IMPACTO DEL VOLUMEN DE NEGOCIACIÓN EN LOS RENDIMIENTOS DE LA ACCIÓN DE ECOPETROL Y OTRAS EMPRESAS PETROLERAS EN LA BOLSA DE VALORES DE COLOMBIA. ANÁLISIS EMPÍRICO¹

CARLOS AUGUSTO BARBOSA AYALA²

Resumen

Este estudio examina la relación causal entre rendimientos continuos, volatilidad y volumen de negociación para las tres principales acciones petroleras que cotizan en la Bolsa de Valores de Colombia (BVC). Usando datos diarios en el periodo comprendido entre el 22 de julio de 2010 al 23 de julio de 2012. El análisis incluye un estudio de la relación contemporánea entre las variables anteriormente citadas incluyendo el efecto de heteroscedasticidad de las series. Adicionalmente se realiza un análisis en el contexto de agentes heterogéneos desarrollado por Llorente, Michaely, Saar y Wang (2002).

Palabras Claves: Ecopetrol, Rendimientos, Volumen de Negociación, Causalidad de Granger, GARCH (1,1)

Clasificación JEL: G19, C32, C14

¹Trabajo presentado para optar por el título de Magister o Magistra en Economía de la Pontificia Universidad Javeriana.

²Agradezco la dirección del profesor Jorge Ruiz. Todos los errores son propios.
CONTENIDO

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revisión de la literatura</td>
</tr>
<tr>
<td>2</td>
<td>Metodología</td>
</tr>
<tr>
<td>3</td>
<td>Resultados y Análisis de Resultados</td>
</tr>
<tr>
<td>4</td>
<td>Conclusiones Y Recomendaciones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pruebas</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Estacionariedad</td>
<td></td>
</tr>
<tr>
<td>Prueba de Dickey Fuller Aumentada (ADF)</td>
<td>10</td>
</tr>
<tr>
<td>Prueba Phillip Perron</td>
<td>10</td>
</tr>
<tr>
<td>Prueba KPSS</td>
<td>10</td>
</tr>
<tr>
<td>Relación Contemporánea entre Rendimientos, Volúmenes y Volatilidad</td>
<td>11</td>
</tr>
<tr>
<td>Prueba de Causalidad de Granger</td>
<td>12</td>
</tr>
<tr>
<td>Modelo de Caracterización de agentes</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Capítulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datos</td>
<td>16</td>
</tr>
<tr>
<td>Análisis preliminar de las series temporales</td>
<td>18</td>
</tr>
<tr>
<td>Relación Contemporánea entre rendimientos, volúmenes y volatilidad</td>
<td>19</td>
</tr>
<tr>
<td>Prueba de Causalidad de Granger</td>
<td>22</td>
</tr>
<tr>
<td>Volumen-rendimientos</td>
<td>22</td>
</tr>
<tr>
<td>Volumen-volatilidad</td>
<td>24</td>
</tr>
<tr>
<td>Modelo de Caracterización de agentes</td>
<td>25</td>
</tr>
</tbody>
</table>

Bibliografía	28
Anexos	32
Test de Wald	32
Correlogramas de los Residuos de los Modelos	33
LISTA DE CUADROS

Cuadro 1. Resumen de las relaciones de causalidad Volúmenes-Rendimientos en la revisión de la literatura.
Cuadro 2. Criterios para la selección del VAR

LISTA DE FIGURAS

Figura 1. Superior derecha: Evolución de los precios de las acciones estudiadas
Superior izquierda: Evolución del volumen transado.
Inferior derecha: Evolución de los rendimientos de las acciones estudiadas.
Inferior izquierda: Evolución de los rendimientos al cuadrado.

LISTA DE TABLAS

Tabla 1. Número de acciones por trimestre para Canacol y Pacific Rubiales entre septiembre 2010 y septiembre 2012.
Tabla 2. Pruebas de Raíz Unitaria para los rendimientos, volúmenes y rendimientos al cuadrado.
Tabla 3. Estadísticas descriptivas de los rendimientos, volúmenes y rendimientos al cuadrado.
Tabla 4. Relación contemporánea entre rendimientos y volúmenes.
Tabla 5. Relación contemporánea entre rendimientos y volúmenes, incluyendo GARCH (1,1).
Tabla 6. Relación contemporánea entre volatilidad y volúmenes.
Tabla 7. Relación contemporánea entre rendimientos al cuadrado (volatilidad) y volúmenes, incluyendo GARCH (1,1).
Tabla 8. Orden del VAR por cada criterio (Volumen-Rendimiento).
Tabla 9. Prueba de causalidad de Granger (Volumen-Rendimiento).
Tabla 10. Orden del VAR por cada criterio (Volumen-Volatilidad).

Tabla 11. Prueba de causalidad de Granger (Volumen-Volatilidad).

Tabla 12. Caracterización de agentes.

Tabla 13. Caracterización de agentes, incluyendo GARCH (1,1)
INTRODUCCIÓN

Estudios empíricos que incluyan la información del volumen de negociación de las acciones que cotizan en la BVC son raros o no existen, los estudios empíricos existentes se basan en los índices bursátiles o los precios de las acciones, los más relevantes son Maya y Torres (2005) con una descripción de los hechos estilizados en la Bolsa de Valores de Colombia BVC, Montenegro (2006) con análisis del valor en libros de algunas empresas que cotizan en la BVC, Uribe (2007) donde hace una descripción detallada desde el punto de vista empírico del mercado accionario colombiano.

En la Bolsa de Valores de Colombia cotizan cuatro acciones petroleras: Ecopetrol, Canacol, Pacific Rubiales y Petrominerales. Dado que solamente las tres primeras acciones tienen una serie histórica suficientemente larga para hacer un análisis, este estudio se centra en ellas.

Ecopetrol S.A. es la empresa más grande y la principal compañía petrolera de Colombia, con operaciones en Brasil, Perú y el Golfo de México. Ecopetrol posee participaciones en campos productores de petróleo en la zona central, sur, oeste y norte de Colombia, así como refinerías, puertos para las exportaciones e importaciones de combustible en ambas costas y una red de transporte de oleoductos y poliductos en todo el territorio colombiano.

Canacol Energy es una compañía canadiense petrolera Junior con operaciones de producción y explotación en Sudamérica, sus principales operaciones se centran en Colombia y Ecuador.

Pacific Rubiales es una compañía canadiense cuyo objetivo es la exploración, desarrollo y producción de crudo pesado, combustible ligero y mediano y gas en Colombia, la compañía tiene bloques de exploración en Perú.

La participación de la nación en Ecopetrol es del 88.49% y un porcentaje de 11.51% por parte de los accionistas minoritarios, información al 31 de mayo de 2012. A finales del año 2011 estaban en circulación 41.116.698.456 acciones. La acción de Ecopetrol está
inscrita en la Bolsa de Valores de Colombia, en la Bolsa de Valores de Nueva York (NYSE) y en la Bolsa de Valores de Toronto a través de los ADR’s nivel 2. Información tomada de la presentación a los accionistas 2012.

Canacol y Pacific Rubiales están listadas en la Bolsa de Valores de Colombia y en la Bolsa de Toronto (TSX) estas compañías pueden emitir acciones en cualquier momento y lo han hecho, el número de acciones por trimestre en el periodo de estudio para cada compañía se encuentran en el capítulo resultados y análisis de resultados.

En el periodo de estudio la acción de Ecopetrol tuvo un incremento del 58,96%, Canacol una desvalorización del 57,87% en línea con la desvalorización de Pacific Rubiales de 7,62%, a nivel internacional las acciones de compañías petroleras como Chevron 46,99%, Exxon 43,50%, Petrobras -39,97% y Hess -14,92%, donde se observa que Ecopetrol tuvo un comportamiento más favorable que ellas.

Dado que las empresas antes mencionadas tienen el mismo subyacente, el petróleo, y que han mostrado comportamientos en la valorización de la acción diferentes, y dada la importancia de Ecopetrol en la economía Colombiana, el presente estudio permitirá a los analistas y tomadores de política ver el impacto que tiene el volumen de negociación dentro de los rendimientos de la acción de Ecopetrol y otras empresas petroleras.

El presente trabajo analiza, desde el punto de vista empírico, la relación contemporánea y causal entre rendimientos, volatilidad (rendimientos al cuadrado) y volúmenes de negociación para las acciones de Ecopetrol, Canacol, y Pacific Rubiales, en el periodo comprendido del 22 de Julio de 2010 al 23 de Julio de 2012, el periodo se debe a que la acción de Canacol comenzó a negociarse en la Bolsa de Valores de Colombia el 19 de Julio de 2010. Petrominerales se excluye del presente análisis porque empezó a negociar en la BVC el 3 de agosto de 2011.

El análisis se hará utilizando modelos de regresión lineal incorporando el efecto de heterocedasticidad y modelos de regresión bivariada con pruebas de causalidad de Granger, para así comprobar desde el punto de vista empírico las relaciones entre rendimientos-volúmenes y volúmenes-volatilidad.
Adicionalmente se estima el modelo desarrollado por Llorente, Michaely, Saar y Wang (2002) de ahora en adelante Modelo LMSW y Modificado por Gagnon, Karolyi y Lee (2006), el cual examina la relación individual de volumen-retorno en el contexto de agentes heterogéneos con expectativas racionales, este modelo permite identificar si la acción es más negociada por agentes tácticos que por agentes especuladores.

Estos enfoques no habían sido utilizados en Colombia para analizar las variables rendimientos, volatilidad y volúmenes.

Al igual que los estudios pioneros Karpoff (1987) y estudios recientes Darwish (2012) en la relación rendimiento-volumen y volumen-volatilidad encontramos evidencia mixta de causalidad que depende entre otras del orden del VAR utilizado.

