcciones prósperas y auto sostenibles que reduzcan el impacto en el medio ambiente (U.S. Green Building Council, 2011), además de tener como objetivo reducir la generación de residuos y escombros desde la fase de diseño de un proyecto, de modo que se disminuya la cantidad de residuos que se llevan a las escombreras (Waste and Resources Action Programme, 2011). En Colombia las actividades en pro de la construcción sostenible son recientes y están pobremente implantadas en el sector de la construcción, es por esto que en 2008 un conjunto de empresas del sector de la construcción forman el Consejo Colombiano de Construcción Sostenible (CCCS), con el objetivo de transformar la industria de la construcción en Colombia para lograr un entorno responsable con el medio ambiente y el bienestar de los colombianos (Consejo Colombiano de Construccion Sostenible, 2011).

La construcción sostenible se refiere a incluir dentro de las actividades y procesos constructivos respeto y compromiso con el medio ambiente el entorno y su desarrollo, lo que implica el uso eficiente de la energía, del agua, de los recursos y materiales no perjudiciales para el medioambiente (Ramirez, 2008). Abarca no solo la correcta elección de materiales y procesos, sino también la correcta gestión y reutilización de
estos por medio de planificación, concientización y cambios de conducta en pro de edificaciones eco amigables diseñadas para vidas útiles más largas (Construible.es, 2011). Este concepto de construcción sostenible en Colombia se está convirtiendo en una necesidad frente al gran impacto que se está generando en el medio ambiente por parte de la industria de la construcción. Más aun cuando se ha venido presentando un aumento en la construcción, evidenciado en las licencias de construcción aprobadas que han aumentado en un 23.5% entre julio del 2010 y el mismo mes del 2011 de acuerdo a información del DANE (2011), lo que implica directamente un aumento en la generación de residuos de demolición y construcción (RCD), y por consiguiente un alto impacto ambiental al necesitar cada vez más espacio para disponer de estos residuos.

De acuerdo a la Personaría de Bogotá (2009), en Bogotá se disponen ilegalmente más de 450 toneladas de escombros diarias, debido al desarrollo de infraestructura tanto pública como privada. Debido a la falta de control existente y a pesar de existir cartillas para la gestión de escombros de acuerdo al origen del mismo (Secretaría Distrital de Ambiente, 2008), sólo un bajo porcentaje de RCD llega a sitios destinados para su disposición final y un alto porcentaje termina en botaderos no autorizados, bermas, humedales e invadiendo el espacio público y privado del área urbana de la ciudad (Personería de Bogotá D.C., 2009). Estos residuos denominados RCD pueden estar compuestos de una gran cantidad de materiales según el tipo de proyecto (Secretaría Distrital de Ambiente, 2008) (Mercante, 2007), y de forma general en el sector de la construcción, se establecen los siguientes materiales como parte del conjunto de RCD’s:

- Mezclas asfálticas
- Ladrillo
- Concreto sin refuerzo (Acero)
- Restos de concreto mezclado
- Mezclas de cemento y cal
- Tejas cerámicas
- Vidrios
- Tierra limpia
- Porcelanas (incluye artefactos sanitarios)
- Metales (acero, bronce, cobre y aluminio)
- Maderas
- Plásticos
- Aislantes (poli estireno expandido, lana de vidrio, membranas)
- Revestimientos
- Papel y cartón
- Residuos especiales
Los RCD’s, pueden ser catalogados como no peligrosos o no especiales y especiales, con especiales se refiere a todo residuo y material potencialmente peligroso ya sea inflamable, tóxico, corrosivo, irritante o cancerígeno, que requiere de un procedimiento riguroso para ser dispuesto y almacenado. Los no especiales, no peligrosos, comprenden todo tipo de material que puede ser tratado y almacenado comúnmente y que posee características que permiten su reciclaje por medio de procesos industriales (Mercante, 2007).

Teniendo en cuenta el potencial de reciclaje y reutilización de estos materiales, se han realizado trabajos experimentales tanto nacional como internacionalmente, en los cuales se han fijado como meta el aprovechamiento de estos materiales producto de construcciones nuevas, remodelaciones y demoliciones. El aprovechamiento de estos está ligado a su composición y puede tener diferentes usos como por ejemplo agregados, aglomerantes o cementantes. Sin embargo el aprovechamiento debe realizarse teniendo en cuenta que los materiales que se reciclan pueden tener propiedades físico mecánicas que afecten el desempeño de características como durabilidad, resistencia, etc., del elemento que se produzca con estos. Por este motivo cuando estos materiales quieren aprovecharse, el enfoque principal de los estudios es realizar pruebas para determinar la factibilidad de su uso en obras de construcción. Dentro de las aplicaciones implementadas de material reciclado se pueden mencionar la preparación de adoquines de alto tráfico vehicular con valores de resistencia satisfactorios (Serrano & Ferreira, 2009). Otro uso aplicado es en los denominados Eco-Ladrillos, los cuales son fabricados con materiales como residuos de cerámica roja, de concreto y cenizas gruesas de carbón entre otros (Salazar J, Produccion de ECO Materiales con Base en Residuos Solidos Industriales y Escombros de Construccion, 1999). Así mismo se han realizado aplicaciones de materiales reciclados en proyectos como la construcción de una vía con pavimento rígido de concreto hidráulico fabricado con agregados reciclados de RCD en el año 2003 en la población de Vijes , Valle del Cauca (Salazar J, Tecnologias Desarrolladas y Aplicadas, 2005). Resaltando estudios en Colombia y en el mundo, se evidencia el beneficio que puede tener el aprovechamiento de RCD en la industria de la construcción en Colombia. Desde el punto de vista ambiental, uno de los detonantes parte de que en Bogotá la capacidad de las escombreras en donde se depositan los RCD según un estudio realizado por CAMACOL, será excedida en el año 2026 (Botero, 2003), lo que evidencia la necesidad de medidas para disminuir la generación de RCD ya sea por medio de
reciclaje o reutilización para evitar la necesidad de nuevos espacios destinados a la disposición final de estos materiales.

Además de los beneficios ambientales que representan la implementación de procesos de reciclaje y reutilización de RCD, se encuentra la posibilidad de representar también beneficios económicos. En el caso del proyecto de la población de Vijes (Salazar J, Tecnologías Desarrolladas y Aplicadas, 2005), se presentó una reducción del 14% aproximadamente en el costo total del proyecto gracias a la utilización de agregados reciclados (Salazar J, Tecnologías Desarrolladas y Aplicadas, 2005). En adición, para una ciudad como Bogotá, cada vez es más complicado encontrar fuentes de buenos agregados para la construcción cercanos a la ciudad, lo que implica la necesidad de más puntos de explotación y a mayores distancias de los lugares de utilización (Castellanos & Quiroga, 2010). Esto implica costos más elevados para el material por cuestiones de transporte por lo tanto podría considerarse que la utilización de materiales reciclados que provienen de los RCD que se generan en la misma ciudad, puedan significar menores costos en materias primas. Es por esto que lograr una reducción de los costos de los materiales es importante dado que los precios en los materiales e insumos para una obra civil se han venido incrementando de manera significativa, por ejemplo el incremento promedio de materias primas para el sector de la construcción entre enero y febrero del 2011 fue de un 2.8% según datos publicados por el DANE en el 2011 (DANE, 2011).

De lo anterior entonces, se puede deducir que el actual manejo a los RCD que se generan en Bogotá en donde el porcentaje de reutilización y aprovechamiento es casi nulo por las mismas empresas constructoras, lleva implícitos no solo impactos ambientales sino económicos; de igual forma. Ambientales al incrementarse cada día más la demanda de lugares para la disposición final de RCD los cuales son ambientalmente complicados de ubicar y certificar, y la demanda de nuevas canteras proveedoras de agregados para la construcción (Botero, 2003). Y económicos, al tener que recurrir a canteras cada vez más alejadas asumiendo costos más altos en las materias primas (Castellanos & Quiroga, 2010). Lo anterior implica que debe presentarse un cambio en la gestión de los residuos en el medio de la construcción por medio de herramientas y procedimientos sustentados en estudios y pruebas técnicas, medidas legislativas y participación activa de los involucrados para aumentar el aprovechamiento de RCD en Bogotá.

Es por esto que este trabajo se centra en realizar un diagnóstico técnico y económico del aprovechamiento de RCD’s en la ciudad de Bogotá, el cual por medio de una revisión bibliográfica nacional e internacional permita estructurar las aplicaciones de aprovechamiento de RCD seleccionando las más relevantes según la tipificación y
cuantificación de los RCD de la ciudad. Así mismo, se realizó el planteamiento de un esquema que relacione dichas aplicaciones y los procesos industriales necesarios dentro de un esquema de gestión integral de residuos con aprovechamiento de estos y las diferencias de costos implícitas en la aplicación de un esquema como estos para representar un beneficio ambiental y económico en la ciudad de Bogotá.
2. DIAGNÓSTICO DE LA GESTIÓN Y EL APROVECHAMIENTO DE RCD EN BOGOTÁ

Tanto en Colombia como en el mundo, la generación de RCD’s implícita en las actividades constructivas del hombre como parte del desarrollo de infraestructura de prestación de servicios, vivienda, transporte, etc., genera una preocupación constante por el impacto en el medio ambiente al abarcar grandes zonas naturales como espacios para la disposición final de estos residuos. Mientras en diversos países del mundo igualmente afectados por el impacto de los RCD se aprovecha una gran parte de los RCD que se generan, en Colombia no solo se tienen porcentajes casi nulos de aprovechamiento de RCD, sino que se presentan grandes y abundantes problemas solo con la gestión adecuada de estos. A pesar de que existen documentos, normas, resoluciones, leyes y guías para la gestión adecuada de estos residuos, el control del cumplimiento de estos es ineficiente y los RCD terminan en zonas públicas o botaderos ilegales. Por lo cual la problemática entorno a los RCD en Bogotá encierra la gestión inadecuada de estos, el gran volumen que se genera significando necesidad de más zonas de disposición final y una creciente demanda de agregados para satisfacer la necesidad de los proyectos en curso y los planeados para un futuro cercano.

A continuación se presenta de forma detallada el diagnóstico de la situación actual y la problemática alrededor de la gestión integral tradicional de RCD’s, y de las condiciones actuales en cuanto a aprovechamiento de estos residuos en la ciudad de Bogotá.

2.1. Diagnóstico de la gestión integral para el manejo de RCD en Bogotá

En un afán por mitigar la gravedad y diversidad del impacto ambiental generado por la problemática de los residuos generados por el sector de la construcción de edificaciones e infraestructura en general, y crear conciencia dentro del mismo medio, la Secretaria Distrital de Ambiente (SDA) plantea la Guía de Manejo Ambiental para el Sector de la Construcción. En esta se relacionan los factores y medidas necesarias
para una correcta e integral gestión de los RCD de las actividades de construcción en la ciudad de Bogotá (Secretaría Distrital de Ambiente Bogotá, 2010). Por medio de la misma se pretende concretar en el sector de la construcción no solo el concepto de construcción sostenible sino también facilitar la aplicación de éste en las actividades constructivas por un bienestar propio y común por medio de buenas prácticas implementadas por entidades y constructores comprometidos con la construcción sostenible (Secretaría Distrital de Ambiente Bogotá, 2010).

Los residuos de construcción y demolición (RCD) son directamente responsables del impacto ambiental que genera el sector de la construcción, por lo que el manejo que se le dé a éstos es vital para garantizar la mitigación de este impacto (Secretaría Distrital de Ambiente Bogotá, 2010). En la guía se hace una recopilación general de las medidas adecuadas para dar a estos residuos una gestión y destino adecuado teniendo en cuenta sus características, posibilidades de recuperación, aprovechamiento, comercialización y disposición final. Esto se lleva a cabo implementando artículos de las siguientes leyes y normativas aplicables:

- Decreto Distrital 112 de 1994 por el cual se fijan lineamientos para el tránsito de vehículos de carga e industriales, en el área urbana del Distrito Capital.
- Decreto Nacional 948 de 1995 que reglamenta en relación con la prevención y control de la contaminación atmosférica y protección de la calidad del aire.
- Decreto Distrital 357 de 1997 por el cual se regula el manejo, transporte y disposición final de escombros y materiales de construcción.
- Ley 769 de 2002 por la cual se expide el Código Nacional de Tránsito Terrestre.
- Acuerdo 79 de 2003 del Concejo de Bogotá, por el cual se expide el Código de Policía de Bogotá. Artículo 85.
- Resolución 556 de 2003 del Departamento Técnico Administrativo del Medio Ambiente por la cual se expiden normas para el control de las emisiones en fuentes móviles.
- Decreto Distrital 312 de 2006 Por el cual se adopta el Plan Maestro para el Manejo Integral de Residuos Sólidos para Bogotá Distrito Capital.
- Acuerdo 417 de 2009 del Concejo de Bogotá, por medio del cual se reglamenta el comparendo ambiental en el Distrito Capital y se dictan otras disposiciones.

En estos documentos se estipulan parámetros para todas las actividades implícitas en la gestión integral adecuada de los residuos de construcción y demolición en la ciudad de Bogotá, organizados en los siguientes cuatro grupos:

- Generación
- Almacenamiento temporal
• Trasporte
• Disposición final

Estos conforman el conjunto de actividades que interactúan entre sí como se muestra en la figura 1 para lograr la gestión integral adecuada de RCD deseada para controlar el impacto de estos residuos en el medio ambiente (Secretaría Distrital de Ambiente Bogotá, 2010).

En cuanto a la gestión integral de los RCD, la SDA facilita una cartilla denominada “Guía ambiental para el manejo de escombros en la ciudad de Bogotá” (Secretaría Distrital de Ambiente, 2008). En ella se establecen como generadores de los RCD a las obras públicas desarrolladas por entidades estatales para un servicio a la comunidad, que en ocasiones pueden ocupar el espacio público de la ciudad, y a las obras de carácter privado desarrolladas por empresas privadas o personas naturales en predios privados y para un uso privado. Dentro de las construcciones privadas también se encuentran las remodelaciones y/o adecuaciones, para mejorar la funcionalidad o la estética de las edificaciones (Secretaría Distrital de Ambiente, 2008).

Dentro de los residuos generados en construcción la guía establece los siguientes tipos de escombros, teniendo en cuenta su origen:

- Tipo 1: Generadores de escombros de excavación
- Tipo 2: Generadores de escombros de construcción
- Tipo 3: Generadores de escombros de demolición
- Tipo 4: Generadores de sedimentos
- Tipo 5: Generadores por remodelación

Como generadores de residuos de construcción tanto el sector público como privado son responsables de garantizar que cada una de las partes involucradas en la implementación de la gestión para el debido manejo ambiental de los RCD, cumpla su objetivo de disminuir en lo posible el impacto ambiental de estos (Secretaría Distrital de...
Responsabilidad de los Generadores

- Los escombros generados por excavación deberán ser separados y clasificados con el fin de reutilizar materiales técnicamente aptos
- Según las características de la obra se deben destinar espacios para almacenamiento temporal de materiales por reutilizar
- El almacenamiento temporal de residuos no podrá ubicarse en el espacio público ni en zonas verdes
- El descapote se debe realizar como una actividad independiente con el fin de clasificar el material vivo
- La disposición final debe realizarse en sitios autorizados por la autoridad competente
- Se debe tener un registro de los certificados de disposición final en regla para la autoridad ambiental
- Garantizar transportadores que cumplan los requisitos exigidos
- El personal se debe capacitar para que conozca las obligaciones inherentes al manejo integral de escombros

Responsabilidad de los Transportadores

- Deben movilizarse usando las vías y los horarios establecidos por la autoridad de transito
- Los escombros deben estar cubiertos
- No se modificará el diseño original del vehículo para aumentar su capacidad de carga
- En caso de presentarse un derrame o perdida de escombros en el espacio público o privado, el transportador debe recogerlo inmediatamente
- Deben portar los documentos que acrediten tanto el origen como la disposición final del material

Responsabilidad de los Receptores

- Deben llevar un registro de todos los escombros recibidos
- Entregar comprobante de recibido de escombros al transportador
- Implementar medidas de manejo ambiental para evitar impactos ambientales
- NO recibir escombros contaminados con elementos ordinarios, líquidos o peligrosos
- Disponer de un predio totalmente cerrado
- NO depositar escombros en lugares que obstruyan el paso del agua
- Contar con una brigada de limpieza permanente
- Evitar contaminación de corrientes superficiales y subterráneas
- Contar con equipo y maquinaria que cumpla los requisitos técnico mecánicos
- NO realizar quemas a cielo abierto
- Obtener todos los permisos requeridos por las autoridades competentes

Aparentemente la ciudad de Bogotá cuenta con la legislación y normatividad necesaria para que los residuos producto de las actividades edificadoras del medio de la construcción sean controlados y gestionados adecuadamente. Pero por falta de control e implementación de estas la ciudad se está viendo afectada cada vez más por el fenómeno de los botaderos clandestinos de escombros que no solo se realiza en lotes desprovistos de atención si no que terminan en vías y andenes del espacio público.

En Bogotá casi la totalidad de los residuos son llevados a las escombreras, rellenos sanitarios o botaderos ilegales a lo largo y ancho de la ciudad (Personería de Bogotá D.C., 2009) son contados los casos de obras que aprovechen el potencial de los RCD que generan (Bedoya, 2003) en aplicaciones de sus mismas construcciones. Mientras tanto, en las ciudades principales de paises como Bélgica, Dinamarca, Holanda, El Reino Unido y Finlandia, entre otros, se recicla entre el 50 y 90% de los residuos sólidos provenientes del sector de la construcción.

Teniendo en cuenta el constante y progresivo crecimiento de la ciudad con base en los metros cuadrados de construcción aprobados (DANE, 2011), la ciudad mantiene una demanda constante de materias primas para el sector de la construcción que se ve reflejada en la explotación indiscriminada de canteras lo cual acabara en la terminación de su vida útil con la única salida de trasladarse y buscar otro lugar para explotar de la misma forma generando un impacto ambiental sin medida (Botero, 2003). Existe actualmente, la necesidad de disponer de aproximadamente 1.2 millones de metros cúbicos anuales de RCD debido a las actividades constructivas en la ciudad, los cuales se han convertido en un gran problema ambiental al alterarse la capa vegetal de extensas zonas, la disminución o hasta el taponamiento de cauces de ríos y quebradas, la disminución del espejo de agua de humedales, etc., al convertir estas zonas en rellenos o botaderos ilegales de RCD. Este tema de vertimientos ilegales que convierten zonas verdes o públicas en botaderos ilegales, esta simplemente arraigado a las condiciones y posibilidades locales de disposición final de RCD, las distancias, costo y condiciones de recibo de materiales que manejan las escombreras actuales,
ocasionan un manejo inadecuado de los RCD ignorando las pautas y medidas legislativas existentes por buscar una salida económica para la disposición de estos residuos (Perez, 1996).

Las implicaciones del vertimiento ilegal de RCD en diferentes lugares del espacio urbano de la ciudad, van desde la afectación al tránsito peatonal y vehicular (Castellanos & Quiroga, 2010) hasta conflictos en el sistema de alcantarillado de la ciudad que se ven colmatados por RCD arrastrados por escorrentía al ser tirados en vías públicas, lo que se evidencia en los periodos invernales de la ciudad con canales y vías inundadas infligiendo costos adicionales de mantenimiento de estos sistemas a la administración de la ciudad (Botero, 2003).

Adicionalmente las escombreras y establecimientos destinados y certificados para la disposición final de RCD como parte de la gestión integral establecida que debe ser realizada, representan uno de los puntos críticos de la problemática en discusión de este trabajo. Esto, teniendo en cuenta la abundante generación de RCD por parte del sector de la construcción en Bogotá lo que agudiza la demanda de estos lugares para disponer de los RCD de forma adecuada según lo estipulado por la ley. Pero la ubicación y creación de espacios destinados a la disposición final de escombros es complicada ya que se deben tener en cuenta factores como el impacto ambiental a la zona y la ubicación, la cual no puede ser demasiado alejada del casco urbano de Bogotá para evitar sobrecostos en el transporte de los RCD.

El Instituto de Desarrollo Urbano (IDU) maneja una lista de proveedores de servicios de disposición final de escombros para la ciudad de Bogotá certificados por autoridades ambientales como la Corporación Autónoma Regional (CAR) o la Secretaría Distrital de Ambiente (SDA) (Instituto de Desarrollo Urbano, 2011). Desafortunadamente siguiendo lo publicado por los estudios y proyecciones realizadas por CAMACOL y (Botero, 2003), esta lista de escombreras a disposición de la ciudad de Bogotá cada día es más reducida. Según los listados publicados por el IDU, a septiembre de 2008 Bogotá presentaba un total de 17 establecimientos autorizados para la disposición final de escombros, lo que ha venido disminuyendo significativamente al ver que a diciembre de 2009, enero de 2010 y a septiembre de 2011 los establecimientos activos registrados fueron 11, 9 y 7 respectivamente (Instituto de Desarrollo Urbano, 2009) (Instituto de desarrollo Urbano, 2010) (Instituto de Desarrollo Urbano, 2011). Como se muestra en la figura 2, lo anterior significa una disminución del 59% de los establecimientos (escombreras) autorizados para disponer de forma final RCD en la ciudad de Bogotá.
Figura 2 Número de Establecimientos (Escombreras) para periodos entre 2008 y 2011.

Tal disminución de estos espacios según (Desechos.net, 2009) se atribuye al agotamiento de sus capacidades de recibir material, cerramientos por parte de autoridades ambientales al no cumplirse las medidas ambientales consignadas en la legislación y la inhabilitación por inundaciones en periodos invernales que han azotado las zonas donde se encontraban ubicados.

Adicionalmente no es solo la disminución en las opciones de lugares para disponer adecuadamente de los RCD si no también los parámetros de entrada que las escombreras que quedan imponen para recibir el material, lo que agrava la situación en cuanto a la gestión de RCD al exigir una cultura de separación selectiva de escombros que no existe en Colombia (Instituto de Desarrollo Urbano, 2011). Hoy en día las escombreras dentro de la lista del IDU de establecimientos activos para acopio de RCD aclaran que tipos de materiales reciben, y en su mayoría se exige que el material esté libre de contaminantes peligrosos, hidrocarburos, materia orgánica, basuras, etc., lo que significa que reciben materiales como concretos, ladrillos y en general material granular. Esto al limitar la posibilidad de disposición de otros residuos como residuos de excavación y cubiertas vegetales, implica que al no poder disponerse en espacios especialmente adecuados, estos deben ser llevados a rellenos sanitarios como en el caso de Bogotá, el relleno sanitario de Doña Juana ubicado en la localidad de Usme al sur de Bogotá (Castellanos & Quiroga, 2010). Gran parte de los RCD que terminan en el relleno sanitario de Doña Juana provienen del material que es recogido en puntos críticos de la ciudad que son invadidos por RCD arrojados por volquetas y recicladores de forma ilegal. Estos residuos que invaden el espacio público, son recogidos por las empresas de aseo de la ciudad como Lime, Ciudad Limpia, Aseo capital y Atesa según la zona de la ciudad en donde se deban recoger los RCD. Estas empresas son contactadas por personas particulares que denuncian la invasión del espacio público.
por RCD y en dado caso de identificarse el responsable de la generación de los RCD las empresas tienen una política de recaudo en donde al superarse en volumen más de 1 m3 se tienen tarifas de recaudo por m3.

En parte la problemática en cuanto a la gestión de los RCD en Bogotá es atribuida a la falta de control a los sitios de disposición final aplicando las normas legislativas y a la ausencia de un espacio de disposición final de administración pública que se regule, adapte, y ofrezca servicios para suplir las exigencias de la ley para la gestión de este tipo de residuos.

Los factores mencionados anteriormente que conforman la problemática económica y ambiental alrededor de la generación de RCD, son producto directo de la deficiencia por parte de las entidades de control ambiental y de desarrollo urbano, al no incentivar el cumplimiento de las normas y parámetros establecidos, a la falta de inversión pública en infraestructura para la gestión y aprovechamiento de los RCD y a la inexistencia de instrumentos económicos que se apliquen las actividades relacionadas con la gestión de los residuos sólidos en general de la ciudad.

Todos estos inconvenientes que se presentan actualmente alrededor de la gestión integral de RCD pueden significar la necesidad de formular e implementar un plan de gestión integral de residuos que cubra la problemática en los escenarios planteados anteriormente, el cual se encargue de todos los elementos protagonistas de la gestión de RCD e incorpore actividades que promuevan el aprovechamiento de estos residuos como medida de disminución del impacto ambiental en la ciudad de Bogotá.

2.2. Tipificación y la cuantificación de RCD generado en Bogotá

La tipificación en donde se determina qué tipo de materiales compone el total de RCD y la cuantificación que establece el volumen total de los escombros de una ciudad, según diversos estudios internacionales y locales (Botero, 2003) (Perez, 1996) (Mercante, 2007), depende directamente de factores como el tipo de construcción, el estrato socio económico en donde se desarrolla la construcción y la cantidad de metros cuadrados que se construye en un período determinado.

Mientras que para determinar la tipificación de los RCD que se generan es necesario un muestreo extensivo y riguroso de una población suficiente, en términos estadísticos, que arroje porcentajes de generación de cada uno de los tipos de materiales que pueden componer los RCD mencionados anteriormente en la introducción de este documento, para el cálculo del volumen se requiere de medidas más generales que
cubran la totalidad de la actividad constructiva en la ciudad lo cual hace de esto un proceso dispendioso y de gran duración.

2.2.1. Tipificación de RCD en Bogotá

Para la tipificación de RCD en la ciudad de Bogotá, se analizaron los datos del trabajo realizado por (Perez, 1996) titulado “Estudio del potencial de reciclaje de desechos de materiales de construcción y demolición en Santafé de Bogotá.” en donde se realizó un muestreo de RCD de un total de 32 obras en diferentes zonas de la ciudad, a partir del cual el material fue caracterizado para obtener ciertos porcentajes de la composición de los RCD en Bogotá. Este se correlacionó con un estudio realizado en Argentina por (Mercante, 2007) en donde a través de un procedimiento similar se estableció la tipificación de los RCD igualmente en porcentajes por tipo de material registrado.

Esta tipificación incluye las etapas constructivas de estructura, mampostería y acabados de los proyectos, excluyendo el material orgánico e inorgánico de excavación que se estipula según (Castellanos & Quiroga, 2010) es el 80% del volumen total de RCD, por lo está tipificación incluirá residuos de concreto, ladrillos, cerámicos, madera, acero, y plástico entre otros.

Con el fin de visualizar más claramente la tendencia general de la tipificación de los RCD en la ciudad de Bogotá, esta se separó por uso de la edificación, estrato socio económico en que se construye y etapa de construcción (considerando solo estructura, mampostería y acabados). Teniendo en cuenta estos criterios, la tipificación de los RCD tanto generados por obras nuevas como para demoliciones, se presenta a continuación.
Figura 3 Diagrama de la tipificación de RCD según el uso de la edificación, datos tomados de (Perez, 1996).

Figura 4 Diagrama de la tipificación de RCD según el estrato socio económico en donde se construye la edificación, datos tomados de (Perez, 1996).
Figura 5 Diagrama de la tipificación de RCD según la etapa constructiva de la edificación, datos tomados de (Perez, 1996).

Figura 6 Diagrama de la tipificación de los residuos de demolición, datos tomados de (Perez, 1996)
Figura 7 Comparación entre la tipificación general de RCD tomada de (Mercante, 2007) y la analizada del trabajo de (Perez, 1996).

Gracias a la tipificación realizada por (Perez, 1996) de los RCD en los cuatro escenarios planteados vistos en las Figuras 3 a 6, se evidencia que existen en general dos grupos de materiales residuo que predominan la composición de los RCD en Bogotá. Los residuos de ladrillo y los residuos catalogados como agregado que son residuos de gravilla y concreto con porcentajes entre el 80 y el 90% de la totalidad de los RCD son los materiales que predominan la composición de los residuos de construcción y demolición que se generan en Bogotá. Con base en las Figuras 9 a 12 se construye la Figura 7, la cual permite correlacionar estos resultados con los estudios realizados por (Mercante, 2007) en Argentina, con el fin de validar lo encontrado por (Perez, 1996) en la tipificación realizada. De acuerdo a esto se visualiza el paralelo al ver que en los dos trabajos los agregados y ladrillos son las fracciones más
representativas de la tipificación de los RCD con los porcentajes más altos como se ve en la figura 7.

Entonces es así como se sustenta el gran interés de la comunidad internacional hacia el reciclaje mediante la separación y trituración ladrillos, agregados gruesos y residuos de concreto para producir nuevas materias primas dispuestas para las aplicaciones a las que se sujeten sus características físicas y mecánicas. La madera, plásticos y metales son otros materiales que aunque sus porcentajes dentro de la tipificación de los RCD no son tan relevantes, se tienen en cuenta debido a su gran susceptibilidad a ser reciclados en la industria del reciclaje actual.

2.2.2. Cuantificación de RCD en Bogotá

En Bogotá se han planteado métodos directos de cálculo para estimar volúmenes de RCD (Botero, 2003) por medio de registros de disposición final de escombros que deberían ser exitosos teniendo en cuenta que por ley deberían estos deben ser consignados ante la autoridad ambiental local, pero ante la deficiencia de control e implementación de la gestión propuesta y estipulada por la ley, estos métodos de cuantificación de RCD han sido descartados. Por lo cual se ha recurrido a métodos indirectos de índices de generación usados comúnmente en países alrededor del mundo como los estipulados e implementados por (Mercante, 2007) y (Botero, 2003). Dichos índices se calculan tomando muestras de volumen de RCD aleatorias de diferentes obras con características comunes como estrato socioeconómico y tipo de construcción, de forma similar que en la tipificación de RCD (Mercante, 2007). Estos índices se calculan realizando la relación entre metro cúbico de escombro generado sobre el área total del proyecto en metros cuadrados. De esta forma se obtiene un multiplicador que al conocerse el área de un proyecto necesariamente de características similares, se multiplica dicha área por el índice y se obtiene de forma indirecta el total de RCD generados. En el trabajo de (Botero, 2003) se tomó como muestra un total de doce proyectos de la empresa constructora COLPATRIA de los cuales se monitoreo el despacho de RCD y de esta forma se estimaron los volúmenes de RCD generados, contemplando el material de excavación y se generaron los índices de generación de escombros.

En este trabajo se adoptaron los índices de generación de escombros que se muestran en la Tabla 1 establecidos en el trabajo de (Botero, 2003) para construcciones de tipo tradicional, industrializado y mampostería estructural, los cuales se usan para calcular volúmenes de RCD actualizados al 2011 con base en los metros cuadrados aprobados en la ciudad de Bogotá (DANE, 2011).
La Tabla 1 muestra que el índice de generación de escombros más alto es el de las construcciones de sistema tradicional las cuales en el trabajo en cuestión, correspondían con las construcciones en los estratos socioeconómicos más altos. Estos índices tan altos comparados con los demás sistemas constructivos y estratos socio económico, se deben a que en las construcciones de estratos más altos usualmente se hacen excavaciones de gran volumen de material y se usa casetones u otros materiales para vaciar entrepisos que generan mucho residuo de icopor, madera y guadua entre otros.

Teniendo en cuenta los tres índices recopilados por sistema constructivo se reconoce que el índice para construcción tradicional es el más alto de los tres y el índice de construcción industrializada es el más bajo, consecuentemente se plantean los siguientes tres escenarios para el cálculo de los volúmenes de RCD esperados:

- El primero de ellos, de forma pesimista calculando los volúmenes de RCD con el índice de generación de escombros más alto igual a 0.9432.

- Un segundo caso, calculando los volúmenes de RCD con el promedio de los índices de generación de escombros igual a 0.5032.

- Y finalmente un tercer caso, muy positivo asumiendo poca generación de escombros calculándose los RCD generados con el índice más bajo igual a 0.1614.

Teniendo en cuenta estos tres escenarios se calculó un estimativo de RCD mensual que se generara en Bogotá entre julio del 2010 y el mismo mes del 2011, como se muestra en la Figura 8.
Por lo tanto, se concluye que entre dos y tres años a partir de julio de 2010, las escombreras a disposición de la ciudad de Bogotá deberán tener una capacidad de almacenamiento entre 402.596 y 2.352.718 m³ de RCD. Es importante tener en cuenta que estos valores de RCD corresponden a la construcción legal aprobada por curadurías urbanas en la ciudad, dejando excluido el aporte de RCD generado por las autoconstrucciones y edificaciones ilegales que abundan en las localidades de Usme, Usaquén y muchas otras localidades. Lo cual debe ser una alerta para tomar decisiones e implementar medidas legislativas para impulsar una política que permita un desarrollo sostenible de la ciudad a través de subsidios e incentivos para incorporar la reducción en la generación de residuos desde el diseño, la construcción más limpia y el aprovechamiento de RCD dentro de las actividades constructivas de la ciudad.

2.3. Diagnóstico del Aprovechamiento de RCD en Bogotá

El escenario de aprovechamiento de RCD en la ciudad de Bogotá es nulo y carece de estructuras industriales para este propósito, aunque existen casos de aplicación muy puntuales de aprovechamiento (Castellanos & Quiroga, 2010). La ciudad carece de un plan de gestión integral de residuos de construcción y demolición que implemente el aprovechamiento de estos. Se resalta el hecho de que no existe una política interna en las empresas constructoras de la ciudad para separar los materiales insitu, lo cual hace más complicada la posibilidad de una transformación industrial de estos residuos, al ser parte vital para un proceso viable de aprovechamiento y reutilización de RCD.
Dentro de las medidas legislativas más actuales respecto a los residuos de construcción en la ciudad de Bogotá, se encuentra la resolución 2397 de 2011 la cual fue expedida el 25 de abril del 2011 y entro en vigencia el 3 de mayo del mismo año (Secretaria Distrital de Ambiente, 2011), en la cual por primera vez se incluyen normativas directas en pro del tratamiento y/o aprovechamiento de los residuos de construcción y demolición como substituto de materiales naturales. Ante la inexistencia de medidas legislativas de control que involucren el aprovechamiento de RCD en la ciudad de Bogotá, el objetivo principal de esta resolución es regular técnicamente el tratamiento y/o aprovechamiento de residuos de construcción RCD en el perímetro urbano de Bogotá. Es directamente aplicable a quienes generen, trasporten, acopien, gestionen y realicen algún tipo de tratamiento en pro del aprovechamiento de escombros en la ciudad de Bogotá.