En cuanto a la caracterización de los agentes se obtuvo los mismos resultados del estudio de Grishchenko et al (2006), es decir no existe agentes dominadores en las acciones petroleras estudiadas.

El trabajo consta de la presente introducción, cuatro capítulos, bibliografía y dos anexos, el primer capítulo es la revisión de la literatura con dos componentes, un marco teórico y un resumen de los principales estudios empíricos. En el segundo capítulo se encuentra la metodología. En el tercer capítulo se encuentran los resultados y análisis de resultados. En el capítulo cuarto las conclusiones y recomendaciones, posteriormente la bibliografía, y finalmente dos anexos.
El presente capítulo se estructura en dos partes, en la primera se encuentra el marco teórico que muestra las diferentes teorías sobre las relaciones entre rendimientos y volúmenes y la segunda parte muestras los estudios empíricos sobre dichas relaciones.

MARCO TEÓRICO

La relación entre volumen de negociación y la valorización de la acciones ha sido ampliamente estudiado, pero el estudio se ha focalizado en índices accionarios, Karpoff (1987) hace una excelente revisión de la literatura de las primeras investigaciones sobre la relación entre ambas variables, y su importancia dentro de la estructura de los mercados financieros y las inferencias que se pueden hacer a partir del estudio de las dos variables.

Empíricamente se observa la relación entre volumen y rendimientos pero no existe un modelo económico que dé una respuesta definitiva entre el comportamiento de los precios y el volumen en el mercado de valores. Siguiendo a Aranda (2010) existen cuatro clases de modelos que analizan la relación dinámica entre volúmenes y rendimientos:

Modelos debido a Incentivos: Ikenberry et al (1989): Afirma que es posible que los agentes pueden hacer negociaciones teniendo en cuenta los incentivos por impuestos, o asumir pérdidas o ganancias en un momento dado y así aumentar el volumen de negociación.

Inversionistas Ruidosos: De Long et al (1990). Establece que existe correlación positiva a corto plazo entre los rendimientos y el volumen pero dicha correlación se convierte en negativa al largo plazo. La causalidad positiva con dirección volumen de negociación a rendimientos se debe principalmente a que los agentes utilizan el volumen como una alerta de negociación, una relación causal positiva desde los rendimientos hacia el volumen es coherente con una retroalimentación positiva en las estrategias de transacción de los inversionistas.

ESTUDIOS EMPÍRICOS

Los primeros estudios analizaron la relación existente entre rendimientos y volumen, pero desde Karpoff (1987) se está examinando las dinámicas de causalidad, los estudios relevantes son Smirlok y Starks (1988) y Hiemnstra y Jones (1994) que encuentran una relación dinámica no lineal y lineal entre rendimientos y volumen.

Campbell et al (1993) encuentra una relación negativa entre las autocorrelaciones diarias de los precios y volúmenes, su estudio concluye que grandes volúmenes de negociación están asociados con correlaciones negativas de los rendimientos.

A nivel latinoamericano los estudios de Saatcioglu y Starks (1998) examinan la relación dinámica entre volumen y rendimientos para seis mercados, incluyendo a Colombia, y encuentran una relación positiva entre el volumen y los rendimientos, sin embargo, no encuentran una relación direccional de los rendimientos hacia los volúmenes. El trabajo de Aranda (2010) encuentra relaciones no lineales utilizando modelos STAR y sus derivados en el mercado accionario chileno. En cuanto a Colombia no se encontró literatura que analice el volumen de negociación y los rendimientos.

En el cuadro 1 se encuentra el resumen de los principales trabajos empíricos para los países desarrollados (cuadro 1a) y para los países emergentes (cuadro 1b).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Año</th>
<th>País</th>
<th>Causalidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smirlock y Starks</td>
<td>1988</td>
<td>Estados Unidos</td>
<td>●</td>
</tr>
<tr>
<td>Jain y Joh</td>
<td>1988</td>
<td>Estados Unidos</td>
<td>●</td>
</tr>
<tr>
<td>Hiemstra y Jones</td>
<td>1994</td>
<td>Estados Unidos</td>
<td>● ●</td>
</tr>
<tr>
<td>Silvapulle y Choi</td>
<td>1998</td>
<td>Corea</td>
<td>● ●</td>
</tr>
<tr>
<td>Ciner</td>
<td>2002</td>
<td>Corea</td>
<td>● ●</td>
</tr>
<tr>
<td>Chen et al</td>
<td>2001</td>
<td>Estados Unidos</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Japón</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reino Unido</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Italia</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hong Kong</td>
<td>● ●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holanda</td>
<td>● ●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Francia</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suiza</td>
<td>● ●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canadá</td>
<td>● ●</td>
</tr>
<tr>
<td>Lee y Rui</td>
<td>2002</td>
<td>Estados Unidos</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Japón</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reino Unido</td>
<td>●</td>
</tr>
<tr>
<td>Ajayi et al</td>
<td>2006</td>
<td>Dinamarca</td>
<td>● ●</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Portugal</td>
<td>● ●</td>
</tr>
<tr>
<td>Henry y McKenzie</td>
<td>2006</td>
<td>Corea</td>
<td>● ●</td>
</tr>
<tr>
<td>Deo et al</td>
<td>2008</td>
<td>Hong Kong</td>
<td>● ●</td>
</tr>
</tbody>
</table>

Cuadro 1a. Relaciones de causalidad países desarrollados

En los diez estudios presentados en el cuadro 1a que cubre veintiún países desarrollados se ha encontrado evidencia de causalidad de los retornos a los volúmenes en el 38% (8) de los países; doble causalidad en el 52% (11) que corresponde a la teoría de
distribuciones mixtas; no hay evidencia de causalidad para el Reino Unido y en ningún caso existe causalidad de los volúmenes a los retornos.

En los nueve estudios presentados en el cuadro 1b que cubre veintiocho países emergentes se ha encontrado evidencia de causalidad de los retornos a los volúmenes en el 33% (7) de los países; doble causalidad en el 38% (8) que corresponde a la teoría de distribuciones mixtas; no hay evidencia de causalidad para Republica Checa y Filipinas.
El modelo LMSW se basa en una economía discreta, donde existen dos tipos de activos y dos grupos de inversionistas, los activos son un bono libre de riesgo y una acción que paga dividendo, este dividendo D_{t+1} que se paga al final del periodo de tiempo, es la suma de dos componentes (señales) F_t y G_t, esto es, $D_{t+1} = F_t + G_t$, los dos grupos de inversionistas observan el componente F_t (información pública), pero solo el grupo de inversionistas que llamaremos especuladores pueden observar el componente de información privada G_t, el otro grupo de inversionistas lo llamaremos tácticos. Se toma como grado de asimetría de la información una desviación estándar de la señal G_t, los inversores también tienen un activo que no es negociable cuyo pago es N_t, cuyas dotaciones son variables aleatorias Z^i_t, $i = 1, 2$. Los dos tipos de agentes maximizan su bienestar esperado usando para ello una función de utilidad exponencial sujeta al conjunto de información que poseen. Los choques son normalmente distribuidos con media cero y varianza constante, las variables son independientes y no están correlacionadas salvo la información del activo no negociable y los dividendos.

El modelo provee dos motivos para negociar: ya que el número de activos que es no negociable cambia para cada agente en cada tiempo t, estos deben negociar el activo con dividendo para mantener estable su nivel de riesgo, el otro motivo es que los agentes que tienen información privilegiada, cuando dicha información les llega toman posiciones especulativas.

La forma funcional, que permite evaluar empíricamente el modelo LMSW, se presenta en el Capítulo 2 METODOLOGÍA, en la sección MODELO DE CARACTERIZACIÓN DE AGENTES.
Capítulo 2 METODOLOGÍA

Como se mencionó al inicio del documento, este trabajo tiene como objetivo analizar empíricamente las relaciones entre rendimientos, volatilidad y volúmenes de negociación para las siguientes empresas petroleras: Ecopetrol, Canacol y Pacific Rubiales, a partir de tres análisis.

El primer análisis estudia la relación contemporánea entre las variables Rendimientos R_t, Volumenes V_t y Rendimientos al cuadrado R_t^2 (variable proxy de la Volatilidad) por medio de regresiones lineales y modelos GARCH.

El segundo análisis busca la relación causal entre las variables de estudio para cada una de las acciones mediante la prueba de causalidad de Granger la cual parte de una correcta especificación de un VAR (Vector Auto Regresivo).

El tercer análisis busca evidencia empírica para caracterizar el tipo de agente que negocia las acciones citadas anteriormente por medio de un modelo de regresión lineal LMSW.

Para hacer el análisis propuesto se desarrolla la siguiente metodología:

- Pruebas de Estacionariedad.
- Relación empírica entre rendimientos, volumen y volatilidad.
- Prueba de causalidad de Granger.
- Caracterización de agentes (tácticos y especulativos) para las acciones analizadas.

A continuación se desarrollan en detalle cada uno de los puntos anteriores.

PRUEBAS DE ESTACIONARIEDAD

Una serie es estacionaria en sentido débil si su media y su desviación estándar existen y no son función del tiempo, para encontrar la relación causal entre dos variables es necesario realizar pruebas de raíz unitaria que permitan determinar si las series son estacionarias y así evitar regresiones espurias.