El artículo que más se destaca es el No. 4, en donde se establecen las responsabilidades de las empresas constructoras ya sean públicas o privadas en cuanto al aprovechamiento de RCD’s. Inicialmente se asigna una obligatoriedad a la utilización de materias primas recicladas en obras civiles de índole públicas y privadas, más específicamente un 5% de materias primas recicladas en obras del sector privado y 10% para obras públicas. Se establece que estos porcentajes serán incrementados anualmente en 5 puntos porcentuales hasta alcanzar el 25% de substitución de materiales naturales por materiales reciclados.

Los materiales reciclados deberán provenir de centros de tratamiento y/o aprovechamiento de escombros legalmente constituidos contando con la aprobación expedida por la Secretaria Distrital de Ambiente. De igual forma estos centros de procesamiento deberán estar ubicados en lugares previamente deteriorados por actividades de explotación como minas y canteras abandonadas que no presenten riesgos potenciales para poblaciones aledañas y para la infraestructura existente o programada.

Al igual que en reglamentación relacionada como la guía de manejo ambiental para el sector de la construcción, en los artículos No.7, 8 y 9 de esta resolución se establecen obligaciones específicas por generador, transportador y lugar de tratamiento y/o aprovechamiento, que se indican a continuación.

Obligaciones de los Generadores

- Los generadores deberán mantener un registro de las cantidades despachadas de escombros por medio de los certificados expedidos por los sitios de procesamiento de escombros a los cuales se entregue el material.
- Deberán entregar los materiales separados de otros residuos de la forma solicitada por los sitios de recibo de estos, garantizando su correcto transporte y procesamiento.
- Asumirá los costos involucrados en la recolección, transporte y disposición de los residuos.

Obligación de los Transportadores

Los transportadores deberán seguir cumpliendo a cabalidad las responsabilidades estipuladas en la Guía ambiental para el manejo de escombros en la ciudad de Bogotá, de la mano con las normas de Tránsito y Transporte y lo establecido en la Resolución 541 de 1994. Adicional a esto deberán cumplir los siguientes adicionales:

- La recolección y transporte de estos materiales deberá realizarse de forma separada de otros materiales no aptos, según se les indique.
- Los escombros deberán ser entregados en los sitios estipulados y autorizados para su procesamiento y/o aprovechamiento.

Obligaciones de los sitios de tratamiento y/o aprovechamiento

- Deberán señalizarse los sitios de cargue y descargue de material
- Mantener un registro del ingreso de materiales que contenga como mínimo la siguiente información:

 a. Volumen recibido.
 b. Generadores.
 c. Tipo de material.
 d. Tipo de tratamiento
 e. Fecha.
 f. Placa del vehículo.
 g. Nombre y cédula del transportador

- Entregar un certificado constancia del recibido del material al transportador.
- NO recibir ningún material diferente del apto para procesarse en la planta.
- Están sujetos a la obtención del permiso expedido por parte de la Secretaria Distrital de Ambiente de acuerdo a las condiciones establecidas para cada lugar en específico.
- Una vez recibidos los residuos, estos lugares de tratamiento y/o aprovechamiento serán responsables de los impactos generados al medio ambiente y al espacio público por el mal manejo de estos.
Deberán emplear maquinaria adecuada cumpliendo con todos los requisitos técnicos y mecánicos requeridos para el tipo de actividad que allí se realiza.

Finalmente en el artículo No. 10 se establece que la calidad de los productos del reciclado de RCD deberán cumplir las especificaciones técnicas necesarias según el uso específico de cada uno, por lo que estos productos deberán estar certificados por un laboratorio acreditado.

Se puede ver que es una medida legislativa drástica para implementar el aprovechamiento de los RCD en la ciudad de Bogotá, teniendo en cuenta que es la primera de estas y ya exige porcentajes de aprovechamiento significativos, a pesar de la inexistencia de la infraestructura necesaria. Sin embargo es un buen comienzo para empezar a infundir en el medio de la construcción la necesidad de aprovechar los residuos y disminuir el volumen a disponer en escombreras que se generan.

Actualmente, dentro de los siete establecimientos registrados ante la Corporación Autónoma Regional (CAR), la Secretaría Distrital de Ambiente (SDA) y el Instituto de Desarrollo Urbano (IDU), solo uno de ellos está registrado como “ESTABLECIMIENTO PARA DISPOSICION TEMPORAL DE ESCOMBROS” y posee la infraestructura básica necesaria para lograr el aprovechamiento de los RCD que se depositan allí. La empresa está constituida como Reciclados Industriales y la planta de agregados reciclados está ubicada en el Km 1.5 – Costado sur, Vía Bogotá – Siberia, Cota – Cundinamarca, y su gerente Fernando Ramírez Villamizar, facilitó completa información del inicio y funcionamiento actual de la planta.

La empresa fue establecida a comienzos del 2011 en un lote que cuenta con un área útil de trabajo de 20000 m² en una zona clasificada en el POT (Plan de Ordenamiento Territorial) como zona de alto impacto industrial. Se registró mediante la solicitud para uso del suelo y licencia de construcción con la Alcaldía del Municipio de cota y seguidamente de la viabilidad aprobada por la alcaldía, el proyecto fue presentado ante la CAR (Corporación Autónoma Regional de Cundinamarca) y posterior a su aprobación, el IDU (Instituto de Desarrollo Urbano) dio el aval y registró la empresa como lugar de disposición de materiales residuos de construcción.
A diferencia de las demás escombreras que aparecen registradas ante el IDU, la CAR y la Secretaría Distrital de Ambiente, las cuales son lugares de disposición final de escombros, esta es una escombrera de disposición temporal o parcial, lo que cambia las condiciones de captación de los RCD, esto teniendo en cuenta que la gestión de disposición de RCD en escombreras dedicadas al reciclaje de estos para producción de materias primas no está muy desarrollada en Bogotá. Reciclados Industriales al aparecer registrado en el IDU, es contactado por los interesados en disponer de RCD y a estos se les suministran los parámetros básicos de recibo de escombros descritos a continuación:

- Los RCD no pueden venir contaminados en ninguna proporción por hidrocarburos, sustancias toxicas, plásticos, vidrio, madera, materia orgánica y cartón.
- No se reciben materiales residuos de excavación de ningún tipo
- Actualmente no se reciben materiales residuos de mampostería.
- Solo se reciben residuos de concreto, asfalto y material granular.

El proceso de transporte y recibo de material es igual al proceso estipulado en la guía de manejo de escombros para la ciudad de Bogotá, con las mismas pautas de control de tránsito y de registro como el mantenimiento y responsabilidad ambiental de los alrededores del sitio de disposición y la expedición de boletas de recibo y procedencia de los escombros.
Una vez los materiales ingresan, estos son clasificados parcialmente y almacenados según sea concreto, asfalto o materiales granulares. El procesamiento de estos se realiza mediante una trituradora móvil de impacto dotada de un sistema de separación magnética de metales, un sistema de separación por zarandas ajustables y bandas transportadoras de material, a la cual se le suministra el material por medio de una retroexcavadora de oruga, en conjunto la maquinaria tiene una capacidad de
procesamiento de hasta 200 toneladas por día. Según el material a procesar, se realiza el siguiente procedimiento:

Concreto hidráulico

El concreto se le suministra a la trituradora la cual está programada para para separarlo en los siguientes tamaños:
- <10mm (Arena)
- 10mm - 25 mm (Grava)
- >25 mm la banda transportadora lo retorna para ser nuevamente triturado

Figura 12 Equipos para el proceso de trituración.
Figura 13 Equipos para el proceso de trituración.

Bases y Sub-Bases granulares

Para estos materiales se utiliza en primera instancia el sistema de clasificación por zarandas de la trituradora, el material con partículas de tamaños menores a 30 mm y se clasifica para obtener los siguientes productos según la clasificación de la norma ET-2005 del IDU:

- Base granular tipo BG-A
- Base granular tipo BG-B
- Base granular tipo BG-C
- Sub base granular tipo SBG-A
- Sub base granular tipo SBG-B
- Sub base granular tipo SBG-C
- B200
- B400
- B600
- Arena (Concreto hidráulico)
- Gravilla (Concreto hidráulico)
- Grava (Concreto hidráulico)

Las partículas con tamaños mayores a 30 mm se retornan por medio de las bandas transportadoras a la etapa de trituración para su posterior clasificación y producción de las mismas bases mencionadas anteriormente. Estos productos cumplen con los requerimientos técnicos establecidos en dicha norma ET-2005 del IDU.
- **Costos**

Costos de los materiales disponibles en la planta

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MATERIAL</th>
<th>TIPO</th>
<th>UNIDAD</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Base granular tipo BG-A</td>
<td>TIPO IDU NORMA ET-2005</td>
<td>$ 58.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Base granular tipo BG-B</td>
<td>m³</td>
<td>$ 58.000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Base granular tipo BG-C</td>
<td>m³</td>
<td>$ 55.000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sub base granular tipo SBG-A</td>
<td>$ 53.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sub base granular tipo SBG-B</td>
<td>$ 53.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sub base granular tipo SBG-C</td>
<td>$ 50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B200</td>
<td>$ 13.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B400</td>
<td>$ 19.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B600</td>
<td>$ 25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Arena (Concreto hidráulico)</td>
<td>$ 60.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Gravilla (Concreto hidráulico)</td>
<td>$ 60.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Grava (Concreto hidráulico)</td>
<td>$ 60.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2 Tipos y precios de los productos que se venden en la planta Reciclados Industriales.

Tarifa por disposición de escombros

- Volqueta Sencilla (6 a 8 m³)..............$17000 pesos
- Volqueta Doble (8 a 12 m³)...........$35000 pesos
- **Experiencia de la planta**

Actualmente “Reciclados Industriales” trabaja de la mano del IDU como establecimiento para disposición de escombros generados por el mantenimiento de malla vial de la ciudad de Bogotá y municipios cercanos, abastece a proyectos de la constructora Colpatria para la colocación de bases y sub bases granulares y participa en pequeñas proporciones en proyectos como “La Felicidad Ciudad Parque” en donde se preparan concretos hidráulicos con agregados reciclados. A nivel industrial ha participado en estudios realizados por la compañía ARGOS para producir nuevos diseños de mezcla con sus agregados provenientes de concretos reciclados.
3. IDENTIFICACIÓN DE APLICACIONES PARA EL APROVECHAMIENTO DE RCD

En el sector de la construcción se generan una gran cantidad de residuos de diferentes tipos pero es solo una parte de estos la que puede ser aprovechada para el mismo objetivo constructivo del sector civil de la ingeniería, ya sea reusándolos o reciclándolos. Básicamente deben ser materiales totalmente inertes y no contaminados que se estima son el 80 % de los residuos de construcción y demolición que abarca materiales como ladrillos o bloques, concreto, roca, material de excavación, acero, madera y otros (Botero, 2003). El 20% restante que no es aprovechable en el sector de la construcción puede ser llevado a plantas de reciclaje específicas o dispuesto en escombreras y rellenos sanitarios, y comprende materiales como maderas, plásticos, embalajes y materiales inertes con algún contenido de materia orgánica (Perez, 1996).

Teniendo en cuenta la experiencia internacional, se reconoce que el mayor potencial de aprovechamiento de los materiales residuos de construcción y demolición reciclados es como agregados y materiales granulares substitutos de materiales vírgenes recién explotados en diversas aplicaciones. En países desarrollados como Alemania, Inglaterra, Holanda, China, etc., se han establecido una gran cantidad de aplicaciones para este tipo de materiales, en las cuales algunas se substituye el 100% del material por agregado reciclado y en otras varía su porcentaje de aplicación mezclándolo con materiales vírgenes extraídos directamente de canteras. Este porcentaje de aplicación se determina dependiendo los requisitos técnicos que debe cumplir el agregado según la aplicación en específico (Cement Concrete & Agregates Australia, 2008).

3.1. Aplicaciones de materiales reciclados de RCD, en el mundo

Adicionalmente en este trabajo se realiza una recopilación de las aplicaciones más estudiadas a nivel mundial realizadas por diversos autores de los materiales reciclados
de RCD más comunes, relacionando sus pros y contras junto con pautas identificadas para tener en cuenta con el fin de llegar al mejor desempeño de estos materiales reciclados según su aplicación en específico. A continuación se muestra en la Tabla 4 el resumen de las aplicaciones más destacadas según la cantidad de estudios y resultados comunes encontrados en la revisión bibliográfica.

<table>
<thead>
<tr>
<th>RCD</th>
<th>Tipo de Agregado</th>
<th>Aplicación</th>
<th>Recomendaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladrillos y materiales cerámicos</td>
<td>Agregados finos y gruesos producto de la separación y trituración de residuos de ladrillos, materiales cerámicos y mortero, sin contenido de materia orgánica, metales o residuos peligrosos</td>
<td>Bloques y ladrillos de concreto prefabricados</td>
<td>Se pueden realizar mezclas de concreto para estos elementos con un 55 y 20% de agregados gruesos y finos reciclados respectivamente. Para lograr resistencias a la compresión que cumpla con estándares como el NTC 4026 se requiere de relaciones a/c más bajas que en las mezclas con agregado natural. Se recomienda el uso de aditivos plastificantes para disminuir la porosidad, aumentar la densidad y mejorar la durabilidad del elemento. Dependiendo de los porcentajes de inclusión de agregados reciclados tanto de ladrillo como de concreto, la densidad seca de la mezcla puede bajar hasta un 19% y la humedad optima de compactación puede aumentar hasta un 200%. El California Bearing Ratio (CBR) puede disminuir según los porcentajes de inclusión de agregado reciclado en la mezcla por lo tanto se deben generar porcentajes para cumplir con especificaciones como la INVIAS 300-7 para bases como para sub-bases granulares.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bases y Sub - Bases granulares para pavimentos</td>
<td>Condicionadas adecuadas de compactación y la composición e porcentajes de finos y gruesos deberá cumplir con lo especificado en la tabla 220.1 de la especificación INVIAS 220-07.</td>
</tr>
<tr>
<td>Vidrio</td>
<td>Vidrio pulverizado similar a la arena</td>
<td>Concreto hidráulico</td>
<td>Reemplazo parcial de agregado fino natural en concreto hidráulico (con cambios en la mezcla).</td>
</tr>
<tr>
<td>Llantas y neumáticos</td>
<td>Llantas y neumáticos procesados para obtener partículas de caucho o migas pulverizadas</td>
<td>Mezclas asfálticas</td>
<td>Puede ser usado pulverizado como sello asfáltico.</td>
</tr>
</tbody>
</table>

Tabla 3 Tipos de agregado reciclado y aplicaciones
3.1.1. Agregados reciclados de concreto hidráulico

Los agregados reciclados de concreto hidráulico son productos de la trituración y clasificación de residuos de concreto obtenido ya sea de construcciones nuevas, demoliciones o concreto devuelto a la planta. En caso de ser concreto fresco devuelto a la planta de producción, se realiza un proceso de lavado en planta, en el cual por medio de agua se separa la arena y el cemento en la mezcla de los agregados. De esta forma el agregado es reutilizable casi que de forma natural. (Padmini, Ramamurthy, & Mathews, 2009).

De acuerdo a investigaciones realizadas por diversos autores (Corinaldesi, 2010) (Padmini, Ramamurthy, & Mathews, 2009) (Rahal, 2007), se ha encontrado que los agregados provenientes de concreto triturado tiene propiedades físicas y mecánicas significativamente diferentes a las propiedades de los agregados naturales de los cuales provienen. Así mismo se ha establecido que la resistencia del concreto del cual provienen los agregados y el tamaño máximo del agregado afecta significativamente propiedades como la gravedad específica, absorción de agua, desgaste, entre otras. Debido a esto, la caracterización de los agregados provenientes de la trituración del concreto es fundamental para determinar los posibles usos de estos materiales en diferentes aplicaciones de construcción (Padmini, Ramamurthy, & Mathews, 2009).