PRUEBA DE DICKEY FULLER AUMENTADA (ADF)

La prueba se basa en la siguiente regresión

$$\Delta y_t = \alpha + \beta t + \gamma y_{t-1} + \delta_1 \Delta y_{t-1} + \cdots + \delta_{p-1} \Delta y_{t-p+1} + \epsilon_t$$ (1)

Donde α una constante, β el coeficiente de la tendencia y p el rezago del proceso autoregresivo, Δ es el operador primera diferencia. La hipótesis nula es que $\gamma = 0$ (La serie es estacionaria) y la alterna es que $\gamma < 0$ (La serie no es estacionaria), la intuición del test es que si la serie es integrada entonces la variable y_{t-1} no da información que ayude a predecir el cambio en y_t. El valor de p se encuentra comparando varios modelos con el criterio de información de Akaike, el criterio de Hannan-Quinn o el Criterio de información de Schwarz. Para el presente trabajo se utilizó este último con un rezago máximo de diez y siete.

PRUEBA PHILLIP PERRON:

La prueba parte de la siguiente regresión:

$$\Delta y_t = \alpha + \beta t + \gamma y_{t-1} + \epsilon_t$$ (2)

El test se utiliza para probar que la serie es integrada de orden 1 (no es estacionaria) y la hipótesis nula es que $\gamma = 0$, la serie no contiene una raíz unitaria (es estacionaria), y la alterna es $\gamma > 0$ la serie contiene una raíz unitaria.

PRUEBA KPSS:

En esta prueba la hipótesis nula es que la serie es estacionaria en tendencia y la alterna es que la serie es estacionaria en diferencias es decir la serie tiene raíz unitaria. La prueba parte de la siguiente regresión:
La regresión tiene tres componentes, α_0 y $\alpha_1 t$ son componentes determinísticas en la forma de una constante mas una tendencia lineal, el segundo componente ϵ_t es una serie aleatoria y el tercer componente es el error ϵ_t.

El estadístico es el siguiente:

$$
LM = T^{-2} \sum_{t=1}^{T} S_t^2 / \hat{\sigma}^2
$$

Donde, $S_t = \sum_{t=1}^{t} e_t$ donde e_t es el residual mínimo de las regresiones después de correr el modelo con y sin intercepto, $\hat{\sigma}^2$ es un estimador de la varianza. Un estadístico de prueba más grande que los valores críticos es indicio de no Estacionariedad en tendencia o sea se rechaza la hipótesis nula.

RELACIÓN CONTEMPORÁNEA ENTRE RENDIMIENTOS, VOLÚMENES Y VOLATILIDAD

Este estudio, al igual que Darwish (2012) y Tripathy (2011) analiza la relación contemporánea entre rendimientos R_t, volumen V_t y volatilidad R_t^2.

En la ecuación (5) se encuentra la relación empírica contemporánea entre los rendimientos y volúmenes, los rezagos de volumen y rendimientos se incluyen para tener en cuenta la posible correlación serial. Los términos que acompañan las variables y sus rezagos son los coeficientes y ϵ_t es el error de la regresión.

$$
R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \epsilon_t
$$

En la ecuación (6), la ecuación de la media es la misma que la ecuación (5) pero se tiene en cuenta el efecto ARCH (correlación de los residuos al cuadrado) para una mejor determinación de los coeficientes.

$$
R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \epsilon_t
$$
\[h_t = \omega_0 + \omega_1 \varepsilon_{t-1}^2 + \omega_2 h_{t-1} \]

Donde \(h_t \) es la varianza del término del error en tiempo \(t \)

La ecuación (7) analiza la relación del volumen con la volatilidad \(R_t^2 \)

\[V_t = \gamma_0 + \gamma_1 V_{t-1} + \gamma_2 V_{t-2} + \gamma_3 V_{t-3} + \gamma_4 R_t^2 + \varepsilon_t \quad (7) \]

La ecuación (8) incorpora el efecto ARCH en la ecuación (7)

\[V_t = \varphi_0 + \varphi_1 V_{t-1} + \varphi_2 V_{t-2} + \varphi_3 V_{t-3} + \varphi_4 R_t^2 + \varepsilon_t \quad (8) \]

\[h_t = \omega_0 + \omega_1 \varepsilon_{t-1}^2 + \omega_2 h_{t-1} \]

PRUEBA DE CAUSALIDAD DE GRANGER

En este trabajo se analizan las relaciones entre Rendimientos y Volúmenes, y entre Volatilidad (Rendimientos al Cuadrado) y Volúmenes, por lo cual se realizan los siguientes Vectores Autoregresivos de Orden \(p \) (VAR(p)).

\[R_t = \alpha_1 + \sum_{i=1}^{p} \beta_{i1} V_{t-i} + \sum_{i=1}^{p} \gamma_{i1} R_{t-i} + \varepsilon_{t1} \quad (9) \]

\[V_t = \alpha_2 + \sum_{i=1}^{p} \beta_{i2} R_{t-i} + \sum_{i=1}^{p} \gamma_{i2} V_{t-i} + \varepsilon_{t2} \]

El anterior VAR modela la relación entre rendimientos y volúmenes, donde \(R_t \) y \(V_t \) son respectivamente los rendimientos y volúmenes en tiempo \(t \), \(\alpha_l \) con \(l = 1,2 \) son los interceptos, \(\beta_{i,l} \) y \(\gamma_{i,l} \) con \(l = 1,2 \) e \(i = 1, \ldots, p \) son parámetros y \(p \) es el orden del VAR.

De igual manera, el VAR que muestra la relación entre volatilidad y volúmenes está dado por:

\[R_t^2 = \delta_1 + \sum_{i=1}^{p} \theta_{i1} V_{t-i} + \sum_{i=1}^{p} \kappa_{i1} R_{t-i}^2 + \varepsilon_{t1} \quad (10) \]

\[V_t = \delta_2 + \sum_{i=1}^{p} \theta_{i2} R_{t-i}^2 + \sum_{i=1}^{p} \kappa_{i2} V_{t-i} + \varepsilon_{t2} \]
donde R_t^2 y V_t son respectivamente la volatilidad y el volumen en tiempo t, δ_l con $l = 1,2$ son los interceptos, θ_{il} y κ_{il} con $l = 1,2$ e $i = 1, \ldots, p$ son parámetros y p es el orden del VAR.

Para examinar la relación causal entre rendimientos y volumen se usará la prueba de causalidad de Granger. Para esto, primero se debe determinar el orden correcto del VAR. El procedimiento más común es minimizar uno o más criterios de información sobre un rango de modelos, los criterios más usados en la literatura moderna se encuentran definidos en el cuadro 2, básicamente cada criterio está compuesto de dos términos, el primer término tiene en cuenta la información de la matriz de varianza covarianza de los errores y el segundo término que caracteriza los grados de libertad del modelo, la diferencia entre los modelos es el grado de penalizar las variables que se incorporan en ellos, se remite al lector a Lütkepohl (2006) para un análisis comparativo entre los criterios.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Forma Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor de Error Final</td>
<td>$\left(\frac{T + Kp + 1}{T - Kp - 1}\right)^K \left[\sum_u (p)\right]$</td>
</tr>
<tr>
<td>Criterio de Informacion de Akaike</td>
<td>$\left(\frac{2pK^2}{T}\right) + ln\left[\sum_u (p)\right]$</td>
</tr>
<tr>
<td>Schwarz-Bayes</td>
<td>$ln\left[\sum_u (p)\right] + \frac{ln(T)}{T} - pK^2$</td>
</tr>
<tr>
<td>Hannan-Quinn</td>
<td>$ln\left[\sum_u (p)\right] + \frac{2ln(ln(T))}{T} - pK^2$</td>
</tr>
</tbody>
</table>

| Cuadro 2. Estimadores Rezago VAR |

En el cuadro 2 se encuentran los criterios utilizados, donde T es el número de datos, K es el número de variables, en el presente trabajo K es 2 que corresponde a las variables rendimientos y volúmenes o volatilidad y volúmenes, p es el orden del VAR y $[\sum_u (p)]$ es el determinante de la matriz de varianza covarianza de los errores.
La prueba la desarrolló Granger (1969) y está diseñada para examinar si dos series de tiempo se mueven una detrás de la otra o simultáneamente. Cuando se mueven simultáneamente, entre las mismas series no proporcionan ninguna información para la caracterización de la otra. Si alguno de los valores $\beta_{l,1}$ en la ecuación (9) es estadísticamente diferente de cero, entonces se puede decir que el volumen en el sentido de Granger causa los retornos. De la misma manera si algún $\beta_{l,2}$ es estadísticamente diferente a cero, entonces los rendimientos en el sentido de Granger causan el volumen. Si ambos $\beta_{l,1}$ con $l = 1,2$ son estadísticamente significativos entonces existe una relación de retroalimentación, ahora si ambos $\beta_{l,1}$ con $l = 1,2$ son estadísticamente iguales a cero, entonces los rendimientos y los volúmenes se mueven contemporáneamente. Los mismos análisis se aplican con el parámetro θ en el VAR de la ecuación (10).

El estadístico para probar la significancia de los coeficientes, y así la causalidad, es la prueba de Wald que se distribuye como una $\chi^2(q)$, para mayor detalle ver anexo (1).

MODELO DE CARACTERIZACIÓN DE AGENTES

Para la caracterización de agentes partimos del modelo LMSW mejorado por Gagnon *et al* (2006) que parte de la siguiente regresión:

$$R_{i,t} = C_{0,i} + C_{1,i} \cdot R_{i,t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{i,t-1} + \varepsilon_{i,t} \quad (11)$$

Donde $R_{i,t}$ representa los rendimientos de la empresa i en el tiempo t para el presente estudio i son Ecopetrol, Canacol y Pacific Rubiales. $C_{0,i}$ es una constante, $C_{1,i}$ es el coeficiente de autocorrelación estimado para cada i, $V_{i,t-1}$ es el volumen de negociación en el día $t-1$, igual como Gagnon *et al* (2006). El coeficiente $C_{2,i}$ revela la importancia relativa de los agentes especuladores y tácticos, este parámetro es negativo y estadísticamente significante si las negociaciones del activo son motivadas en su mayor parte por consideraciones estratégicas y debe ser positivo y significante si las negociaciones del activo están fuertemente influenciadas por agentes especuladores, si no hay agentes dominantes el coeficiente debe ser no significativo.
Si se presenta el efecto de heterocedasticidad en los residuos se considera la ecuación (11) con un GARCH (1,1)

\[
R_{i,t} = C_{0,i} + C_{1,i} \cdot R_{i,t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{i,t-1} + \varepsilon_{i,t} \quad (12)
\]

\[
h_t = \omega_0 + \omega_1 \varepsilon^2_{t-1} + \omega_2 h_{t-1}
\]
Capítulo 3 RESULTADOS Y ANÁLISIS DE RESULTADOS

DESCRIPCIÓN DE LOS DATOS

Como se dijo anteriormente para la elaboración de este trabajo se analizaron datos diarios de los precios de cierre de las acciones petroleras así como el número de acciones negociadas en el periodo comprendido entre el 22 de julio de 2010 al 23 de julio de 2012, para un total de 493 datos, tomados de Bloomberg en el siguiente enlace www.bloomberg.com/quote/BVC:CB Adicionalmente, la información del número de acciones emitidas por las empresas se tomó de los informes financieros de cada compañía.

El número de acciones emitidas por Canacol (CNEC) y Pacific Rubiales (PREC) cambian en el tiempo, ya que estas compañías pueden emitir acciones en cualquier momento, como lo dicen en los informes financieros de las dos compañías: “La corporación está autorizada a emitir un número ilimitado de acciones”. En la tabla 1, se encuentran el número de acciones de estas compañías para el periodo comprendido del tercer trimestre del 2010 hasta el tercer trimestre del 2012.

<table>
<thead>
<tr>
<th>FECHA</th>
<th>CNEC</th>
<th>PREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 de septiembre de 2010</td>
<td>438 726 582</td>
<td>266 537 238</td>
</tr>
<tr>
<td>31 de diciembre de 2010</td>
<td>451 702 055</td>
<td>267 648 853</td>
</tr>
<tr>
<td>31 de marzo de 2011</td>
<td>499 099 660</td>
<td>268 124 603</td>
</tr>
<tr>
<td>30 de junio de 2011</td>
<td>511 636 603</td>
<td>269 423 353</td>
</tr>
<tr>
<td>30 de septiembre de 2011</td>
<td>512 952 603</td>
<td>271 631 454</td>
</tr>
<tr>
<td>31 de diciembre de 2011</td>
<td>613 285 603</td>
<td>292 178 055</td>
</tr>
<tr>
<td>31 de marzo de 2012</td>
<td>623 561 603</td>
<td>294 057 838</td>
</tr>
<tr>
<td>30 de junio de 2012</td>
<td>618 981 603</td>
<td>294 867 113</td>
</tr>
<tr>
<td>30 de septiembre de 2012</td>
<td>618 981 603</td>
<td>295 231 613</td>
</tr>
</tbody>
</table>

Se observa que en el periodo analizado Canacol aumento en 41.09% el número de acciones en circulación y Pacific Rubiales solo un 10.77%. El aumento del número de acciones de Canacol en parte se debe a que la empresa emitió acciones para adquirir la pequeña empresa petrolera Shona Energy por 149 millones de dólares.
En la gráfica 1, se encuentra los precios de las acciones normalizadas al 22 de Julio de 2010 (parte superior izquierda) donde se observa que en el periodo de estudio la única acción que se valorizó fue Ecopetrol, Pacific Rubiales tuvo una ligera caída y la desvalorización de Canacol. En la parte inferior izquierda se encuentran los rendimientos cuya definición es:

\[R_t = \ln(S_t/S_{t-1}) \] \hspace{1cm} (13)

Donde \(R_t \) y \(S_t \) son el rendimiento y precio del activo en tiempo \(t \) respectivamente. El Volumen de negociación \(V_t \) en el tiempo \(t \) se define de la siguiente manera:

\[V_t = A_{n,t}/A_{e,t}. \] \hspace{1cm} (14)

Donde \(V_t \) es el volumen (turnover), \(A_{n,t} \) son el número de acciones negociadas en el tiempo \(t \) y \(A_{e,t} \) son las acciones emitidas en el tiempo \(t \), como proxy de esta variable se tomaron el número de acciones que se encuentran en los informes financieros tabla 1. Los rendimientos al cuadrado se encuentran en la parte inferior derecha.

Se aprecia que la acción de Canacol y Pacific Rubiales son más volátiles que la acción de Ecopetrol. En la parte superior derecha se encuentra el turnover que se definió anteriormente.

Figura 1. Precios, Rendimientos, volúmenes y Rendimientos al cuadrado en el periodo de estudio.
En la tabla 2 se encuentran las pruebas de raíz unitaria descritas en la sección pruebas de Estacionariedad para los rendimientos, volúmenes y rendimientos al cuadrado, los test se realizan con y sin agregar tendencia.

A partir de la tabla 2, vemos que las series de los rendimientos, volúmenes (turnover) y rendimientos al cuadrado de cada una de las acciones con casi todas las pruebas con y sin tendencia son estacionarias para cada una de las acciones con casi todas las pruebas con y sin tendencia sin embargo para la serie de volúmenes (turnover) de Canacol se rechaza la hipótesis al 5% en la prueba KPSS con constante lo mismo ocurre para la serie de volúmenes (turnover) de la acción de Ecopetrol con la prueba KPSS con constante.

Con los anteriores resultados se puede continuar con el análisis estadístico.

En la tabla 3 se encuentran las estadísticas descriptivas de las series

Con los estadísticos de la Tabla 3 se refuerza las afirmaciones hechas a partir de la figura 1, esto es, que la acción de Ecopetrol en promedio tuvo rendimientos positivos, la acción de Canacol rendimientos negativos y Pacific Rubiales rendimientos casi nulos, también
con las estadísticas podemos ver que los rendimientos de Canacol y Pacific Rubiales tuvieron una mayor dispersión que los de Ecopetrol.

Los rendimientos de las tres compañías tienen coeficiente de asimetría negativa indicando una acumulación a la derecha de la distribución, a partir de la curtosis tenemos que las distribuciones son leptocurticas, los rendimientos de la acción de Canacol están más concentrados alrededor de la media que los otros rendimientos. Con el estadístico Jarque Bera vemos que no siguen una distribución normal, como es usual en los rendimientos de las series financieras.

RELACIÓN CONTEMPORÁNEA ENTRE RENDIMIENTOS, VOLÚMENES Y VOLATILIDAD

Los resultados de la ecuación (5) para las compañías analizadas se encuentran en la tabla 4. En la primera columna está el valor del coeficiente y en la segunda el valor del estadístico t, el cual es significante al 5% si es mayor en valor absoluto a 2.33.

\[R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \epsilon_t \] (5)

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>ECOPETROL Valor</th>
<th>ECOPETROL Estadístico t</th>
<th>CANACOL Valor</th>
<th>CANACOL Estadístico t</th>
<th>PACIFIC Valor</th>
<th>PACIFIC Estadístico t</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_0)</td>
<td>0,000</td>
<td>0,350</td>
<td>-0,005</td>
<td>-2,418</td>
<td>0,003</td>
<td>1,571</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>19,716</td>
<td>3,684</td>
<td>0,593</td>
<td>1,468</td>
<td>-1,145</td>
<td>-2,238</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>-17,746</td>
<td>-3,297</td>
<td>0,155</td>
<td>0,385</td>
<td>0,236</td>
<td>0,460</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>0,059</td>
<td>1,309</td>
<td>-0,002</td>
<td>-0,037</td>
<td>0,060</td>
<td>1,332</td>
</tr>
</tbody>
</table>

Tabla 4. Relación contemporánea entre rendimientos y volúmenes.

A partir de la regresión (5), se observa que existe una relación contemporánea positiva entre los rendimientos y el volumen para la acción de Ecopetrol, no existe significancia para ningún coeficiente de la acción de Canacol, se encontró una relación contemporánea negativa (a un nivel de significancia del 10%) para la acción de Pacific Rubiales, Los resultados encontrados para Ecopetrol son consistentes por los encontrados en Lee y Rui (2000), De Medeiros and Van Doornik (2006), Khan y Rizwan (2008) y Darwish (2012) los cuales implican que los mercados en alza (baja) van acompañados con volumen alto.
(bajo) de negociación, esta relación contemporánea es consistente con los modelos de llegada secuencial de la información y la hipótesis de la mezcla de distribuciones discutidas en el Capítulo 2. El resultado de Pacific Rubiales es coherente con el encontrado por el estudio de Tripathy (2011) el cual encontró una dependencia negativa no significativa del rendimiento respecto al volumen de negociación. Las gráficas de los residuos y residuos al cuadrado se encuentran en el anexo 2.