<table>
<thead>
<tr>
<th>RCD</th>
<th>Tipo de Agregado</th>
<th>Aplicación</th>
<th>Recomendaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concreto</td>
<td>Concreto hidráulico</td>
<td>Pueden realizarse mezclas hasta con 100% de agregado reciclado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Para elementos estructurales se recomienda un máximo de 20% de sustitución</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>El agregado debe estar totalmente saturado de agua para evitar que su alta tasa de absorción disminuya manejabilidad de la mezcla</td>
</tr>
<tr>
<td>Bloques y ladrillos de concreto prefabricados</td>
<td></td>
<td></td>
<td>El porcentaje de gruesos y finos puede ser variable pero la inclusión de finos implica menores resistencias y mayor retracción</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Para obtener buenos resultados se requieren relaciones a/c bajas del orden de 0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Es recomendable el uso de aditivos plastificantes para garantizar manejabilidad y disminuir retracción por secado</td>
</tr>
</tbody>
</table>

Tabla 4 Tipos de agregado reciclado y aplicaciones (Continuación).
Propiedades de los agregados reciclados de concreto hidráulico

Según diversas pruebas realizadas en agregados reciclados provenientes de concretos de diferentes resistencias y tomando como referencia las propiedades de los agregados naturales con los que se realizaron las mezclas de estos concretos. Se ha encontrado internacionalmente que las siguientes características físicas y mecánicas de los agregados reciclados producto de la trituración de estos concretos, varían en su mayoría desfavorablemente como se muestra en la Tabla 5 (Padmini, Ramamurthy, & Mathews, 2009).

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Agregado natural</th>
<th>Agregado reciclado según tamaño máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño máximo del agregado</td>
<td>10 mm</td>
<td>20 mm</td>
</tr>
<tr>
<td>10 mm</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>20 mm</td>
<td>4.60</td>
<td>4.8</td>
</tr>
<tr>
<td>40 mm</td>
<td>6.35</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Tabla 5 Propiedades físicas y mecánicas de agregados reciclados provenientes de concretos hidráulicos de varias resistencias tomada de (Padmini, Ramamurthy, & Mathews, 2009)

<table>
<thead>
<tr>
<th>Tipo de agregado</th>
<th>Arena</th>
<th>Finos</th>
<th>Grueso</th>
<th>Finos Reciclados</th>
<th>Grueso Reciclado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad específica</td>
<td>2.54</td>
<td>2.56</td>
<td>2.57</td>
<td>2.40</td>
<td>2.42</td>
</tr>
<tr>
<td>Tasa de absorción</td>
<td>3.5</td>
<td>3.0</td>
<td>3.0</td>
<td>8.8</td>
<td>6.8</td>
</tr>
<tr>
<td>Porosidad total (%)</td>
<td>11.5</td>
<td>11.9</td>
<td>9.7</td>
<td>17.8</td>
<td>16.3</td>
</tr>
</tbody>
</table>

Tabla 6 Propiedades físicas del agregado reciclado de concreto hidráulico tomada de (Corinaldesi, 2010)

<table>
<thead>
<tr>
<th>Agregado</th>
<th>Tasa de absorción (%)</th>
<th>Gravedad específica (saturado)</th>
<th>Gravedad específica (seco)</th>
<th>Contenido de cloruros (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>0.68</td>
<td>2.86</td>
<td>2.84</td>
<td>0.14</td>
</tr>
<tr>
<td>Reciclado</td>
<td>3.47</td>
<td>2.39</td>
<td>2.31</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Tabla 7 Propiedades físicas de ciertos agregados reciclados provenientes de concreto hidráulico tomada de (Rahal, 2007)
Propiedades Físicas

- El agregado reciclado en general sin importar las características del concreto original que se trituró, va a presentar un peso específico menor al peso específico del agregado natural debido al bajo peso específico del mortero que conforma el nuevo agregado y a la porosidad que este aporta. El peso específico de este tipo de agregados reciclados según pruebas realizadas por (Padmini, Ramamurthy, & Mathews, 2009) (Corinaldesi, 2010) (Rahal, 2007) en distintos agregados reciclados de países como Alemania, Italia, China y Kuwait, puede alcanzar valores de hasta un 19% menos que el valor de peso específico original de los agregados naturales con los cuales se fabricó cada concreto como muestran las Tablas 5, 6 y 7.

Adicionalmente, se ha evidenciado que los agregados reciclados que provengan de concretos diseñados para mayores resistencias serán los de pesos específicos más bajos. Esto se atribuye al proceso de trituración en donde los concretos de resistencias bajas e intermedias al ser triturados arrojan partículas en donde el mortero no está adherido de una forma tan significativa y es pulverizado y desechado por la clasificación de tamaño en el proceso de producción. De forma contraria, en los concretos de resistencias altas en los que una mayor cantidad de cemento reaccionó y ocasionó mayor adherencia del mortero de la mezcla con las partículas de agregado, se ocasiona que el agregado reciclado producto de la trituración contenga mayor mortero adherido a su superficie al no poder ser pulverizado y separado (Padmini, Ramamurthy, & Mathews, 2009).

De igual forma el peso específico también disminuye según el tamaño de la partícula empleada, en donde la afectación mayor será en las partículas pequeñas en donde se tiene mayor superficie específica albergando más cantidad de mortero adherido a su superficie que en las partículas de mayor tamaño (Padmini, Ramamurthy, & Mathews, 2009). Es por esto que la utilización de las partículas pequeñas, determinadas agregados finos, es limitada en ciertas aplicaciones ya que incide directamente en propiedades como el peso específico y la tasa de absorción de agua (Padmini, Ramamurthy, & Mathews, 2009).

- La tasa de absorción de agua de los agregados reciclados va a ser significativamente mayor que en los agregados naturales, esto debido nuevamente a la porosidad del mortero adherido a las partículas de agregado reciclado. De forma similar que la gravedad específica, la tasa de absorción de agua de los agregados reciclados aumenta si el concreto del cual proviene fue

Propiedades Mecánicas

- Propiedades como la resistencia a la trituración, al impacto y a la abrasión, según la recopilación de pruebas realizada por (Padmini, Ramamurthy, & Mathews, 2009) son relativamente más bajas en los agregados reciclados que en los agregados naturales. Esto debido nuevamente a la presencia de mortero adherido a las partículas de agregado natural que se desprende fácilmente al verse afectado por fuerzas externas y a partículas que se componen de solo mortero que se asimilan como parte del volumen total de agregado reciclado.

Finalmente la aplicación de los agregados reciclados (AR) depende directamente de los requerimientos físicos y mecánicos deseados para dicha aplicación y para garantizar que las propiedades sean óptimas para cualquier aplicación específica, es de gran ayuda conocer el origen del concreto del cual se obtiene el AR, teniendo en cuenta que los AR que provienen de concretos con altas resistencias son menos fiables que concretos con resistencias medias y bajas (Corinaldesi, 2010).

Así mismo es recomendable que en las plantas de procesamiento exista un riguroso control de calidad para controlar que los concretos que se deseen triturar no contengan materiales peligrosos como el asbesto y/o materia orgánica (Corinaldesi, 2010).

3.1.2. Concreto Hidráulico con sustitución de agregados naturales por agregados reciclados

Es numeroso y extenso el estudio que se le ha realizado al concreto hidráulico con la sustitución parcial o total de agregados naturales por agregados reciclados alrededor del mundo. De acuerdo a una gran variedad de autores dentro de los cuales se toma como referencia el trabajo de (Breccolotti & Materazzi, 2010) (Li, 2008) (Corinaldesi, 2010) (Etxeberria, Vázquez, Marí, & Barra, 2007) entre otros, se determina que es posible realizar mezclas de concreto que lleguen a las resistencias y especificaciones de manejabilidad, asentamiento, retracción por secado y durabilidad deseadas, teniendo en cuenta factores que diferencian la formulación de la mezcla con Agregados reciclados.
Es posible sustituir parcialmente el agregado grueso, el agregado fino o los dos simultáneamente en diferentes proporciones o hasta sustituir totalmente el agregado natural en la mezcla. Pero la inclusión de cada uno de estos agregados reciclados influye directamente en propiedades del concreto, tomando como referencia siempre un concreto con agregados naturales. Hoy en día en el mundo ya se han establecido parámetros en base a investigaciones, para relacionar las posibilidades de inclusión de AR en las mezclas de concreto, en donde simultáneamente se establecen porcentajes de sustitución de agregados reciclados, finos y gruesos por agregados naturales (Breccolotti & Materazzi, 2010). Como se muestra en la Tabla 8, diferentes países después de realizar pruebas y estudios que dependen directamente de las condiciones naturales de sus agregados locales, ya han establecido porcentajes de sustitución para los agregados finos y gruesos producto de la trituración del concreto hidráulico, con restricciones tanto de aplicación como de resistencias a la compresión deseada en base a sus estándares técnicos.

<table>
<thead>
<tr>
<th>País</th>
<th>Norma</th>
<th>Restricción</th>
<th>% de agregado grueso reciclado</th>
<th>% de agregado fino reciclado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>RILEM 1998</td>
<td>0-100</td>
<td>0-100</td>
<td>-</td>
</tr>
<tr>
<td>Brazil</td>
<td>Draft NBR</td>
<td>-</td>
<td>0-20</td>
<td>0-20</td>
</tr>
<tr>
<td>China</td>
<td>WBTC 12/2002</td>
<td>-</td>
<td>0-20</td>
<td>-</td>
</tr>
<tr>
<td>Denmark</td>
<td>-</td>
<td>0-100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Germany</td>
<td>DIN 4226-100</td>
<td>No prestress</td>
<td>0-45</td>
<td>-</td>
</tr>
<tr>
<td>Holland</td>
<td>NEN 5950</td>
<td>-</td>
<td>0-100</td>
<td>0-20</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>DM 14/01/2008</td>
<td>Specific use</td>
<td>0-100</td>
<td>-</td>
</tr>
<tr>
<td>Italy</td>
<td>-</td>
<td>0-100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>JIS A 5021/3</td>
<td>Specific use</td>
<td>0-100</td>
<td>-</td>
</tr>
<tr>
<td>Spain</td>
<td>Draft EHE</td>
<td>-</td>
<td>0-20</td>
<td>-</td>
</tr>
<tr>
<td>UK</td>
<td>BS 6543 BRE 433</td>
<td>-</td>
<td>0-20</td>
<td>-</td>
</tr>
<tr>
<td>USA</td>
<td>ACI 555R-01</td>
<td>-</td>
<td>0-20</td>
<td>0-100</td>
</tr>
</tbody>
</table>

Al comparar mezclas preparadas en las mismas proporciones con las mismas relaciones agua – cemento (a/c) y sustituyendo los agregados naturales por agregados reciclados (Li, 2008) (Corinaldesi, 2010) (Domingo-Cabo, Lázaro, López-Gayarre, Serrano-López, Serna, & Castaño-Tabares, 2009), se encuentra que el concreto preparado con agregado reciclado puede presentar disminuciones en prácticamente todas sus características como se explica a continuación según la propiedad por específico.

Resistencia a la compresión

Dependiendo del porcentaje de agregado reciclado incluido en la mezcla la resistencia puede disminuir hasta en un 10%-25%, sustituyendo solamente el agregado grueso de...
la mezcla. Como se muestra en la Figura 15 para resultados de pruebas realizadas por diferentes autores tomando como referencia concretos con agregados naturales (Li, 2008).

![Figura 15 Resistencia a la compresión de concretos con diferentes porcentajes de sustitución de agregado grueso reciclado (Li, 2008).](image)

De igual manera, se pueden incluir parcialmente los finos producto de la trituración del concreto como agregado fino reciclado, pero se ha encontrado que la disminución de la resistencia para relaciones a/c variables, puede llegar a el 30% como se muestra en la Figura 16, por lo que se recomienda no incluir este material en mezclas normales sin aditivos (Corinaldesi, 2010). La disminución de la resistencia a la compresión en concretos con finos reciclados, es usualmente atribuida por varios autores (Breccolotti & Materazzi, 2010) (Padmini, Ramamurthy, & Mathews, 2009), a la porosidad y absorción de agua significativamente superior que aporta el mortero presente en el agregado reciclado. De forma complementaria la Figura 16, muestra que el efecto de la variación de la relación a/c en la resistencia a la compresión es proporcional para los diferentes tipos de agregados, natural, grueso reciclado y fino reciclado.
Con respecto a lo anterior se determina que es posible realizar mezclas con sustituciones de agregado natural por agregado reciclado que mantengan la resistencia a la compresión de diseño deseada pero para lograr esto se recomienda lo siguiente:

1. Los agregados reciclados deben incorporarse a la mezcla con niveles de humedad altos. Las partículas deben estar casi totalmente saturadas de agua para que el alto porcentaje de absorción de estas debido a la porosidad del contenido de mortero no incida en la relación a/c de la mezcla (Etxeberria, Vázquez, Marí, & Barra, 2007). Por esto, el proceso de mezcla debe tener un control de calidad riguroso que asegure una etapa de pre humedecimiento del agregado para que pueda ser agregado a la mezcla garantizando su mejor desempeño e interacción con los demás componentes de la mezcla (Fong & Yeung, 2002).

2. Es necesario aumentar la cantidad de cemento incorporado a la mezcla, disminuyendo así la relación a/c de esta para garantizar una correcta adherencia en los componentes de la mezcla y así poder lograr las resistencias deseadas. Las cantidades de cemento para llegar a resistencias deseadas puede aumentar entre un 8% y 10% (Etxeberria, Vázquez, Marí, & Barra, 2007).

3. Se pueden realizar mezclas con sustituciones de agregado reciclado de hasta un 100% pero para esto la relación a/c deberá ser muy baja y aumentara los costos de producción del concreto por el aumento de material cementante requerido. Por esto se recomienda en base a estudios internacionales (Cement Concrete & Aggregates Australia, 2008), realizar sustituciones de hasta un 30% de agregado reciclado en mezclas de

Figura 16 Resistencia a la compresión a 28 días de concretos con agregados finos reciclados para diferentes relaciones agua cemento tomado de (Corinaldesi, 2010).
concreto con resistencias de entre 21MPa y 45 MPa (Etxeberria, Vázquez, Marí, & Barra, 2007).

4. Para conservar manejabilidad y asentamiento de las mezclas con agregados reciclados que puede empeorar por la necesidad de una relación a/c más baja, es necesario el uso de aditivos plastificantes reductores de agua (Etxeberria, Vázquez, Marí, & Barra, 2007). La proporción de adición de aditivos es proporcional al porcentaje de agregado reciclado incluido en la mezcla por lo tanto a mayores porcentajes de agregado reciclado, mayor cantidad de aditivos. Añadiendo que la inclusión de estos aditivos plastificantes puede favorecer otras propiedades como la retracción por secado (Corinaldesi, 2010).

Retracción por secado

En la mayoría de los estudios internacionales que se han realizado a los concretos hidráulicos con agregados reciclados (Li, 2008) (Corinaldesi, 2010) (Breccolotti & Materazzi, 2010) (Domingo-Cabo, Lázaro, López-Gayarre, Serrano-López, Serna, & Castaño-Tabares, 2009), se ha encontrado que la retracción por secado aumenta para cualquier porcentaje de sustitución parcial o total del agregado natural por agregado reciclado como lo muestra la Figura 17. En donde se llegan a presentar aumentos en la retracción por secado del concreto hidráulico con agregados reciclados de hasta un 65%, comparando con un concreto mezclado en un 100% con agregados naturales.

![Figura 17 Retracción por secado vs. Edad del concreto con diferentes proporciones de agregado reciclado tomado de (Li, 2008).](image-url)
Sin embargo en estudios técnicos similares se han obtenido resultados en los que la retracción por secado puede mantener valores similares a los de un concreto con agregados naturales, si se sustituye hasta un máximo del 20% de agregados naturales por agregados reciclados (Domingo-Cabo, Lázaro, López-Gayarre, Serrano-López, Serna, & Castaño-Tabares, 2009). Incluso se han observado mezclas que al incluir agregados reciclados junto con aditivos plastificantes y súper plastificantes, en términos de más de 60 días, el concreto puede tener una disminución en su retracción del 3-4% como lo muestra la Tabla 9 (Corinaldesi, 2010).

<table>
<thead>
<tr>
<th>Tipo de mezcla</th>
<th>Días de exposición a una temperatura de 20 grados C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Agr. Natural -0.40</td>
<td>0.09</td>
</tr>
<tr>
<td>Agr. Natural -0.45</td>
<td>0.11</td>
</tr>
<tr>
<td>Agr. Natural -0.50</td>
<td>0.19</td>
</tr>
<tr>
<td>Agr. Natural -0.55</td>
<td>0.18</td>
</tr>
<tr>
<td>Agr. Natural -0.60</td>
<td>0.24</td>
</tr>
<tr>
<td>Agr. fino reciclado -0.40</td>
<td>0.05</td>
</tr>
<tr>
<td>Agr. fino reciclado -0.45</td>
<td>0.06</td>
</tr>
<tr>
<td>Agr. fino reciclado -0.50</td>
<td>0.05</td>
</tr>
<tr>
<td>Agr. fino reciclado -0.55</td>
<td>0.10</td>
</tr>
<tr>
<td>Agr. fino reciclado -0.60</td>
<td>0.19</td>
</tr>
<tr>
<td>Agr. grueso reciclado -0.40</td>
<td>0.11</td>
</tr>
<tr>
<td>Agr. grueso reciclado -0.45</td>
<td>0.12</td>
</tr>
<tr>
<td>Agr. grueso reciclado -0.50</td>
<td>0.14</td>
</tr>
<tr>
<td>Agr. grueso reciclado -0.55</td>
<td>0.17</td>
</tr>
<tr>
<td>Agr. grueso reciclado -0.60</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Tabla 9 Retracción por secado para concretos con agregados naturales, finos reciclados y gruesos reciclados a diferentes relaciones a/c tomado de (Corinaldesi, 2010).