Como los residuos tienen efecto ARCH, ver figuras Anexo 2, esto es existe correlación entre los rezagos de los residuos al cuadrado, se realiza la regresión (6), cuyos resultados se encuentran en la Tabla 5. Para esta regresión el estadístico usado es \(z \), el cual es significativo al 5% cuando es mayor en valor absoluto a 1.96

\[
R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \varepsilon_t \tag{6}
\]

\[
h_t = \omega_0 + \omega_1 \varepsilon^2_{t-1} + \omega_2 h_{t-1}
\]

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>ECOPETROL</th>
<th>CANACOL</th>
<th>PACIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_0)</td>
<td>-0.001</td>
<td>-0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>23.980</td>
<td>0.428</td>
<td>-1.065</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>-16.011</td>
<td>0.243</td>
<td>0.508</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>0.016</td>
<td>0.031</td>
<td>0.087</td>
</tr>
<tr>
<td>(\omega_0)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>0.214</td>
<td>0.275</td>
<td>0.128</td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>0.510</td>
<td>0.567</td>
<td>0.813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,672</td>
<td>-0,444</td>
<td>3,693</td>
<td>0,214</td>
<td>3,788</td>
<td>0,510</td>
</tr>
<tr>
<td>5,996</td>
<td>0,000</td>
<td>6,339</td>
<td>0,275</td>
<td>11,235</td>
<td>0,567</td>
</tr>
<tr>
<td>2,840</td>
<td>-1,992</td>
<td>6,339</td>
<td>0,275</td>
<td>17,550</td>
<td>0,813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,672</td>
<td>-0,444</td>
<td>3,693</td>
<td>0,214</td>
<td>3,788</td>
<td>0,510</td>
</tr>
<tr>
<td>5,996</td>
<td>0,000</td>
<td>6,339</td>
<td>0,275</td>
<td>11,235</td>
<td>0,567</td>
</tr>
<tr>
<td>2,840</td>
<td>-1,992</td>
<td>6,339</td>
<td>0,275</td>
<td>17,550</td>
<td>0,813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,672</td>
<td>-0,444</td>
<td>3,693</td>
<td>0,214</td>
<td>3,788</td>
<td>0,510</td>
</tr>
<tr>
<td>5,996</td>
<td>0,000</td>
<td>6,339</td>
<td>0,275</td>
<td>11,235</td>
<td>0,567</td>
</tr>
<tr>
<td>2,840</td>
<td>-1,992</td>
<td>6,339</td>
<td>0,275</td>
<td>17,550</td>
<td>0,813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,672</td>
<td>-0,444</td>
<td>3,693</td>
<td>0,214</td>
<td>3,788</td>
<td>0,510</td>
</tr>
<tr>
<td>5,996</td>
<td>0,000</td>
<td>6,339</td>
<td>0,275</td>
<td>11,235</td>
<td>0,567</td>
</tr>
<tr>
<td>2,840</td>
<td>-1,992</td>
<td>6,339</td>
<td>0,275</td>
<td>17,550</td>
<td>0,813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,672</td>
<td>-0,444</td>
<td>3,693</td>
<td>0,214</td>
<td>3,788</td>
<td>0,510</td>
</tr>
<tr>
<td>5,996</td>
<td>0,000</td>
<td>6,339</td>
<td>0,275</td>
<td>11,235</td>
<td>0,567</td>
</tr>
<tr>
<td>2,840</td>
<td>-1,992</td>
<td>6,339</td>
<td>0,275</td>
<td>17,550</td>
<td>0,813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
<th>Valor</th>
<th>Estadístico (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,672</td>
<td>-0,444</td>
<td>3,693</td>
<td>0,214</td>
<td>3,788</td>
<td>0,510</td>
</tr>
<tr>
<td>5,996</td>
<td>0,000</td>
<td>6,339</td>
<td>0,275</td>
<td>11,235</td>
<td>0,567</td>
</tr>
<tr>
<td>2,840</td>
<td>-1,992</td>
<td>6,339</td>
<td>0,275</td>
<td>17,550</td>
<td>0,813</td>
</tr>
</tbody>
</table>

Cuando se incorpora a la ecuación (5) el efecto ARCH se obtiene la ecuación (6) donde todos los coeficientes \(\alpha_1 \) son significativos al 5%. Al incluir el efecto ARCH, los coeficientes de Canacol y Pacific Rubiales se vuelven significativos al 5%, hay una relación positiva entre los rendimientos y volúmenes para Ecopetrol y Canacol resultados que son consistentes con los encontrados por Lee et al (2000) en el mercado de valores de Hong-Kong y Khan y Rizwan (2008) en el mercado de Pakistan después de incorporar el efecto ARCH. Se encontró una relación negativa para Pacific Rubiales.
Todos los coeficientes para la volatilidad son positivos y significativos, el correlograma de los residuos estandarizados y residuos estandarizados al cuadrado se encuentra en el anexo 2.

Para las tres acciones estudiadas está presente el efecto de heterocedasticidad de los residuos de las regresiones, por tanto es necesario hacer las regresiones con un GARCH (1,1), los resultados de los residuos estandarizados se encuentran en el anexo 2, todos son ruido blanco.

 Para analizar el efecto de la volatilidad (R^2_t) se realizaron las regresiones 7 y 8 para comprobar la relación contemporánea entre estas variables, los resultados se encuentran en las Tablas 6 y 7 respectivamente.

$$V_t = \gamma_0 + \gamma_1 V_{t-1} + \gamma_2 V_{t-2} + \gamma_3 V_{t-3} + \gamma_4 R^2_t + \varepsilon_t \quad (7)$$

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>ECOPETROL</th>
<th>CANACOL</th>
<th>PACIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>6,061</td>
<td>1,983</td>
<td>5,671</td>
</tr>
<tr>
<td>γ_1</td>
<td>0,289</td>
<td>0,492</td>
<td>0,541</td>
</tr>
<tr>
<td></td>
<td>7,513</td>
<td>12,621</td>
<td>12,209</td>
</tr>
<tr>
<td>γ_2</td>
<td>0,034</td>
<td>0,121</td>
<td>0,056</td>
</tr>
<tr>
<td></td>
<td>0,848</td>
<td>2,782</td>
<td>1,106</td>
</tr>
<tr>
<td>γ_3</td>
<td>0,186</td>
<td>0,130</td>
<td>0,027</td>
</tr>
<tr>
<td></td>
<td>4,852</td>
<td>3,331</td>
<td>0,617</td>
</tr>
<tr>
<td>γ_4</td>
<td>0,162</td>
<td>0,617</td>
<td>0,561</td>
</tr>
<tr>
<td></td>
<td>12,930</td>
<td>12,801</td>
<td>6,153</td>
</tr>
</tbody>
</table>

Tabla 6. Relación contemporánea entre volatilidad y volúmenes.

Se observa que el coeficiente γ_4 es positivo y estadísticamente significativo para las tres acciones estudiadas con un valor mayor para Canacol seguido de Pacific y por último Ecopetrol.

Lo que implica que existe una relación contemporánea entre rendimientos y volatilidad resultados que son coherentes por los encontrados por Tripathy (2011). Económicamente esta relación nos permite concluir al igual que en Tripathy (2011) y Brailsford (1996) que la llegada de información afecta de manera positiva el volumen para cada una de las acciones aquí estudiadas.

$$V_t = \gamma_0 + \gamma_1 V_{t-1} + \gamma_2 V_{t-2} + \gamma_3 V_{t-3} + \gamma_4 R^2_t + \varepsilon_t \quad (8)$$
Con el modelo 8 se obtienen los mismos signos y significancia de los coeficientes por tanto las mismas conclusiones que con los resultados del modelo 7.

PRUEBA DE CAUSALIDAD DE GRANGER

En la presente sección se encuentran los resultados de la prueba de causalidad de Granger entre las variables volumen-rendimientos y volumen-rendimientos al cuadrado (volatilidad). Los residuales de todos los modelos son ruido blanco al 5%.

VOLUMEN-RENDIMIENTOS

En la tabla 8 se encuentra el orden del VAR seleccionado por cada criterio del cuadro 1 para cada una de las acciones estudiadas. Ecuación (9).

\[
R_t = \alpha_1 + \sum_{i=1}^{p} \beta_{i1} V_{t-i} + \sum_{i=1}^{p} \gamma_{i1} R_{t-i} + \varepsilon_{t1} \quad (9)
\]

\[
V_t = \alpha_2 + \sum_{i=1}^{p} \beta_{i2} R_{t-i} + \sum_{i=1}^{p} \gamma_{i2} V_{t-i} + \varepsilon_{t2}
\]
A partir de la Tabla 8 se realizaron las pruebas de causalidad de Granger para cada criterio, los resultados se encuentran en la Tabla 9.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>ECOPETROL</th>
<th>CANACOL</th>
<th>PACIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor de Error Final</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Criterio de Información de Akaike</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Schwarz-Bayes</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hannan-Quinn</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabla 8. Orden del VAR por cada criterio (Volumen-Rendimiento)

A partir de la Tabla 9 podemos concluir lo siguiente:

Ecopetrol y Canacol: en tres de los cuatro criterios el volumen no causa la rentabilidad en el sentido de Granger, (Canacol al 10% criterio de Schwarz-Bayes), es decir, que con la información pasada del volumen no podemos predecir estadísticamente el futuro de los rendimientos y con los cuatro criterios la rentabilidad no causa el volumen. Es decir, no existe causalidad bidireccional. Resultados coherentes por los obtenidos en Trypathi (2011) el cual analiza el mercado Hindú.

Pacific Rubiales: En tres de los cuatro criterios se encuentra causalidad bidireccional. Esto es consistente con los resultados de Moosa y A-Lougahni (1995), Silvapulle y Choi (1999), Khan y Rizwan (2008), los cuales reportan relación causal bidireccional en las
bolsas de valores asiáticas y algunos mercados emergentes europeos como Hungría, Polonia y Rusia. Estos resultados son soportados por las teorías de arribo secuencial de la información y la hipótesis de distribuciones mixtas.

VOLUMEN-VOLATILIDAD

Se realizó el mismo procedimiento anterior entre las variables volumen y volatilidad (rendimientos al cuadrado) y los resultados se encuentran en las tablas 10 y 11.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>ECOPETROL</th>
<th>CANACOL</th>
<th>PACIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor de Error Final</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Criterio de Informacion de Akaike</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Schwarz-Bayes</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hannan-Quinn</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 10. Orden del VAR por cada criterio (Volumen-Volatilidad)

<table>
<thead>
<tr>
<th>Criterio</th>
<th>ECOPETROL</th>
<th>CANACOL</th>
<th>PACIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor de Error Final</td>
<td>χ²</td>
<td>Prob</td>
<td>χ²</td>
</tr>
<tr>
<td>V no Causa R</td>
<td>2,77</td>
<td>0,43</td>
<td>4,13</td>
</tr>
<tr>
<td>R no Causa V</td>
<td>4,11</td>
<td>0,25</td>
<td>9,47</td>
</tr>
<tr>
<td>Criterio de Informacion de Akaike</td>
<td>χ²</td>
<td>Prob</td>
<td>χ²</td>
</tr>
<tr>
<td>V no Causa R</td>
<td>2,77</td>
<td>0,43</td>
<td>4,13</td>
</tr>
<tr>
<td>R no Causa V</td>
<td>4,11</td>
<td>0,25</td>
<td>9,47</td>
</tr>
<tr>
<td>Schwarz-Bayes</td>
<td>χ²</td>
<td>Prob</td>
<td>χ²</td>
</tr>
<tr>
<td>V no Causa R</td>
<td>2,51</td>
<td>0,29</td>
<td>3,01</td>
</tr>
<tr>
<td>R no Causa V</td>
<td>0,78</td>
<td>0,68</td>
<td>1,26</td>
</tr>
<tr>
<td>Hannan-Quinn</td>
<td>χ²</td>
<td>Prob</td>
<td>χ²</td>
</tr>
<tr>
<td>V no Causa R</td>
<td>2,77</td>
<td>0,43</td>
<td>3,01</td>
</tr>
<tr>
<td>R no Causa V</td>
<td>4,11</td>
<td>0,25</td>
<td>1,26</td>
</tr>
</tbody>
</table>

Tabla 11. Prueba de Causalidad de Granger (Volumen-Volatilidad)

Al analizar los resultados de la Tabla 11 podemos concluir que la volatilidad causa el volumen únicamente en la acción de Pacific Rubiales, este resultado está en línea con los resultados obtenidos por Brailsford (1996), Tripathy (2011) y Darwish (2012). Implicando que cuando hay alta volatilidad habrá alto volumen. Los resultados de Ecopetrol y Canacol concuerdan con algunos de los resultados de las acciones
encontradas por Habib (2011) en el mercado egipcio. Esto es, que ninguna de las variables puede ser usada para predecir el comportamiento de la otra.

MODELO DE CARACTERIZACIÓN DE AGENTES

Los resultados del modelo LMSW ecuaciones 11 y 12 se encuentran a continuación

\[R_{i,t} = C_{0,i} + C_{1,i} \cdot R_{i,t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{i,t-1} + \varepsilon_{i,t} \] \hspace{1cm} (11)

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>ECOPETROL</th>
<th>CANACOL</th>
<th>PACIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_0)</td>
<td>0,001</td>
<td>-0,002</td>
<td>0,000</td>
</tr>
<tr>
<td>(C_1)</td>
<td>0,011</td>
<td>0,061</td>
<td>0,019</td>
</tr>
<tr>
<td>(C_2)</td>
<td>118,830</td>
<td>-5,702</td>
<td>10,122</td>
</tr>
</tbody>
</table>

Tabla 12. Caracterización de agentes

\[R_{i,t} = C_{0,i} + C_{1,i} \cdot R_{i,t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{i,t-1} + \varepsilon_{i,t} \] \hspace{1cm} (12)

\[h_t = \omega_0 + \omega_1 \varepsilon^2_{t-1} + \omega_2 h_{t-1} \]

<table>
<thead>
<tr>
<th>Coeficiente</th>
<th>ECOPETROL</th>
<th>CANACOL</th>
<th>PACIFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_0)</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>0,163</td>
<td>0,274</td>
<td>0,137</td>
</tr>
<tr>
<td>(\omega_2)</td>
<td>0,487</td>
<td>0,567</td>
<td>0,798</td>
</tr>
</tbody>
</table>

Tabla 13. Caracterización de agentes, incluyendo GARCH (1,1).

A partir de los resultados de las Tablas 12 y 13 se puede concluir que no existen agentes característicos dominantes que negocian cada compañía, ya que los resultados son no significativos. Este resultado, de no significancia, es coherente con el trabajo desarrollado por Grishchenko et al (2006). Ellos encontraron, en Colombia, en una muestra de cuarenta compañías que treinta y una de ellas tenían el coeficiente no significativo.
Capítulo 4 CONCLUSIONES Y RECOMENDACIONES

Este trabajo de grado analizó las relaciones dinámicas entre volúmenes de negociación, rendimientos y volatilidad (rendimientos al cuadrado), usando datos diarios en el periodo comprendido entre el 22 de Julio de 2010 al 23 de Julio de 2012 de las tres principales compañías petroleras (Ecopetrol, Canacol y Pacific Rubiales) que cotizan en la Bolsa de Valores de Colombia.

Cuando los modelos se especifican correctamente, es decir se corregen los problemas de heterocedasticidad, incorporando el efecto ARCH, se observan relaciones contemporáneas entre los volúmenes transados y los rendimientos de los activos para las tres compañías analizadas. Para los volúmenes y la volatilidad, con y sin efecto ARCH, se observan relaciones contemporáneas entre dichas variables. Esta relación contemporánea indica que los precios están determinados linealmente por el volumen, hecho utilizados por los agentes para tomar decisiones de compra y venta de las acciones.

Para Ecopetrol y Canacol no se halló evidencia estadística para probar la causalidad en el sentido de Granger en ninguno de los dos modelos (Volúmenes → Rendimientos; Volúmenes → Volatilidad). Para Pacific Rubiales en tres de los cuatro criterios se encontró que existe causalidad bidireccional como lo sugieren las teorías de arribo secuencial de información y la hipótesis de distribuciones mixtas. Según estos resultados las acciones Ecopetrol y Canacol son eficientes en sentido débil, es decir que no es posible determinar los precios futuros con su información histórica. En el caso de la acción de Pacific Rubiales, no se cumple que las acciones sean eficientes en el sentido débil, ya que con la información de los volúmenes transados, en el periodo de estudio, se puede predecir el precio.

Las regresiones se corrieron para los volúmenes sin ajuste por las acciones emitidas y las conclusiones (signos y estadísticos) no variaron.

En la aplicación del modelo de caracterización de agentes (LMSW) se observa que no existen agentes característicos dominantes (Especuladores y Tácticos) para los tres activos estudiados (Ecopetrol, Canacol y Pacific Rubiales). Situación que permite a los
agentes tener confianza con estos activos petroleros y aporta evidencia empírica a favor de la consolidación del mercado accionario colombiano.

Futuros trabajos de investigación, sobre esta misma línea, podrían incluir el estudio de los índices de la Bolsa de Colombia (IGBC y COLCAP) y de las otras acciones del mercado colombiano, como también incluir análisis de causalidad no lineal lo que permitiría un entendimiento más profundo del mercado de valores de Colombia.
BIBLIOGRAFÍA

ANEXO 1. TEST DE WALD

Para el caso de regresión lineal:

\[y = X\beta + \epsilon \quad (A1.1) \]

Y restricción lineal \(H_0: R\beta - r = 0 \)

Donde \(R \) es una matriz \(q \times k \) y \(r \) es un \(q \) vector, el estadístico Wald es:

\[W = (Rb - r)'(Rs^2(X'X)^{-1}R)^{-1}(Rb - r) \quad (A1.2) \]

El cual es asintóticamente distribuido como una \(\chi^2(q) \), donde

\[s^2 = (u'u)/(N - k) \quad (A1.3) \]

\(k \) Vector de parámetros a ser estimados, \(q \) el número de restricciones a ser impuestas.
ANEXO 2. CORRELOGRAMAS DE LOS RESIDUOS DE LOS MODELOS

En este anexo se presentan los residuos (residuos estandarizados) y residuos (residuos estandarizados) al cuadrado para los modelos realizados en el trabajo.

Ecuación 5 Ecopetrol

\[R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \epsilon_t \]

(5)