Teniendo en cuenta la variación en los resultados de retracción por secado entre varios estudios, se puede decir que la procedencia del material triturado influye de manera muy significativa en la retracción por secado. Igualmente los diferentes diseños de mezcla que incluyan combinaciones con agregados finos y gruesos reciclados pueden incidir en el desempeño de esta propiedad. Gracias a esto se identifica la necesidad de realizar pruebas específicas bajo diferentes combinaciones de mezcla con agregados finos y gruesos reciclados locales para determinar el comportamiento de la retracción por secado de concretos reciclados en Colombia.

Módulo de elasticidad

El módulo de elasticidad al igual que el peso específico de los concretos con cualquier tipo de adición de agregados reciclados, es más bajo y disminuye a medida que el porcentaje de agregados reciclados que se incluye en la mezcla aumenta como se muestra en la Figura 18. Esto se debe a la porosidad de las partículas de agregado.

![Figura 18 Módulo de elasticidad de concretos con diferentes porcentajes de agregados reciclados tomada de (Li, 2008).](image)

En sustituciones de hasta el 30% de agregado reciclado, según estudios la variación del módulo de elasticidad del concreto puede presentar una disminución de entre el 13-40% (Corinaldesi, 2010) y a medida que aumenta el porcentaje de agregado reciclado el módulo de elasticidad puede caer hasta un 50% en base a un concreto con 100% de agregado natural (Li, 2008).

Esta disminución en el módulo de elasticidad hace que los concretos con agregado reciclado sean más propensos a la deformación que los concretos comunes con agregado natural bajo esfuerzos similares, lo que puede llegar a limitar sus aplicaciones en elementos estructurales (Breccolotti & Materazzi, 2010).

Resistencia a la flexión

El concreto con agregados reciclados presenta una variación despreciable en la resistencia a flexión en mezclas con diferentes porcentajes de sustitución de este (30%, 50%, 70% y 100% AR), comparando con un concreto mezclado en su totalidad con agregados naturales (Li, 2008). Como se muestra en la Figura 19, para diferentes porcentajes de sustitución con agregados gruesos reciclados, la disminución de la resistencia a flexión del concreto en el caso más crítico no supera el 0.1%.
Resistencia a la flexión

Para concretos con agregados reciclados en diferentes porcentajes de sustitución, según estudios recopilados por (Li, 2008), se presentan valores de resistencia a la flexión igualmente inferiores como las demás propiedades físicas y mecánicas. A medida que se aumenta el porcentaje de sustitución de agregado natural por agregado reciclado esta propiedad puede llegar a disminuir hasta un 30% como se muestra en la Figura 19.

Resistencia a la tracción

Para concretos con agregados reciclados en diferentes porcentajes de sustitución, según estudios recopilados por (Li, 2008), se presentan valores de resistencia a la tracción igualmente inferiores como las demás propiedades físicas y mecánicas. A medida que se aumenta el porcentaje de sustitución de agregado natural por agregado reciclado esta propiedad puede llegar a disminuir hasta un 30% como se muestra en la Figura 20.
Cabe aclarar que para porcentajes de hasta un 20% de sustitución de agregados reciclados en mezclas sin aditivos, la resistencia a la tracción puede mantenerse en valores muy similares a los que presenta un concreto mezclado en su totalidad con agregados naturales (Li, 2008).

Se ha encontrado en estudios realizados por (Etxeberria, Vázquez, Marí, & Barra, 2007) que en concretos con sustitución de agregado reciclado al incluir aditivos plastificantes, se presenta un incremento en la resistencia a tracción del concreto a medida que se aumenta el porcentaje de sustitución de agregado natural por agregado reciclado. Estos resultados particulares se presentan en la Tabla 10, en donde se evidencia que la resistencia a la tracción al sustituirse el 100% de los agregados naturales por agregados gruesos reciclados, puede aumentar hasta un 9% con respecto al concreto mezclado con agregados naturales.

<table>
<thead>
<tr>
<th>Tipo de concreto</th>
<th>Densidad (kg/dm³)</th>
<th>Resistencia a la compresión (MPa)</th>
<th>Resistencia a la tracción (MPa)</th>
<th>Módulo de elasticidad (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% agr. reciclado</td>
<td>2.42</td>
<td>29</td>
<td>2.49</td>
<td>32,561.7</td>
</tr>
<tr>
<td>25% agr. reciclado</td>
<td>2.40</td>
<td>28</td>
<td>2.97</td>
<td>31,000.4</td>
</tr>
<tr>
<td>50% agr. reciclado</td>
<td>2.39</td>
<td>29</td>
<td>2.70</td>
<td>28,591.7</td>
</tr>
<tr>
<td>100% agr. reciclado</td>
<td>2.34</td>
<td>28</td>
<td>2.72</td>
<td>27,764.0</td>
</tr>
</tbody>
</table>

Tabla 10 Propiedades mecánicas de concretos con diferentes porcentajes de agregado reciclado y aditivo plastificante tomado de (Etxeberria, Vázquez, Marí, & Barra, 2007).

Esta mejoría en la resistencia a la tracción, puede atribuirse según el autor (Etxeberria, Vázquez, Marí, & Barra, 2007) a que las partículas al contener residuos de mortero adheridos a su superficie, convierten el agregado en una partícula mucho más rugosa que junto con la angulosidad del agregado, generan mejor trabazón entre partículas y por lo tanto un efecto positivo frente a la tracción.

Resistencia al Fuego

Se han sometido concretos con sustitución de agregados reciclados a pruebas de resistencia al fuego para determinar la resistencia residual después de ser sometidos a altas temperaturas. Sorprendentemente según (Li, 2008) los concretos con agregados reciclados en diferentes porcentajes, a temperaturas entre los 400 y 700 grados centígrados, presentan una mejor respuesta a la exposición a estas altas temperaturas y alcanzan resistencias a la compresión residual más altas que en un concreto con 100% de agregados naturales incorporados como lo muestra la Figura 21.
Otras propiedades como la resistencia a la carbonatación, resistencia a la congelación – descongelación, resistencia a ataques de sulfatos e ion-cloruros, han sido estudiadas de manera muy limitada como para garantizar resultados confiables. Sin embargo en estudios realizados y recopilados en China por (Li, 2008), se establece que estas propiedades se ven igualmente en detrimento debido al uso de materiales reciclados que ya están en una etapa más avanzada de su ciclo de vida.

En resumen de acuerdo a las diferentes propiedades del concreto analizadas en la revisión bibliográfica realizada se han encontrado resultados técnicos de varios autores que confirman que aunque el concreto con agregados reciclados posee propiedades y características inferiores al concreto con agregados naturales, se pueden tomar medidas de corrección en la mezcla para obtener concretos igualmente funcionales hasta para aplicaciones de tipo estructural.

3.1.3. Ladrillos y Bloques de concreto con agregado reciclado

Como ya se ha expuesto anteriormente, gracias estudios técnicos realizados por diversos autores (Corinaldesi, 2010) (Li, 2008) (Padmini, Ramamurthy, & Mathews, 2009) entre otros, el uso y la implementación de agregados reciclados como sustituto de agregados naturales en concretos hidráulicos representa un decaimiento general de sus propiedades físicas y mecánicas. Sin embargo, al implementarse en la producción de ladrillos, bloques y adoquines, al ser un proceso mecanizado y rápido en una fábrica
directamente, mediante moldes y cortadoras, se requiere de mezclas menos exigentes en cuanto a manejabilidad por el tiempo de vaciado que es bastante corto. Esto reduce los inconvenientes de ajustar las relaciones a/c de la mezcla y la necesidad de agua de exceso teniendo así efectos positivos en propiedades como la retracción por secado y el creep (Poon, Kou, & Lam, 2002).

Con el fin de disminuir los efectos negativos de la implementación de agregados reciclados, se puede variar la composición de la mezcla de concreto para los ladrillos y bloques, variando el porcentaje de agregados reciclados que sustituyen los naturales. Incluso se pueden incluir cenizas volantes para mejorar la capacidad cementante entre las partículas con el fin de lograr mezclas que cumplan con las propiedades físicas y mecánicas estipuladas en estándares internacionales y nacionales como la NTC 4026 para bloques y ladrillos de concreto (Wattanasiriwech, Saiton, & Wattanasiriwech, 2009).

Para el uso específico ya sea en ladrillos de mampostería, bloques (adoquines) para tránsito de peatones o tráfico pesado de vehículos, los estándares internacionales se presentan en las tablas, para unidades de mampostería se estipula que la resistencia mínima a compresión debe ser de 7 MPa (British Standars, 2000) comparada con la especificación nacional dada en la NTC 4026 que es de 6 MPa (Poon & Chan, 2006).

Para lograr mezclas para bloques y ladrillos que cumplan los estándares internacionales de resistencia a la compresión (>49 MPa para adoquines de tráfico vehicular, >30Mpa para adoquines de tráfico peatonal y 7 MPa para unidades de mampostería), resistencia a la tracción (> 2Mpa para tráfico peatonal y >3.9MPa para tráfico vehicular), resistencia al deslizamiento (>45 BPN para adoquines de todo tráfico) y de tasa de absorción(<6% para todo Bloque o Ladrillo), se deben incorporar porcentajes de sustitución de agregados reciclados adecuados (Poon & Chan, 2006).

Para la preparación de estas mezclas se puede considerar la inclusión de agregados reciclados tanto gruesos (gravilla) como finos (arena), la fracción gruesa de agregados reciclados para la producción de bloques y ladrillos se considera de un tamaño máximo de 10 mm y la fracción fina de un tamaño de 5 mm hasta el polvo (Wattanasiriwech, Saiton, & Wattanasiriwech, 2009).

- Resistencia a la compresión y a la tracción

 Experimentalmente tras pruebas con diferentes porcentajes de sustitución por agregados reciclados de concreto hidráulico, es posible cumplir los estándares de resistencia tanto para unidades de mampostería como para adoquines en
pavimentos de tráfico peatonal y vehicular, como se muestra en las Figuras 22 y 23, según datos obtenidos de los estudios de varios autores (Poon, Kou, & Lam, 2002) (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011) (Soutsos, Tang, & Millard, Concrete building blocks made with recycled demolition aggregate, 2010).

Figura 22 Resistencias a la compresión y a la tracción para bloques con diferentes porcentajes de agregados gruesos reciclados, tomado de (Soutsos, Tang, & Millard, Concrete building blocks made with recycled demolition aggregate, 2010)
El uso de finos reciclados de concreto hidráulico resulta en una disminución de la resistencia a la compresión de hasta el 11% y de la resistencia a la tracción de hasta un 9% en las unidades tanto de mampostería como de adoquines para pavimentos (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011). Por lo tanto es posible realizar sustituciones de agregado reciclado grueso y fino hasta en un 100% y 60% respectivamente para cumplir las condiciones de resistencia internacionales (Poon, Kou, & Lam, 2002).

- Tasa de absorción de agua

Debido al mortero adherido a las partículas después de su trituración y a residuos de mortero que se asumen como agregado, las mezclas con estos agregados poseen una alta tasa de absorción y un peso específico bajo que se conserva en los bloques y ladrillos prefabricados (Poon & Chan, 2006).
En la Figura 24 se muestra como las mezclas con agregados finos en diferentes porcentajes, proveen de una tasa de absorción mayor a los bloques y ladrillos. Para cumplir con los estándares internacionales (% absorción<6%), se puede sustituir hasta un 25% de agregado fino en las mezclas. Porcentajes más altos de agregados reciclados que aumenten el porcentaje de absorción de agua influirán directamente en la durabilidad del material debido a la relación directa entre estas dos propiedades (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011).

Se recomienda el uso de aditivos plastificantes para reducir la tasa de absorción y simultáneamente aumentar el peso específico de los bloques y ladrillos, ya que estos aditivos reducen los espacios vacíos entre partículas disminuyendo la porosidad del material (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011).

En resumen el uso de agregados reciclados producto de la trituración de concreto hidráulico, en las correctas proporciones, puede lograr mezclas capaces de cumplir con los requerimientos mecánicos internacionales para la producción industrial de bloques y ladrillos con aplicaciones como adoquines de tráfico vehicular y peatonal, y de unidades de mampostería prefabricadas. En la Tabla 11 se muestran los porcentajes adecuados de sustitución sugeridos para los agregados reciclados grueso y fino, en
base a las metas de las propiedades mecánicas a cumplir estipulado en los trabajos de investigación de (Poon & Chan, 2006) (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011).

<table>
<thead>
<tr>
<th>Tipo de agregado</th>
<th>(%) Sustitución para cumplir estándares de resistencia a compresión y tracción</th>
<th>(%) para cumplir tasa de absorción máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reciclado de concreto grueso</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>Reciclado de concreto fino</td>
<td>60</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabla 11 Porcentajes recomendados de sustitución de agregados reciclados para cumplir especificaciones, tomado de (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011)

3.1.4. Agregados reciclados provenientes de concreto, ladrillos y bloques de arcilla

En el sector de la construcción de obras civiles alrededor del mundo aparte del concreto, los prefabricados a base de arcilla son muy comúnmente utilizados. Por lo tanto los residuos de construcción y demolición, no solo se componen de concreto sino que un gran porcentaje de estos lo componen los materiales cerámicos y de arcilla (Mercante, 2007) (Perez, 1996). Estos residuos de ladrillos, bloques y adoquines de arcilla, generalmente provienen de construcciones en las que originalmente los materiales hacían parte de muros divisorios, muros estructurales, fachadas, elementos decorativos, vías peatonales, etc., (Yang, Du, & Bao, 2011).

Al ser un material de uso muy común en la construcción, los volúmenes de residuo de este que se generan son igualmente significativos que los de concreto hidráulico, por lo tanto el aprovechamiento de estos para disminuir el volumen que se lleva a escombreras y rellenos es igualmente importante. Sin embargo en gran parte de los países líderes en la implementación de tecnologías para el aprovechamiento de residuos de construcción y demolición, el ladrillo de arcilla no es un material incorporable como agregado reciclado a nuevas mezclas de concreto y otras aplicaciones debido a el decaimiento en general de las propiedades al usar este RCD (Fong & Yeung, 2002). En países como Alemania, China y los Estados Unidos de América, se han estudiado e implementado exitosamente diversas aplicaciones
incorporando estos materiales de forma que se pueda reducir los volúmenes de RCD que se llevan a las escombreras.

Ya es reconocido el potencial de aprovechamiento de este tipo de residuo y a pesar de sus limitaciones, se han definido y puesto a prueba varias aplicaciones en la ingeniería civil, en donde se han encontrado resultados positivos y negativos pero con un margen de aplicabilidad viable para el medio ambiente y el sector de la construcción de la ingeniería civil simultáneamente (Poon & Chan, 2006).

3.1.5. Ladrillos y Bloques de concreto con agregado reciclado compuesto por residuos de concreto y bloques y ladrillos de arcilla

Según diversos autores (Poon & Chan, 2006) (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011) (Fong & Yeung, 2002) consultados en la revisión bibliográfica de este trabajo, para la fabricación de bloques y ladrillos de concreto en donde se incluyen residuos de concreto con bloques y ladrillos de arcilla triturado como agregado, es importante mencionar inicialmente que el comportamiento mecánico y las propiedades físicas de los productos, empeoran significativamente. De igual forma utilizando estos materiales en proporciones adecuadas se logra la aplicabilidad deseada para bloques y ladrillos de concreto cumpliendo con estándares nacionales como la NTC 4026 e internacionales como (British Standars, 2000) mencionados anteriormente según un uso específico.

El ladrillo y bloque de arcilla reciclado al provenir de muros construidos con mortero, una vez triturado, gran parte del mortero continúa adherido al material lo que implica que al reutilizarse se verán afectadas propiedades como el peso específico y la tasa de absorción todo debido a la porosidad tanto del ladrillo triturado como del mortero adherido (Poon & Chan, 2006). La disminución en estas propiedades de elementos prefabricados como los ladrillos y bloques, se encuentra relacionada en las Tablas 12 y 13, como resultado de diferentes estudios internacionales.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Tamaño del agregado</th>
<th>Método de prueba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso específico saturado (kg/m³)</td>
<td>10 mm</td>
<td>2147</td>
</tr>
<tr>
<td>Peso específico seco (kg/m³)</td>
<td><5 mm</td>
<td>1797</td>
</tr>
<tr>
<td>Tasa absorción (%)</td>
<td></td>
<td>19.5</td>
</tr>
</tbody>
</table>

Tabla 12 Propiedades de agregados reciclados de ladrillo de arcilla, tomado de (Poon & Chan, 2006).
Estas mezclas con triturados tanto de concreto como de ladrillo empleadas en ladrillos y bloques prefabricados, han sido estudiadas de forma muy similar a las que contienen únicamente concreto reciclado. A continuación se presenta una recopilación de las propiedades más estudiadas y los resultados en común obtenidos.