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i</td>
<td>1</td>
<td>0.003</td>
<td>0.003</td>
<td>0.0032</td>
</tr>
<tr>
<td>1</td>
<td>t</td>
<td>2</td>
<td>-0.022</td>
<td>-0.022</td>
<td>0.2484</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>3</td>
<td>-0.005</td>
<td>-0.005</td>
<td>0.2616</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>4</td>
<td>-0.089</td>
<td>-0.088</td>
<td>4.9801</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>5</td>
<td>-0.077</td>
<td>-0.077</td>
<td>7.0163</td>
</tr>
<tr>
<td>t</td>
<td>e</td>
<td>6</td>
<td>0.022</td>
<td>0.018</td>
<td>7.2680</td>
</tr>
<tr>
<td>t</td>
<td>e</td>
<td>7</td>
<td>-0.030</td>
<td>-0.035</td>
<td>7.7277</td>
</tr>
<tr>
<td>t</td>
<td>e</td>
<td>8</td>
<td>0.011</td>
<td>0.003</td>
<td>7.8773</td>
</tr>
<tr>
<td>t</td>
<td>e</td>
<td>9</td>
<td>0.020</td>
<td>0.005</td>
<td>7.9079</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>10</td>
<td>-0.044</td>
<td>-0.047</td>
<td>8.9654</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>11</td>
<td>0.053</td>
<td>0.052</td>
<td>10.369</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>12</td>
<td>0.031</td>
<td>0.025</td>
<td>10.848</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>13</td>
<td>0.028</td>
<td>0.036</td>
<td>11.262</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>14</td>
<td>-0.004</td>
<td>-0.009</td>
<td>11.260</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>15</td>
<td>-0.036</td>
<td>-0.033</td>
<td>11.932</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>16</td>
<td>-0.015</td>
<td>0.000</td>
<td>12.052</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>17</td>
<td>0.017</td>
<td>0.020</td>
<td>12.201</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>18</td>
<td>-0.048</td>
<td>-0.043</td>
<td>13.365</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>19</td>
<td>0.067</td>
<td>0.063</td>
<td>15.685</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>20</td>
<td>0.025</td>
<td>0.015</td>
<td>15.985</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i</td>
<td>1</td>
<td>0.198</td>
<td>0.198</td>
<td>16.298</td>
</tr>
<tr>
<td>1</td>
<td>t</td>
<td>2</td>
<td>0.222</td>
<td>0.191</td>
<td>43.733</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>3</td>
<td>0.081</td>
<td>0.069</td>
<td>47.021</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>4</td>
<td>0.095</td>
<td>0.027</td>
<td>56.633</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>5</td>
<td>0.036</td>
<td>0.001</td>
<td>51.280</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>6</td>
<td>0.088</td>
<td>0.083</td>
<td>55.265</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>7</td>
<td>-0.013</td>
<td>-0.050</td>
<td>55.656</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>8</td>
<td>0.024</td>
<td>0.032</td>
<td>59.541</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>9</td>
<td>0.007</td>
<td>0.010</td>
<td>55.565</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>10</td>
<td>-0.009</td>
<td>-0.022</td>
<td>55.604</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>11</td>
<td>-0.020</td>
<td>-0.019</td>
<td>55.910</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>12</td>
<td>-0.022</td>
<td>-0.018</td>
<td>56.062</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>13</td>
<td>0.010</td>
<td>0.031</td>
<td>56.108</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>14</td>
<td>-0.085</td>
<td>-0.091</td>
<td>58.772</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>15</td>
<td>-0.046</td>
<td>-0.025</td>
<td>60.837</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>16</td>
<td>-0.047</td>
<td>-0.001</td>
<td>61.983</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>17</td>
<td>0.049</td>
<td>0.024</td>
<td>63.190</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>18</td>
<td>0.001</td>
<td>0.035</td>
<td>63.191</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>19</td>
<td>0.001</td>
<td>0.010</td>
<td>63.191</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>20</td>
<td>0.008</td>
<td>0.022</td>
<td>63.228</td>
</tr>
</tbody>
</table>
Ecuación 6 Ecopetrol

\[R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \epsilon_t \tag{6} \]

\[h_t = \omega_0 + \omega_1 \epsilon^2_{t-1} + \omega_2 h_{t-1} \]

Correlograma residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0.052</td>
<td>0.052</td>
<td>1.3231</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>-0.018</td>
<td>-0.021</td>
<td>1.4815</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>-0.003</td>
<td>-0.001</td>
<td>1.4850</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>-0.072</td>
<td>-0.072</td>
<td>4.0291</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>-0.084</td>
<td>-0.078</td>
<td>7.5837</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>0.002</td>
<td>0.007</td>
<td>7.5859</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>-0.027</td>
<td>-0.031</td>
<td>7.9541</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>0.003</td>
<td>0.001</td>
<td>7.9586</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>0.076</td>
<td>0.004</td>
<td>8.0028</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>-0.057</td>
<td>-0.065</td>
<td>9.7529</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>0.055</td>
<td>0.059</td>
<td>11.256</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>0.035</td>
<td>0.023</td>
<td>11.883</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>0.046</td>
<td>0.049</td>
<td>12.962</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>-0.015</td>
<td>-0.026</td>
<td>13.075</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>-0.036</td>
<td>-0.035</td>
<td>13.727</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>0.017</td>
<td>0.000</td>
<td>13.878</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>0.025</td>
<td>0.032</td>
<td>14.201</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>-0.041</td>
<td>-0.037</td>
<td>15.072</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>0.074</td>
<td>0.075</td>
<td>17.883</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>0.037</td>
<td>0.018</td>
<td>18.571</td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.0002</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0.029</td>
<td>0.029</td>
<td>0.4143</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>-0.021</td>
<td>-0.021</td>
<td>0.5332</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>-0.017</td>
<td>-0.018</td>
<td>0.7794</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>-0.007</td>
<td>-0.006</td>
<td>0.8037</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>0.054</td>
<td>0.054</td>
<td>2.2352</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>0.065</td>
<td>0.065</td>
<td>2.2486</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>-0.031</td>
<td>-0.035</td>
<td>2.7223</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>-0.008</td>
<td>-0.006</td>
<td>2.7514</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>-0.006</td>
<td>-0.002</td>
<td>2.7701</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>-0.026</td>
<td>-0.026</td>
<td>3.1063</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>-0.003</td>
<td>-0.008</td>
<td>3.1122</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>0.057</td>
<td>0.058</td>
<td>4.7861</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>-0.085</td>
<td>-0.083</td>
<td>8.4498</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>-0.008</td>
<td>-0.012</td>
<td>8.4815</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>-0.021</td>
<td>-0.014</td>
<td>8.6085</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>-0.061</td>
<td>-0.060</td>
<td>10.589</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>0.031</td>
<td>0.031</td>
<td>11.083</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>-0.020</td>
<td>-0.027</td>
<td>11.288</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>0.049</td>
<td>0.053</td>
<td>12.532</td>
</tr>
</tbody>
</table>
Ecuación 7 Ecopetrol

\[V_t = \gamma_0 + \gamma_1 V_{t-1} + \gamma_2 V_{t-2} + \gamma_3 V_{t-3} + \gamma_4 R^2_t + \varepsilon_t \] \hspace{1cm} (7)

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.017</td>
<td>0.017</td>
<td>0.1380</td>
<td>0.710</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.049</td>
<td>0.048</td>
<td>1.3088</td>
<td>0.520</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.011</td>
<td>0.009</td>
<td>1.3640</td>
<td>0.714</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.040</td>
<td>-0.043</td>
<td>2.1724</td>
<td>0.704</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.007</td>
<td>0.007</td>
<td>2.1963</td>
<td>0.821</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.056</td>
<td>0.051</td>
<td>3.7818</td>
<td>0.706</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.003</td>
<td>0.001</td>
<td>3.7856</td>
<td>0.804</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.036</td>
<td>0.028</td>
<td>4.4265</td>
<td>0.817</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.091</td>
<td>0.090</td>
<td>8.5347</td>
<td>0.481</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.006</td>
<td>0.005</td>
<td>8.5547</td>
<td>0.575</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.043</td>
<td>0.033</td>
<td>9.4028</td>
<td>0.577</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-0.015</td>
<td>-0.019</td>
<td>9.6042</td>
<td>0.051</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-0.005</td>
<td>-0.001</td>
<td>9.6159</td>
<td>0.725</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.007</td>
<td>0.004</td>
<td>9.6420</td>
<td>0.788</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0.127</td>
<td>0.123</td>
<td>17.846</td>
<td>0.271</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-0.033</td>
<td>-0.042</td>
<td>18.399</td>
<td>0.301</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.056</td>
<td>0.037</td>
<td>20.015</td>
<td>0.273</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0.034</td>
<td>0.030</td>
<td>20.602</td>
<td>0.300</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>-0.042</td>
<td>-0.041</td>
<td>21.519</td>
<td>0.309</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.013</td>
<td>-0.028</td>
<td>21.610</td>
<td>0.362</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.0114</td>
<td>0.915</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-0.003</td>
<td>-0.003</td>
<td>0.0145</td>
<td>0.993</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.030</td>
<td>0.030</td>
<td>0.4681</td>
<td>0.026</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.014</td>
<td>-0.014</td>
<td>0.5674</td>
<td>0.967</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-0.021</td>
<td>-0.020</td>
<td>0.7758</td>
<td>0.979</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-0.004</td>
<td>-0.005</td>
<td>0.7855</td>
<td>0.992</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-0.003</td>
<td>-0.002</td>
<td>0.7888</td>
<td>0.998</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.002</td>
<td>-0.001</td>
<td>0.7900</td>
<td>0.999</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.075</td>
<td>0.074</td>
<td>3.5704</td>
<td>0.937</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-0.013</td>
<td>-0.014</td>
<td>3.5498</td>
<td>0.962</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-0.007</td>
<td>-0.007</td>
<td>3.5729</td>
<td>0.979</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-0.023</td>
<td>-0.028</td>
<td>3.9495</td>
<td>0.984</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-0.016</td>
<td>-0.013</td>
<td>4.0833</td>
<td>0.990</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-0.005</td>
<td>-0.002</td>
<td>4.0965</td>
<td>0.995</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0.019</td>
<td>0.021</td>
<td>4.2732</td>
<td>0.997</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-0.022</td>
<td>-0.022</td>
<td>4.5135</td>
<td>0.998</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.005</td>
<td>0.004</td>
<td>4.5264</td>
<td>0.999</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0.002</td>
<td>-0.006</td>
<td>4.5280</td>
<td>0.999</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>-0.024</td>
<td>-0.021</td>
<td>4.6177</td>
<td>1.000</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.018</td>
<td>-0.017</td>
<td>4.9835</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Ecuación 8 Ecopetrol

\[V_t = \phi_0 + \phi_1 V_{t-1} + \phi_2 V_{t-2} + \phi_3 V_{t-3} + \phi_4 R_t^2 + \varepsilon_t \quad (8) \]

\[h_t = \omega_0 + \omega_1 \varepsilon_{t-1}^2 + \omega_2 h_{t-1} \]