Resistencia a la compresión y a la tracción

En la Figura 25 se puede ver que el comportamiento de las resistencias a compresión y a tracción de los elementos prefabricados con la inclusión de agregados reciclados de ladrillos y bloques de arcilla presenta una disminución del 2 al 3% para la resistencia a compresión y la resistencia a la tracción se mantiene igual según los estudios de (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011) y (Poon, Kou, & Lam, 2002).

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Agregado fino (medianamente gradado)</th>
<th>Agregado Grueso (5 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arena</td>
<td>Concreto</td>
</tr>
<tr>
<td>Peso específico saturado (kg/m³)</td>
<td>2440</td>
<td>2250</td>
</tr>
<tr>
<td>Peso específico seco (kg/m³)</td>
<td>2410</td>
<td>1820</td>
</tr>
<tr>
<td>Tasa absorción (%)</td>
<td>1.5</td>
<td>13.56</td>
</tr>
</tbody>
</table>
Aunque los resultados de resistencia a la compresión son un poco inferiores, se puede ver en la Figura 25 que para sustituciones de hasta un 60% de agregados gruesos reciclados de ladrillo, estos elementos prefabricados cumplen con sus especificaciones tanto a compresión como a tracción para usos como unidades de mampostería y adoquines para pavimentos tanto nacional como internacionalmente.

Cabe aclarar que para lograr buenos resultados con este tipo de agregados es necesario utilizar relaciones a/c bajas lo que implica la necesidad de más material cementante, es recomendable usar cenizas volantes y aditivos plastificantes reductores de agua para mejorar las condiciones de la mezcla y los resultados en estado seco de los elementos prefabricados (Soutsos, Tang, & Millard, Concrete building blocks made with recycled demolition aggregate, 2010).

Adicionalmente se mantiene la tendencia vista en todas las aplicaciones anteriores, en donde al incluir finos reciclados las resistencias bajan considerablemente. En el caso de incorporar finos reciclados de ladrillos de arcilla, las disminuciones de resistencia a la compresión y tracción son del 14% y 7% respectivamente visto en la Figura 26 (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011).
- **Tasa de absorción**

Para los elementos prefabricados con este tipo de agregado reciclado, es posible incorporar hasta un 20% de agregados finos y hasta un 50% de agregados gruesos si se busca tener tasas de absorción inferiores al 6% estipulado para su correcta aplicación como unidades de mampostería y adoquines para pavimentos. En comparación estos mismos elementos prefabricados pero con agregados naturales, la tasa de absorción es muy superior debido nuevamente a la porosidad característica del mortero que se mantiene adherido y se asume como agregado. De acuerdo a la Figura 27 se puede ver que los agregados finos reciclados de ladrillo no solo disminuyen la resistencia a compresión sino que también aumentan muy significativamente la tasa de absorción de los elementos.

Figura 27 Tasa de absorción de bloques y ladrillos de concreto con agregados reciclados de ladrillo, tomado de (Soutsos, Tang, & Millard, Concrete building blocks made with recycled demolition aggregate, 2010).

Al ver que todas las propiedades puestas a prueba en los estudios realizados por (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011) (Poon, Kou, & Lam, 2002) (Yang, Du, & Bao, 2011) (Poon & Chan, 2006) entre otros consultados, decaen significativamente debido principalmente a la porosidad de los agregados reciclados de ladrillos, surge la inquietud del desempeño de estos materiales en el tiempo, lo que se conoce como durabilidad. Aunque los déficits en resistencia y tasa de absorción pueden ser corregidos por adición de cemento o controlados por medio de los porcentajes de sustitución de agregado natural por reciclado, la durabilidad es una característica poco
explorada frente a la cual quedan inquietudes pendientes de futuros estudios técnicos (Castellanos & Quiroga, 2010).

De forma similar que para los ladrillos y bloques prefabricados con agregados reciclados de concreto, en la recopilación de resultados realizada por (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011), en la Tabla 14 se establecen los porcentajes de agregados reciclados sugeridos para cumplir con las especificaciones mínimas para ser utilizado en aplicaciones como unidades de mampostería o adoquines para pavimentos.

<table>
<thead>
<tr>
<th>Tipo de agregado</th>
<th>(%) Sustitución para cumplir estándares de resistencia a compresión y tracción</th>
<th>(%) para cumplir tasa de absorción máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reciclado de concreto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grueso</td>
<td>60</td>
<td>55</td>
</tr>
<tr>
<td>fino</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabla 14 Porcentajes recomendados de sustitución de agregados reciclados para cumplir especificaciones, tomado de (Soutsos, Tang, & Millard, Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks, 2011)

3.1.6. Bases y sub – bases conformadas por agregados reciclados de concreto, ladrillo y materiales cerámicos triturados.

Con el fin de tener opciones viables para la utilización de RCD en obras de ingeniería, en el mundo se ha estudiado la posibilidad de utilizar estos residuos como parte de las múltiples capas que componen un pavimento, más específicamente como bases y sub-bases (Cement Concrete & Aggregates Australia, 2008).

La utilización de materiales RCD reciclados como bases y sub-bases para pavimentos depende directamente de características del material puesto a prueba como granulometría, peso unitario, resistencia al corte no drenado, California Bearing Ratio (CBR), durabilidad por resistencia a ataques por sustancias químicas, módulo de elasticidad y número de golpes del ensayo de penetración dinámico de cono entre otros (Aiassa & Arrúa, 2007). Aunque internacionalmente no se han puesto a prueba todas estas características, en varios estudios realizados por (Barbudo, Agrela, Ayuso, Jiménez, & Poon, 2011) (Poon & Chan, Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, 2006) (Leite, Motta, Vasconcelos, & Bernucci, 2010) para determinar la aplicabilidad de los RCD para este tipo de aplicación, se han encontrado resultados satisfactorios para la implementación de estos
materiales reciclados de RCD en bases y sub-bases para pavimentos basándose en características como la granulometría, la durabilidad por ataque de sulfatos, el California Bearing Ratio (CBR), el peso específico y la humedad optima de compactación.

De acuerdo a los estudios realizados por los autores previamente citados, lo desempeños y recomendaciones para la utilización de materiales como concreto, ladrillos y materiales cerámicos triturados como bases y sub-bases varían significativamente según los materiales que se decida incorporar, y la variación de los porcentajes de estos en la mezcla (Poon & Chan, Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, 2006). Se han realizado muchos tipos de mezcla en los que se varía el porcentaje de agregados reciclados gruesos reciclados de concreto y de ladrillo al igual que el porcentaje de los agregados finos reciclados tanto de concreto como de ladrillos y otros materiales cerámicos. De acuerdo con esto se han encontrado los siguientes comportamientos:

- Inicialmente se establece que las diferentes propiedades mecánicas a considerar dependen directamente de propiedades físicas como el peso específico, la tasa de absorción y la resistencia de los agregados que componen la mezcla ya sean naturales o reciclados (Leite, Motta, Vasconcelos, & Bernucci, 2010). Como se ha establecido anteriormente para los agregados reciclados de concreto y de ladrillos de arcilla, en general son materiales porosos, con pesos específicos bajos y tasas de absorción altas debido al contenido de mortero que permanece en las partículas de agregado después del proceso de trituración al que son sometidos por lo tanto se asumen resultados técnicamente inferiores pero igualmente aplicables.

- En orden para determinar la compactación optima de bases y sub-bases, se determina la relación entre la humedad óptima y la densidad seca del material, se ha establecido que esta relación es afectada críticamente por el porcentaje de agregados reciclados de ladrillo y materiales cerámicos que se incluyan en la mezcla (Barbudo, Agrela, Ayuso, Jiménez, & Poon, 2011). Por lo tanto entre más sea el porcentaje tanto de agregados gruesos como finos reciclados de ladrillo y materiales cerámicos que se incluyan, la humedad optima puede aumentarse hasta en un 200% para sustituciones del 50% de este tipo de agregados y la densidad seca puede bajar hasta un 19%. Lo anterior debido al bajo peso específico y las tasas de absorción tan altas que poseen este tipo de agregados reciclados (Poon & Chan, Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, 2006). Cabe agregar que esta relación en porcentajes altos de inclusión de agregados reciclados de ladrillo y materiales cerámicos genera una curva más abierta que hace que la mezcla sea
menos susceptible la exactitud de la humedad óptima para lograr un buen grado de compactación como se ve en la Figura 28.

![Figura 28 Relación Humedad – densidad para siete tipos de mezclas con agregados reciclados, tomada de (Poon & Chan, Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, 2006)](image)

- En cuanto al California Bearing Ratio (CBR), se encontró que un agregado natural de excelente calidad logra porcentajes de hasta el 80%, muy superiores a las requeridas por especificaciones nacionales como la INVIAS-300-07 e internacionales como la ASTM D1883, para bases y sub-bases, pero a medida que se va incorporando diferentes agregados reciclados, este puede bajar hasta un CBR del 35% como se muestra en la Figura 29 para diferentes combinaciones de agregados reciclados (Barbudo, Agrela, Ayuso, Jiménez, & Poon, 2011).
Nuevamente la disminución en este resultado se atribuye a la porosidad y tasa de absorción de los agregados reciclados y el mortero presente en ellos, haciéndose más crítico en los agregados reciclados de ladrillo y materiales cerámicos (Poon & Chan, Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, 2006).

- En cuanto a propiedades relacionadas con durabilidad como la resistencia a ataques de sulfatos de sodio, se ha establecido que los agregados reciclados de concreto son 90% más susceptibles a deterioro en presencia de esta sustancia, mientras que los agregados reciclados de ladrillo y cerámicos se deterioran un 70% en mezclas 50-50 con agregados reciclados de concreto ya que el solo ladrillo o material cerámico se deteriora un 100% en presencia de esta sustancia química (Poon & Chan, Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, 2006).

De lo anterior se concluye que se tiene un gran porcentaje de factibilidad para aprovechar estos materiales RCD en bases y sub-bases granulares como medio de disminución de residuos que se llevan a escombreras y rellenos. Solo se deben ajustar los porcentajes adecuados de agregado reciclado para obtener los resultados deseados. Incluso los finos reciclados de RCD que poseen altas restricciones en otras aplicaciones, son aprovechables no solo como parte de las mezclas para bases y sub-bases, sino que también han sido utilizados exitosamente como estabilizantes de suelos arcillosos por autores como (Cement Concrete & Aggregates Australia, 2008)
3.2. Aplicaciones de materiales reciclados de RCD, en Colombia

Los estudios e investigaciones de aplicaciones con materiales reciclados de RCD en Colombia han sido escasos, muy sectorizados y limitados en sus alcances, solo se han estudiado propiedades como la resistencia a la flexión, a la compresión y para algunas aplicaciones específicas como bloques y adoquines prefabricados, se ha estudiado la tasa de absorción y la resistencia a la tracción respectivamente (Castellanos & Quiroga, 2010).

3.2.1. Concreto hidráulico con agregados reciclados

Según investigaciones realizadas por (Torres, 2000) y (Bojaca, 2008), utilizando materiales como ladrillo, restos de concreto, cerámica y baldosas, todos triturados y considerando fracciones finas y gruesas como agregado, se realizaron ensayos a compresión, a flexión y se calculó el porcentaje de absorción para varias mezclas con diferentes porcentajes y variación materiales reciclados junto con materiales naturales. Las diferentes mezclas ensayadas se muestran en las Tablas 15 y 16, donde simultáneamente se ven los resultados de resistencia a la compresión, a la flexión y el porcentaje de absorción a los 28 días como resultado de los ensayos realizados por dichos investigadores.

<table>
<thead>
<tr>
<th>Serie</th>
<th>Agregado Grueso</th>
<th>Agregado Fino</th>
<th>a/c</th>
<th>(f'_c) (MPa)</th>
<th>RM (MR) (MPa)</th>
<th>Absorción (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1 control</td>
<td>Natural</td>
<td>Natural</td>
<td>0.60</td>
<td>26</td>
<td>4.7</td>
<td>n/d</td>
</tr>
<tr>
<td>A-2</td>
<td>Concreto triturado ((f'_c = 18.25) MPa)</td>
<td>Natural</td>
<td>0.60</td>
<td>13</td>
<td>3.9</td>
<td>12.4</td>
</tr>
<tr>
<td>B-1 control</td>
<td>Natural</td>
<td>Natural</td>
<td>0.40</td>
<td>37</td>
<td>6.0</td>
<td>n/d</td>
</tr>
<tr>
<td>B-2</td>
<td>Concreto triturado ((f'_c = 25.32) MPa)</td>
<td>Natural</td>
<td>0.40</td>
<td>43</td>
<td>5.4</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Tabla 15 Tipos de mezcla realizadas por (Bojaca, 2008).
En cuanto a resistencia a compresión y a flexión, los resultados fueron muy variables en los diferentes estudios de (Bojaca, 2008) y (Torres, 2000) debido a la variabilidad de agregados escogida para cada diseño de mezcla puesta a prueba, sin embargo se concluyó que es posible realizar sustituciones parciales de diferentes RCD como concreto, ladrillo y tabletas cerámicas, logrando resultados aceptables ajustando también la relación a/c de las mezclas.

También se observó en una de las investigaciones que los concretos con diferentes tipos de RCD presentan tasas de absorción muy superiores a las de un concreto con agregados reciclados. Al no realizarse ensayos de absorción para la muestra testigo no es posible calcular porcentajes de aumento en los concretos con agregados de RCD con respecto a los concretos con agregados naturales (Bojaca, 2008).

Dentro de los estudios más recientes se encuentra lo expuesto por (Velandia, 2011), en donde la organización productora de cemento y concreto ARGOS, realizó mezclas con sustituciones variables de agregados reciclados de concreto. Dentro de los resultados expuestos se estipuló que a los 28 días las mezclas con sustituciones de 20 y 30% de agregados reciclados presentaron hasta 3% más resistencia a la compresión que un concreto enteramente mezclado con agregados naturales.

Adicionalmente estipula que detectaron grandes porcentajes de absorción en los agregados por lo que hubo variaciones especiales en el diseño y el en proceso de mezcla no especificadas en el documento; solo se concluyó que el agregado reciclado al momento de mezclarse debe encontrarse en un estado saturado de agua para evitar que absorba el agua de reacción de la mezcla y no se vean afectadas propiedades como la manejabilidad y la resistencia a la compresión.

Tabla 16 Tipos de mezcla realizadas por (Torres, 2000)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Agregado grueso</th>
<th>Agregado fino</th>
<th>a/c</th>
<th>f’c (MPa)</th>
<th>R28 (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Natural</td>
<td>Natural</td>
<td>0.50</td>
<td>25</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>Concreto y Ladrillo triturados</td>
<td>Concreto y Ladrillo triturados</td>
<td>0.50</td>
<td>22</td>
<td>5.8</td>
</tr>
<tr>
<td>3</td>
<td>Concreto y Ladrillo y tableta de cerámica triturados</td>
<td>Concreto y Ladrillo y tableta de cerámica triturados</td>
<td>0.50</td>
<td>29</td>
<td>n/a</td>
</tr>
</tbody>
</table>
3.2.2. Bloques y adoquines prefabricados de concreto reciclado

Además de los estudios y aplicaciones empíricas enunciadas en el capítulo uno de este trabajo de investigación, (Bedoya, 2003) y (Reyes, 1999) realizaron trabajos de investigación estudiando características como resistencia a la compresión y a la abrasión para unidades de mampostería y adoquines fabricados a partir de agregados reciclados de diversos RCD.

Dentro de las consideraciones para los diseños de mezcla se puede ver en la Tabla 17 los tipos de agregado que se usaron en el estudio de (Reyes, 1999) muy similares a los usados por (Bedoya, 2003) y (Salazar J, Produccion de ECO Materiales con Base en Residuos Solidos Industriales y Escombros de Construccion, 1999) para la producción de los elementos prefabricados.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Agregado grueso</th>
<th>Agregado fino</th>
<th>a/c</th>
<th>PC (MPa)</th>
<th>R_{28} (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ladrillo triturado</td>
<td>Arena de río</td>
<td>0.7</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Grava</td>
<td>Ladrillo triturado</td>
<td>0.8</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Ladrillo triturado</td>
<td>Ladrillo triturado</td>
<td>0.9</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabla 17 Tipos de RCD usados en las mezclas y resultados de resistencia a compresión tomado de (Reyes, 1999)

Los resultados en general que se encontraron de la serie de autores mencionados, coinciden en que se debe variar la relación a/c a porcentajes bajos para obtener resistencias a compresión aceptables para su aplicación como unidades de mampostería y adoquines según la NTC 4026.

Por otra parte para los adoquines se observó en el estudio realizado por (Reyes, 1999) que la resistencia a la abrasión es considerablemente mayor en las unidades producidas con los agregados reciclados especificados en la Tabla 17, al obtenerse porcentajes de pérdida de masa de 3% en comparación con el 0.8% característico de los adoquines producidos con agregados naturales.

De esta forma concluyen los casos de aplicación de materiales reciclados de RCD en Colombia encontrados durante la revisión bibliográfica de este trabajo de investigación. Se puede ver que los estudios son limitados en su alcance al centrarse en su mayoría en propiedades como la resistencia a la compresión. Adicionalmente se trata de análisis realizados de forma aislada por diversos autores y en algunas ocasiones hasta sin concluir. Es por esto que en Colombia existe la necesidad de realizar este tipo de trabajos de investigación puntuales que analicen más de una o dos características de
cada aplicación y se establezcan puntos de comparación claros con respecto a los materiales naturales locales (Castellanos & Quiroga, 2010).
4. PLANTEAMIENTO DE UNA METODOLOGÍA PARA EL APROVECHAMIENTO DE RCD EN BOGOTÁ

A lo largo del trabajo se ha estipulado que el aprovechamiento de materiales RCD es directamente dependiente de una separación en la fuente y de un proceso de transformación industrial que le permita ser reutilizado en cualquier tipo de aplicación deseada (Fong & Yeung, 2002) (Eguchi, Teranishi, Nakagome, Kishimoto, Shinozaki, & Narikawa, 2007). Estos procesos de separación y transformación deben acoplarse dentro de un marco de gestión integral partiendo del sistema para la gestión tradicional de los RCD. Según diversos autores (Yuan, Shen, & Li, 2011) (Nagataki, Gokce, Saeki, & Hisada, 2004) el cambio en la gestión integral de RCD disponiendo la totalidad de los materiales en rellenos y escombreras, cambia al incluir el aprovechamiento de estos como se muestra en las Figuras 30 y 31.

- Figura 30 Gestión integral tradicional de RCD

Se evidencia en la Figura 31 entonces que la gestión que incluye el aprovechamiento de RCD se fundamenta en las tres actividades básicas de la gestión tradicional, almacenamiento temporal, transporte y disposición final, pero para lograr un grado de aprovechamiento de RCD se agregan actividades indispensables como la separación selectiva en obra, la transformación de los materiales y su reutilización. Cada una de estas actividades debe estar soportada por normativas y parámetros legales que
regulen su correcta ejecución respectivamente. Actualmente se encuentra la guía de la Secretaría Distrital de Ambiente (Secretaría Distrital de Ambiente Bogotá, 2010) que reúne todas las medidas y parámetros para regular la gestión integral tradicional de RCD y la reciente resolución 2397 de 2011 (Secretaría Distrital de Ambiente, 2011) que es una primera aproximación a regular las actividades implícitas en el aprovechamiento de RCD.

Igualmente por medio de experiencias en otros países como Holanda, Dinamarca, Alemania, El Reino Unido y otros, se estipula que la colaboración por parte del estado mediante la implementación instrumentos económicos como subsidios e incentivos son el principio para incluir la gestión integral de residuos y aprovechamiento de estos dentro de la cotidianidad del medio de la construcción en cualquier ciudad (Yuan H., Shen, Hao, & Luc, 2011).

Es necesario entonces plantear un plan de gestión integral de residuos sólidos que articule las diferentes fases de la gestión de los residuos de construcción e incluso se puede generalizar para los residuos peligrosos y domésticos en la ciudad de Bogotá. Con base en planes de gestión integral de residuos sólidos formulados e implementados en diversos países de la unión europea como (Pro Waste Management Services, 2011) y (Recycling Aggregates NE LTD, 2011), se puede formular un plan de desarrollo de infraestructura en la ciudad de Bogotá para la gestión integral de todo tipo
de residuos generados en la ciudad (Rodríguez, Alegre, & ínez, 2007). Igualmente tomando como referencia el Plan de Gestión Integral de Residuos Sólidos (PGIRS) implementado desde el 2006 y en actual desarrollo en el Valle de Aburrá - Antioquia, como el primero de este tipo de planes de gestión integral en Colombia (Villada & García, 2007).

Enmarcado en el desarrollo de un plan de gestión integral de residuos sólidos, también debe incluirse el análisis de ciclo de vida o *Life cycle analysis* (LCA) de los materiales incluidos dentro de este plan, herramienta que facilita la transformación de una gestión tradicional de residuos lineal a una gestión cíclica como se muestra en la *Figura 31* (Craighill & Powell, 1997).

Dentro de la formulación e implementación de un plan de gestión integral de residuos sólidos para la ciudad de Bogotá, deben incluirse ejes de trabajo como componentes estratégicos para la estructuración de dicho plan enunciados a continuación:

- Implementación de instrumentos económicos
- Proceso de aprovechamiento de materiales reciclables comunes
- Proceso de aprovechamiento de materiales reciclables orgánicos
- Proceso de aprovechamiento de RCD
- Disposición final

La infraestructura necesaria para realizar estas actividades idealmente debería ser administrada y controlada por un ente o empresa de carácter público, y financiada por el gobierno como medida para impulsar las actividades amigables con el medio ambiente ejemplificando ante el sector privado de la construcción y la gestión de residuos, el éxito de estas actividades enmarcadas en el plan de gestión integral de residuos (Desechos.net, 2009).

En cuanto a la implementación de instrumentos económicos, deberían incluirse subsidios e incentivos como por ejemplo reducciones tributarias y demás a las empresas que se destaquen por su desempeño en las actividades en pro a la construcción sostenible tomando como referencia sistemas de calificación como LEED y GREENSTAR (U.S. Green Building Council, 2011).

Adicional a estas actividades, dentro del plan de gestión integral deberían crearse manuales y publicaciones con el fin de divulgar políticas para disminuir la generación de RCD desde las fases de diseño de los proyectos como las impulsadas y aplicadas en el reino unido por el WRAP (Waste and Resources Action Programme, 2011). Además de aplicar políticas de producción más limpia en las obras mediante selección
de materiales, tecnologías limpias y soluciones constructivas que vayan de la mano del bienestar medioambiental. La implementación de dichas políticas en el medio de la construcción deberá ser fomentada como parte de una serie de beneficios ambientales, pero también económicos, de seguridad laboral y una mejor imagen institucional de las empresas constructoras (Mercante, 2007).

Teniendo en cuenta que el objetivo de esta monografía gira alrededor del aprovechamiento de RCD en la ciudad de Bogotá, a continuación se plantean parámetros para las actividades de separación, recolección selectiva y procesos de transformación que complementan la gestión integral en pro de un aprovechamiento de RCD con el fin de disminuir los volúmenes de residuos que se llevan a las escombreras actualmente a disposición de la ciudad de Bogotá.

En cuanto a la disposición final y el transporte, la regulación y reglamentación se mantiene de acuerdo a la expuesta anteriormente en base a la guía publicada por el SDA (Secretaría Distrital de Ambiente Bogotá, 2010), integrando estas pautas y parámetros de control al plan de gestión integral de residuos.

4.1. Separación y recolección selectiva de RCD en obra (Gestión Interna en obra)

La separación selectiva en obra se puede denominar también como un plan de gestión interno para el manejo de los RCD el cual debe incluir separación y almacenamiento temporal de RCD. Según varios autores (WRAP UK, 2011) (Mercante, 2007) (Rodriguez, Alegre, & inez, 2007) (Craighill & Powell, 1997) para lograr estructurar un plan para la correcta separación y almacenamiento de RCD generados en obra, este debe estar fundamentado a partir de información relevante enunciada a continuación:

- **Cuantificación y Tipificación**

 Debe conocerse el tipo y volumen de RCD que se pueden generar en la obra, basado en estudios locales de obras con similares características (Botero, 2003) o implementando índices de generación de RCD estipulados por autores como (Mercante, 2007) que relacionan la cantidad de RCD esperados dependiendo del área de construcción del proyecto (Perez, 1996).

- **Capacitación de personal**

 Para realizar correctamente las actividades necesarias es necesario capacitar al personal de trabajo en las obras, cultivando una conciencia ambiental que los
beneficie a ellos, a la constructora y al medio ambiente (Alcaldía de Medellín, 2008).

- **Definición de zonas y contenedores de almacenamiento**

Teniendo en cuenta la tipificación de los RCD del proyecto, se debe establecer una zona para los materiales inertes reciclables como concreto, bloques y ladrillos de mampostería, elementos cerámicos, entre otros, en una serie de contenedores que contenga estos y otros residuos como residuos pétreos o hidrocarburos, residuos no especiales y residuos especiales potencialmente peligrosos (Botero, 2003). El número y tamaño de dichos contenedores será proporcional al volumen de RCD generados y al tamaño del proyecto (Mercante, 2007). Varios autores (Mercante, 2007) (Yuan, Shen, & Li, 2011) (Banias, Achillas, Vlachokostas, Moussiopoulos, & a, 2011) estipulan también que dichas zonas destinadas para el acopio y almacenamiento temporal de los RCD se ve afectada por el índice de construcción del proyecto, lo que implica que para proyectos con índices de construcción elevados según el área neta del lote, el espacio libre disponible es reducido, por lo tanto la ubicación de estas zonas se convierte en un aspecto crítico en las etapas de planeación de los proyectos.

- **Estudio para la disposición final o aprovechamiento**

Es recomendado realizar un estudio local entorno al proyecto de las escombreras y lugares autorizados para disposición final y temporal (plantas de reciclaje de RCD), que incluya distancia de transporte, tarifas de vertido de RCD y tipificación de los RCD que acopian. El tipo de materiales que reciben servirá para tomar decisiones en cuanto a la separación y número de contenedores para almacenar temporalmente estos residuos en la obra. Se deben considerar costos de transporte de RCD según la distancia a los lugares de disposición final o temporal, y el costo de alquiler de los contenedores adecuados para el acopio y almacenamiento temporal de los RCD en la obra (Mercante, 2007) (Castellanos & Quiroga, 2010)

- **Análisis de reciclaje local**

También es importante considerar la industria de reciclaje local, la cual puede realizar el aprovechamiento y gestión de residuos como papel, plástico, metal y madera. Significando una disminución directa del volumen de RCD considerado originalmente para su disposición final en rellenos y escombreras (Mercante, 2007).
Con base en lo anterior, se puede llevar a cabo de manera adecuada la planeación para una gestión interna de los RCD generados, la cual puede ser complementada e incluida dentro del sistema de gestión ambiental formulado por la empresa constructora. Una vez implementada dicha gestión interna para la separación en obra de los RCD, se puede incorporar al plan de gestión integral de manera que la infraestructura provista por la empresa creada para dicho plan provea de los servicios de alquiler de los contenedores necesarios para el almacenamiento temporal de los RCD clasificados para su posterior recolección por parte de la misma empresa (Recycling Aggregates NE LTD, 2011).

Esta separación y recolección selectiva aparte de valorizar los RCD, permite la transformación adecuada de estos a partir de procesos industriales. Por lo tanto una vez recogidos de forma separada, son transportados a las instalaciones o plantas adecuadas para su reciclaje o disposición final según sea el caso del tipo de residuo (CDE Global, 2011).

4.2. Proceso de transformación y reciclaje de los RCD

Una vez tipificados y separados los RCD reciclables para su posterior uso, estos deberán ser sometidos a un proceso de transformación para que sean adecuados para su posterior uso en nuevas aplicaciones constructivas. Residuos de materiales como plásticos, maderas y metales aparte de ser un porcentaje relativamente bajo (alrededor del 12%) del total de RCD que se generan en obra, son procesados en plantas de reciclaje en las cuales se producen materiales no aplicables en el sector de la construcción, por lo tanto el proceso de reciclaje más relevante en este sector es mediante el cual se tritura concreto, mampostería, pavimentos y materiales cerámicos para producir agregados utilizables en las diversas aplicaciones antes mencionadas (Botero, 2003) (Perez, 1996).

Este proceso de trituración debe llevarse a cabo en instalaciones con el espacio y la maquinaria adecuados para realizar correctamente las tareas de trituración, clasificación y control de calidad implícitas en la transformación de RCD en materias primas como agregados reciclados.

El proceso de transformación de RCD en agregados reciclados en una planta de procesamiento es comúnmente estructurado como se muestra en la Figura 32 plantas de procesamiento implementadas por (Nagataki, Gokce, Saeki, & Hisada, 2004).
(Eguchi, Teranishi, Nakagome, Kishimoto, Shinozaki, & Narikawa, 2007) (Fong & Yeung, 2002) entre otros.

Figura 32 Esquema de planta de procesamiento para la producción de agregados reciclados tomado de (Eguchi, Teranishi, Nakagome, Kishimoto, Shinozaki, & Narikawa, 2007).

El esquema del sistema en conjunto de la planta de procesamiento mostrado en la Figura 32 está compuesto por los elementos principales de una planta de producción de agregados comunes, se adapta para la producción de agregados reciclados añadiendo los siguientes equipos:

- **Separador magnético**

 Es un equipo ubicado entre la trituradora primaria y secundaria, encargado de retirar los materiales metálicos parcialmente separados por la trituradora primaria. Son retirados para evitar impurezas y problemas en las propiedades físicas de los futuros agregados reciclados, al presentarse oxído en estos residuos. Adicionalmente estos residuos metálicos pueden ser acopiados para ser reciclados por otras plantas de reciclaje.

- **Separador de plásticos**

 Funciona como un canon de aire que empuja las partículas de menor densidad como el plástico, la madera y los recubrimientos entre otros materiales que pueden pasar la separación selectiva insitu. Este equipo puede instalarse en compañía del separador magnético en cualquier parte de la línea de producción enseguida de la trituración primaria.
El agregado reciclado producto de estas plantas de procesamiento debido a sus características desfavorables con respecto al agregado natural, debe ser sometido a un riguroso manejo y control de calidad en la planta para cumplir con las especificaciones técnicas de las futuras aplicaciones (Eguchi, Teranishi, Nakagome, Kishimoto, Shinozaki, & Narikawa, 2007) (Fong & Yeung, 2002).

Este sistema de procesamiento para la producción de agregados reciclados puede ser móvil o estacionario, en la actualidad existen equipos que integran todos los componentes mencionados en el sistema y les dan la habilidad de ser móviles y de un tamaño considerablemente pequeño. Estos sistemas tanto móviles como estacionarios, han sido y siguen siendo implementados comúnmente en países como Alemania y Holanda para la producción de agregados reciclados usados comúnmente en gran variedad de proyectos del medio la construcción de estos países como se puede ver en casos reales en (CDE Global, 2011).

En Bogotá la implementación de un plan como estos el cual requiere por lo menos una planta piloto para el procesamiento de agregados reciclados, implica un costo considerable por la maquinaria necesaria y la ubicación, la cual según (Secretaria Distrital de Ambiente, 2011) a partir de 2012 solo podrán ser ubicadas en canteras y minas que hayan terminado su periodo productivo para evitar el impacto ambiental involucrado, a otras zonas. Al igual que en el PGIRS del Valle de Aburra - Antioquia, se puede comenzar con establecer plantas piloto con limitaciones de producción y acopio (Alcaldía de Medellín, 2008), y luego ir evolucionando según la demanda y la oferta de los materiales reciclados. De acuerdo a lo anterior para facilitar la creación de una de estas plantas y en general el plan de gestión integral, este debería ser financiado y administrado por entidades o empresas públicas que hagan parte del plan de gestión integral de residuos sólidos que controlen y apliquen rigurosamente las normas y leyes implicadas en el acopio de RCD, producción de agregados reciclados y comercialización de los mismos, para evitar sobrecostos e incentivar la reutilización de estas materias primas con el fin de generar sostenibilidad en el medio de la construcción en Bogotá (Yuan H., Shen, Hao, & Luc, 2011).
5. EVALUACIÓN DE DIFERENCIAS ECONÓMICAS ENTRE LA GESTIÓN TRADICIONAL DE RCD Y UNA GESTIÓN INTEGRAL DE RCD QUE INCLUYE EL APROVECHAMIENTO DE ESTOS.

Las diferencias de costos que se pueden evidenciar alrededor de la gestión integral tradicional de RCD y una gestión que incluya el aprovechamiento de estos, según diversos autores (Yuan H., Shen, Hao, & Luc, 2011) (Rodriguez, Alegre, & inez, 2007) y casos aplicados (WRAP UK, 2011), radican en la correcta integración y aplicación de cada una de las partes del plan de gestión integral de RCD planteado en la Figura 33.

Figura 33 Esquema del planteamiento para el plan de gestión integral de RCD.
Como se busca representar un beneficio económico para los consumidores de materias primas de forma que se incentive el uso de materiales reciclados y la implementación de medidas para la construcción más limpia, las etapas más representativas en cuanto a un posible beneficio económico se sustentan de la siguiente forma:

- **Reducción de desperdicio desde las fases de diseño**

En esta etapa las constructoras o empresas que realicen actividades constructivas podrán entre otras cosas, implementar medidas arquitectónicas para diseñar los espacios de forma que se ajusten a los tamaños preestablecidos de las materias primas para evitar cortes y ajustes que generan desperdicios. Una gran variedad de aplicaciones y medidas de reducción se encuentran documentadas en (WARP Design out Waste, 2011), y al aplicarlas al tenerse menor desperdicio se genera un beneficio económico directo en el presupuesto de los proyectos de construcción al disminuir la demanda de material para una misma área de construcción. Dentro de las medidas de reducción más implementadas en casos de estudio realizados en Inglaterra y en Norte América, se encuentran las siguientes:

Cielo Raso: Es común en edificaciones que se utilice *Drywall* o *Superboard* como cielo raso aislante de la estructura de la edificación, y se ha encontrado en casos de aplicación (U.S. Green Building Council, 2011) que al modularse los espacios contemplando las dimensiones de las láminas de estos prefabricados, se puede presentar una reducción en el costo del ítem cielo raso del proyecto, de hasta un 25%.

Mampostería y enchapes: En las edificaciones que se realizan muros divisorios a base de ladrillos y bloques de arcilla o concreto, y enchapes de baños, pisos y zonas húmedas, se ha descubierto que al tener en cuenta el tamaño y tipo de elemento que se desea usar, al momento de realizar la modulación arquitectónica, se puede reducir el porcentaje tradicional de desperdicio (10%) de estos materiales, hasta porcentajes de desperdicio inferiores al 5% (Waste and Resources Action Programme, 2011). Lo que implica de igual forma un ahorro económico en estos dos ítems del proyecto de un posible 5%.
- **Construcción más limpia**

La construcción más limpia va de la mano de la reducción de residuos, pero se enfoca en la seguridad industrial y salud ocupacional producto de la implementación de la construcción más limpia. Al tenerse obras más limpias y con menos residuos, se reduce el riesgo de accidentes y la generación de problemas en la salud de los trabajadores presentes en obra por aspiración de polvo. Este y otros lineamientos en pro de una mejor condición en obra han sido superficialmente implementados por el IDU en (Instituto de Desarrollo Urbano, 2004). El beneficio económico en este punto es un poco subjetivo pero se asocia con evitar problemas de salud y accidentes que se ven representados en un costo humano y en pagos de incapacidades en donde se presenta un pago a un trabajador que no representa productividad para la obra.

- **Separación y recolección selectiva**

Al realizarse una separación selectiva en la obra almacenando temporalmente los RCD separados por tipo en contenedores específicos como se especificó en el capítulo cuarto de esta investigación, se le da un valor agregado al residuo de manera que las o la empresa recolectora que participa del plan de gestión integral puede recolectar los materiales y transportarlos directamente a una instalación de procesamiento (Recycling Aggregates NE LTD, 2011). Bien es cierto que este proceso de acopio en contenedores requiere del alquiler de los mismos contenedores asumiendo un costo adicional a lo acostumbrado (Mercante, 2007), pero al lograr una recolección selectiva de los residuos se evita que la empresa de tratamiento y/o aprovechamiento incurra en costos adicionales por lo tanto este ahorro puede llegar a beneficiar a los constructores que entreguen sus residuos adecuadamente separados, al negociarse tarifas muy bajas de recolección por la recolección de estos o hasta una recolección sin ningún costo (Pro Waste Management Services, 2011).

- **Implementación de instrumentos económicos**

Los instrumentos económicos son de vital importancia para instaurar una política de construcción sostenible en una ciudad como Bogotá que carece de toda participación e iniciativas ambientales. Por un lado los instrumentos económicos pueden ser un medio de presión hacia el cumplimiento y participación de políticas ambientales, pero por otro lado pueden beneficiar económicamente a las empresas que participen activamente en pro de un desarrollo sostenible de la ciudad (Yuan H., Shen, Hao, & Luc, 2011). Los beneficios pueden cuantificarse
en forma de reducciones tributarias y subsidios, mientras que los incentivos económicos generalmente pueden ser multas por no cumplir con la participación en ciertos porcentajes de utilización de materiales reciclados como lo establece la resolución 2397 de 2011 (Secretaría Distrital de Ambiente, 2011). En sistemas de calificación internacionales como LEED, el porcentaje de actividades eco amigables en los proyectos es directamente proporcional a reducciones tributarias que ascienden hasta un 12% del total de la contribución tributaria del proyecto.

- **Aprovechamiento**

Con aprovechamiento se refiere a la utilización de nuevas materias primas recicladas de RCD o prefabricados con estos materiales como parte de los materiales usados en la construcción de las edificaciones, esto puede significar una reducción de costos para el proyecto dependiendo de lo exitoso que pueda ser el proceso industrial y la gestión que encierra la producción de estas nuevas materias primas (Shen, Tam, & Li, 2009).

En general se podría lograr integrar todos estos componentes del plan de gestión integral de residuos relacionados con beneficios económicos por medio de un sistema de calificación medioambiental como el sistema estadounidense LEED del U.S. Green Building Council (U.S. Green Building Council, 2011). El ideal sería que este sistema de calificación fuera planteado por el Consejo Colombiano de Construcción Sostenible (CCCS), de tal forma que las edificaciones no tuvieran que acudir a ser calificados por sistemas internacionales como en el caso del edificio NOVARTIS (Construdata, 2010) en la ciudad de Bogotá, si no que fueran calificados por este sistema nacional que apoye el desarrollo del plan de gestión integral de residuos sólidos en la ciudad.

Se puede ver entonces que aunque la gestión integral para el aprovechamiento de los RCD es más compleja e interactúan diferentes procesos, esta considera actividades amigables con el medio ambiente y paralelamente genera beneficios económicos a empresas y particulares. A manera de ejemplo de los beneficios que se pueden presentar, está el caso aplicado del puerto de Glasgow en el Reino Unido, en donde la implementación de reducción de residuos desde las fases de diseño, separación selectiva de los residuos, reciclaje *insitu* y utilización de materiales reciclados en elementos prefabricados de concreto, resultó en una reducción del 57% en los costos de materias primas del proyecto como se muestra en la Tabla 18.
Como este existen decenas de proyectos en los cuales al aplicar una gestión integral adecuada incluyendo el aprovechamiento de RCD (WRAP UK, 2011), se han evidenciado beneficios económicos sin mencionar los grandes beneficios ambientales al requerir menos materias primas naturales y enviar menos residuos a los rellenos y escombreras a disposición. En resumen, según el éxito de la integración de las diferentes herramientas mencionadas anteriormente, de manera ideal, el beneficio económico se resume en la tabla 19.

<table>
<thead>
<tr>
<th>Herramientas en pro de beneficio económico</th>
<th>Beneficios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducción de desperdicio en fases de diseño</td>
<td>Ejemplos: 25% de ahorro en ítem cielo raso</td>
</tr>
<tr>
<td></td>
<td>5% de ahorro en ítems de mampostería y enchapes</td>
</tr>
<tr>
<td>Separación y recolección selectiva</td>
<td>Posible ahorro en transporte y disposición de RCD’s aprovechables</td>
</tr>
<tr>
<td>Instrumentos Económicos</td>
<td>Reducciones tributarias de hasta un 12%</td>
</tr>
<tr>
<td>Aprovechamiento de RCD’s</td>
<td>Reducción de 25-50% en materias primas por reciclaje</td>
</tr>
</tbody>
</table>

Tabla 19 Beneficios económicos de una correcta aplicación de la gestión de RCD con aprovechamiento planteada.

5.1. Beneficios económicos bajo la situación actual de aprovechamiento en la ciudad de Bogotá.

Actualmente la ciudad de Bogotá no cuenta con la infraestructura ni la mentalidad necesaria para implementar un sistema de gestión integral de RCD tan completo como
el planteado anteriormente, pero teniendo en cuenta las capacidades actuales de aprovechamiento dentro de la gestión actual de RCD’s en la ciudad, se pueden asimilar los siguientes beneficios económicos:

- Por utilización de materias primas recicladas (agregados):

Al utilizar materias primas recicladas de RCD, se puede presentar un ahorro del 25 % en el material, tomando como referencia los precios de agregado natural y precios de la planta de aprovechamiento y procesamiento de RCD’s más tecnificada en Bogotá. La diferencia de precios del material está dada fundamentalmente por la cercanía de la planta de reciclados frente a la cantera de agregados naturales.

<table>
<thead>
<tr>
<th></th>
<th>Agregado Natural m3</th>
<th>Agregado Reciclado m3</th>
<th>% de ahorro por m3 de material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena</td>
<td>$82,000.00</td>
<td>$60,000.00</td>
<td>27 % ahorro</td>
</tr>
<tr>
<td>Grava</td>
<td>$78,000.00</td>
<td>$60,000.00</td>
<td>23 % ahorro</td>
</tr>
</tbody>
</table>

Tabla 20 Diferencias de precios entre agregados naturales y agregados reciclados.

Con base en los porcentajes de sustitución sugeridos para el buen desempeño de los agregados reciclados se puede tomar como ejemplo el concreto con agregado reciclado, en el cual se recomienda la utilización de un máximo de 30% de agregado reciclado, por lo tanto el ahorro en la producción de concreto (30% AR – 70% AN), según los precios actuales de los dos tipos de agregado, sería del 7.5% con respecto al precio de un concreto con agregado natural 100%.

- Por gestión de RCD en planta de aprovechamiento y procesamiento

Se reitera que del 70 – 80% de RCD’s son concreto, agregados y materiales cerámicos aprovechables, y pueden disponerse temporalmente y procesarse para su posterior aprovechamiento. Por lo tanto se plantea la siguiente comparación en donde se analizan los costos de disposición y transporte tradicional frente a los mismos con aprovechamiento:
<table>
<thead>
<tr>
<th>Escombreras</th>
<th>Viaje doble promedio d/n por 12 m³</th>
<th>Promedio</th>
<th>valor por m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Mara (23km)</td>
<td>$34,487.00</td>
<td>$30,199.25</td>
<td>$2,516.60</td>
</tr>
<tr>
<td>La Fiscal (28km)</td>
<td>$23,276.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tequendama (25km)</td>
<td>$31,034.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muntanel (24 km)</td>
<td>$32,000.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 21 Costo por disposición final de escombros en cuatro de las escombreras a disposición de la ciudad de Bogotá.

<table>
<thead>
<tr>
<th>Transporte</th>
<th>Valor de acarreo</th>
<th>Valor x m³</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>viaje por 6 m³</td>
<td>$170,000.00</td>
<td>$28,333.33</td>
<td>$25,166.67</td>
</tr>
<tr>
<td>viaje por 9 m³</td>
<td>$198,000.00</td>
<td>$22,000.00</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 22 Costo de acarreo de RCD.

<table>
<thead>
<tr>
<th>Valor m3 Tradicional</th>
<th>Valor m3 Aprovechamiento</th>
<th>63 % ahorro</th>
</tr>
</thead>
<tbody>
<tr>
<td>$27,683.27</td>
<td>$10,107.14</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 23 Comparación económica entre gestión tradicional y gestión con aprovechamiento.

Se evidencia en las tablas 21 a 23 entonces, que el beneficio económico presente al disponer los RCD aprovechables, puede ser del orden del 63%, teniendo en cuenta la ubicación y condiciones de la única planta de agregados reciclados existente en la ciudad de Bogotá.

Es evidente que el aprovechamiento de RCD’s presenta un beneficio económico bajo las condiciones actuales de aprovechamiento en la ciudad de Bogotá de hasta un 7.5% por utilización de materiales reciclados y de un 63% por transporte y disposición. Sin embargo, en la medida en la que en un futuro se logren aplicar las diversas herramientas mencionadas anteriormente, este beneficio económico puede ser cada día mayor.
6. CONCLUSIONES Y RECOMENDACIONES

Aunque Bogotá está cubierto por diferentes leyes y normativas ambientales que enmarcan la gestión integral de RCD para que se les dé a estos residuos un correcto manejo y sean dispuestos de forma legal y adecuada en las escombreras a disposición de la ciudad, la falta de control por parte de las autoridades ambientales para que los lineamientos impuestos en estos documentos se cumplan es deficiente. Dicha falta de efectividad en controlar la correcta ejecución de actividades involucradas en la gestión de RCD en la ciudad, se ve reflejada en la gran cantidad de RCD que son depositados diariamente en ríos, humedales, vías y el espacio público de la ciudad.

Durante el desarrollo de este trabajo se encontró que la falta de control por parte de las entidades ambientales, no es el único motivo identificado al cual se le atribuye la constante aparición de botaderos ilegales de RCD en la ciudad de Bogotá. A este se le suma la constante disminución de lugares para la disposición final de escombros, ya sea debido a la terminación de su vida útil al verse agotada su capacidad de recibir escombros o a su cerramiento por condiciones ambientales adversas.

Adicional a esto, se hace más común que las pocas escombreras actuales registradas ante el Instituto de Desarrollo Urbano (IDU) cada día refinan más sus parámetros de admisión de RCD e incrementan sus tarifas, lo que impulsa a las personas o empresas que desarrollan actividades constructivas a disponer ilegalmente de sus RCD de forma que les represente un beneficio económico.

Es por esto que es necesario instaurar una política de aprovechamiento en la ciudad de Bogotá que utilice las formas de aplicación de materiales reciclados descritas en este trabajo de forma que se genere una demanda suficiente de estos materiales reciclados y se alargue el ciclo de vida de los mismos con el único fin de reducir los volúmenes de RCD que se llevan a los sitios de disposición final. Teniendo en cuenta que en Bogotá es relativamente nueva la iniciativa para implantar el aprovechamiento de RCD, actualmente solo existe una medida legislativa que es la resolución 2397 de 2011. Esta es una primera aproximación al problema, ya que exige porcentajes de aprovechamiento en el sector tanto público como privado de la construcción pero ignora las deficiencias de la ciudad de no poder proveer materiales reciclados técnicamente estudiados y aprobados. Igualmente se considera que es un inicio que puede ejercer presión en el medio para que las actividades y normativas en pro del aprovechamiento se conviertan en una prioridad para el sector de la construcción.
Teniendo en cuenta que la ciudad de Bogotá en la actualidad solo cuenta con un establecimiento en capacidad de procesar RCD para generar nuevas materias primas, este es muy reciente y sus productos no han sido suficientemente estudiados para determinar una aplicación replicable en grandes masas. Lo que lleva a concluir que la ciudad de Bogotá no cuenta con la cultura, la infraestructura y la legislación adecuada para generar porcentajes de aprovechamiento considerables.

En pro de lograr el aprovechamiento que se desea, surge la necesidad de un sistema que ejecute y aplique correctamente todos los factores involucrados en una gestión integral de RCD con aprovechamiento, este deberá funcionar como un solo ente que gestione, provea y controle el ciclo de vida de estas materias primas con el único fin de lograr un grado de aprovechamiento de las mismas, de forma que se disminuya el impacto ambiental generado por el mal manejo, los botaderos ilegales, la necesidad de nuevas canteras para extraer materias primas y finalmente disminuir los volúmenes de vertido en escombreras y rellenos sanitarios.

Una de las premisas indispensables que condicionan el inicio de una gestión entorno al aprovechamiento de RCD es la separación selectiva insitu, ya que al gestionarse los materiales residuos generados en obra con una separación específica, estos residuos se valorizan al tener la capacidad de ser aprovechados en instalaciones industriales adecuadas.

Los instrumentos económicos se reconocen como base del éxito del plan de gestión integral de residuos para el aprovechamiento, ya que en estos se agrupan los subsidios e incentivos que pueden convertir el aprovechamiento de RCD en algo económicamente atractivo para el sector de la construcción.

Aunque en Bogotá y en general en Colombia existe una cierta apatía a la utilización de las materias primas recicladas debido a que estos se asocian con mala calidad y desempeño en las diferentes aplicaciones. A lo largo de este trabajo se expuso que esta creencia no tiene fundamentos y se mostró técnicamente en base a estudios nacionales e internacionales que las materias primas recicladas sí poseen características inferiores a las materias primas naturales, pero esto no es un impedimento para lograr buenos resultados en diferentes aplicaciones.

El buen desempeño de los agregados reciclados dentro de las diferentes aplicaciones depende de factores de utilización del mismo como tipo de agregado reciclado, fracción fina o gruesa y sustitución parcial o total del agregado natural. Por lo tanto teniendo en cuenta la aplicación deseada, es posible llegar a un diseño en donde se incluyan
diferentes porcentajes de diferentes tipos de agregados y se cumpla con especificaciones técnicas especificadas para cada aplicación.

En general los agregados reciclados de concreto y ladrillo poseen una alta porosidad y por lo tanto un porcentaje de absorción de agua muy elevado y un peso específico más bajo con respecto a los agregados naturales, debido a la presencia de mortero que queda adherido a las partículas después del proceso de trituración de los RCD. Se vio durante la investigación que para controlar la incidencia de estas características desfavorables del agregado reciclado ha resultado exitoso mantener estos agregados en un estado saturado de agua de forma que se evite la absorción del agua de diseño en las mezclas. Incluso se evidencio constantemente la utilización de aditivos plastificantes reductores de agua con el fin de disminuir la porosidad de los elementos terminados y lograr manejabilidad en algunos casos de mezclas hidráulicas.

Sin embargo en el presente trabajo se recopila un número de aplicaciones que en gran parte son producto de investigaciones internacionales en donde se usaron agregados de diferentes partes del mundo. Por lo tanto es necesario fomentar la investigación y estudio de los materiales reciclados locales con el fin de determinar su comportamiento real en comparación con el comportamiento de los materiales internacionales para las diferentes aplicaciones descritas en este trabajo.

Fong, I. W., & Yeung, M. J. (2002). PRODUCTION AND APPLICATION OF RECYCLED AGGREGATES. Hong Kong: The Government of the HKSAR.