Correlograma de los residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.0148</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.020</td>
<td>0.029</td>
<td>0.4235</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0.008</td>
<td>0.007</td>
<td>0.4524</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>-0.042</td>
<td>-0.043</td>
<td>1.3430</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>-0.001</td>
<td>-0.001</td>
<td>1.3442</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>0.046</td>
<td>0.048</td>
<td>2.3787</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.004</td>
<td>0.004</td>
<td>2.3040</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>0.036</td>
<td>0.031</td>
<td>3.0168</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>0.081</td>
<td>0.081</td>
<td>6.3400</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0.008</td>
<td>0.009</td>
<td>6.3699</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>0.040</td>
<td>0.036</td>
<td>7.1801</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>-0.019</td>
<td>-0.020</td>
<td>7.3617</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>-0.001</td>
<td>-0.004</td>
<td>7.3620</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>0.001</td>
<td>-0.001</td>
<td>7.3625</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
<td>0.115</td>
<td>0.112</td>
<td>14.080</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>-0.032</td>
<td>-0.038</td>
<td>14.614</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>17</td>
<td>0.046</td>
<td>0.033</td>
<td>15.708</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>0.029</td>
<td>0.024</td>
<td>16.132</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>19</td>
<td>-0.040</td>
<td>-0.037</td>
<td>16.951</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20</td>
<td>-0.007</td>
<td>-0.017</td>
<td>16.974</td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0004</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-0.008</td>
<td>-0.008</td>
<td>0.0334</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0.026</td>
<td>0.026</td>
<td>0.3712</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>-0.016</td>
<td>-0.016</td>
<td>0.4950</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>-0.023</td>
<td>-0.022</td>
<td>0.7524</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>-0.007</td>
<td>-0.008</td>
<td>0.7748</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>-0.007</td>
<td>-0.007</td>
<td>0.8022</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>-0.003</td>
<td>-0.002</td>
<td>0.8063</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>0.076</td>
<td>0.076</td>
<td>3.8878</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>-0.015</td>
<td>-0.016</td>
<td>3.8069</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>-0.013</td>
<td>-0.012</td>
<td>3.3902</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>-0.026</td>
<td>-0.031</td>
<td>4.2220</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>13</td>
<td>-0.019</td>
<td>-0.016</td>
<td>4.4043</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>-0.007</td>
<td>-0.004</td>
<td>4.4289</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
<td>0.008</td>
<td>0.010</td>
<td>4.4638</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>-0.024</td>
<td>-0.024</td>
<td>4.7641</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>17</td>
<td>0.004</td>
<td>0.002</td>
<td>4.7708</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>0.002</td>
<td>-0.006</td>
<td>4.7735</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>19</td>
<td>-0.026</td>
<td>-0.023</td>
<td>5.1244</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20</td>
<td>-0.022</td>
<td>-0.021</td>
<td>5.3694</td>
</tr>
</tbody>
</table>
Ecuación 11 Ecopetrol

\[R_{lt} = C_{0,l} + C_{1,i} \cdot R_{l,t-1} + C_{2,i} \cdot V_{l,t-1} \cdot R_{l,t-1} + \varepsilon_{l,t} \] \hspace{1cm} (11)

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.006</td>
<td>0.006</td>
<td>0.0198</td>
<td>0.888</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-0.020</td>
<td>-0.020</td>
<td>0.2255</td>
<td>0.893</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.2255</td>
<td>0.973</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.113</td>
<td>-0.114</td>
<td>6.6112</td>
<td>0.158</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-0.059</td>
<td>-0.058</td>
<td>8.3422</td>
<td>0.138</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.019</td>
<td>0.014</td>
<td>8.5131</td>
<td>0.203</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-0.031</td>
<td>-0.034</td>
<td>8.9791</td>
<td>0.254</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.009</td>
<td>0.003</td>
<td>9.0220</td>
<td>0.340</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.016</td>
<td>0.002</td>
<td>9.1575</td>
<td>0.423</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-0.049</td>
<td>-0.049</td>
<td>10.353</td>
<td>0.410</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.057</td>
<td>0.054</td>
<td>12.013</td>
<td>0.363</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.027</td>
<td>0.021</td>
<td>12.372</td>
<td>0.416</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.026</td>
<td>0.032</td>
<td>12.723</td>
<td>0.469</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.016</td>
<td>0.006</td>
<td>12.849</td>
<td>0.538</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-0.044</td>
<td>-0.037</td>
<td>13.822</td>
<td>0.539</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-0.005</td>
<td>0.011</td>
<td>13.833</td>
<td>0.611</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.019</td>
<td>0.022</td>
<td>14.009</td>
<td>0.666</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>-0.050</td>
<td>-0.043</td>
<td>15.313</td>
<td>0.640</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0.066</td>
<td>0.063</td>
<td>17.546</td>
<td>0.553</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0.026</td>
<td>0.017</td>
<td>17.890</td>
<td>0.595</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.190</td>
<td>0.190</td>
<td>17.858</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.209</td>
<td>0.179</td>
<td>29.491</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.093</td>
<td>0.028</td>
<td>43.752</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.053</td>
<td>-0.003</td>
<td>45.129</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.004</td>
<td>-0.027</td>
<td>45.137</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.041</td>
<td>0.035</td>
<td>45.964</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-0.033</td>
<td>-0.044</td>
<td>46.498</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.009</td>
<td>0.008</td>
<td>46.530</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.027</td>
<td>0.038</td>
<td>46.901</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-0.036</td>
<td>-0.049</td>
<td>47.542</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-0.041</td>
<td>-0.041</td>
<td>48.375</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-0.042</td>
<td>-0.022</td>
<td>49.250</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-0.007</td>
<td>0.026</td>
<td>49.275</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-0.008</td>
<td>-0.080</td>
<td>53.163</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>-0.049</td>
<td>-0.029</td>
<td>54.402</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-0.033</td>
<td>0.014</td>
<td>54.956</td>
<td>0.000</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-0.039</td>
<td>-0.017</td>
<td>55.719</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0.017</td>
<td>0.037</td>
<td>55.870</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0.009</td>
<td>0.011</td>
<td>55.908</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0.008</td>
<td>0.006</td>
<td>55.939</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Ecuación 12 Ecopetrol

\[R_{it} = C_{0,i} + C_{1,i} \cdot R_{i,t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{i,t-1} + \epsilon_{i,t} \] \(12\)

\[h_t = \omega_0 + \omega_1 \epsilon_{t-1}^2 + \omega_2 h_{t-1} \]

Correlograma de los residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.00 0.50 0.50 1.2467 0.264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.00 -0.018 -0.021 1.4065 0.495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3.00 0.003 0.005 1.4117 0.703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4.00 -0.089 -0.100 6.2739 0.180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5.00 -0.068 -0.058 8.5462 0.129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6.00 0.006 0.008 8.5631 0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7.00 -0.023 -0.025 8.8192 0.266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8.00 -0.003 -0.010 8.8239 0.357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9.00 0.017 0.005 8.9741 0.440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10.00 -0.057 -0.062 10.618 0.388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11.00 0.058 0.062 12.326 0.340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12.00 0.036 0.024 12.989 0.370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13.00 0.044 0.047 13.968 0.376</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14.00 0.013 -0.002 14.048 0.446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15.00 -0.036 -0.032 14.693 0.474</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16.00 0.003 0.021 14.696 0.547</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>17.00 0.024 0.032 14.993 0.596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>18.00 -0.047 -0.042 16.118 0.584</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>19.00 0.074 0.079 18.951 0.460</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>20.00 0.042 0.027 19.866 0.466</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.00 -0.005 -0.005 0.1008 0.917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.00 0.025 0.035 0.5021 0.740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3.00 0.017 0.018 0.7502 0.861</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4.00 -0.006 -0.007 0.7706 0.942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5.00 -0.026 -0.027 1.1044 0.954</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6.00 0.012 0.012 1.1749 0.978</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7.00 -0.030 -0.028 1.3150 0.078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8.00 -0.039 -0.040 2.3854 0.967</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9.00 0.077 0.078 5.3706 0.601</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10.00 -0.030 -0.026 5.3209 0.630</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11.00 -0.049 -0.053 7.0097 0.798</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12.00 -0.033 -0.036 7.5481 0.819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13.00 0.032 0.037 8.0571 0.840</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14.00 -0.083 -0.076 11.567 0.641</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15.00 -0.019 -0.028 11.756 0.697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16.00 -0.019 -0.013 11.937 0.748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>17.00 -0.055 -0.048 13.509 0.701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>18.00 0.046 0.037 14.573 0.691</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>19.00 -0.002 -0.004 14.575 0.749</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>20.00 0.019 0.025 14.755 0.790</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ecuación 5 Canacol

\[R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \epsilon_t \] \hspace{1cm} (5)

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.001</td>
<td>0.001</td>
<td>0.0006</td>
<td>0.981</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.044</td>
<td>0.044</td>
<td>0.9675</td>
<td>0.616</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-0.059</td>
<td>-0.060</td>
<td>2.7217</td>
<td>0.437</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.012</td>
<td>0.011</td>
<td>2.7972</td>
<td>0.592</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.116</td>
<td>0.122</td>
<td>9.4996</td>
<td>0.091</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.015</td>
<td>0.009</td>
<td>9.6062</td>
<td>0.142</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.011</td>
<td>0.002</td>
<td>9.6716</td>
<td>0.208</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.037</td>
<td>0.051</td>
<td>10.9354</td>
<td>0.241</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-0.018</td>
<td>-0.021</td>
<td>10.520</td>
<td>0.310</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-0.055</td>
<td>-0.074</td>
<td>12.032</td>
<td>0.283</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.037</td>
<td>0.044</td>
<td>12.734</td>
<td>0.311</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>-0.081</td>
<td>-0.083</td>
<td>16.072</td>
<td>0.188</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-0.009</td>
<td>-0.032</td>
<td>16.109</td>
<td>0.243</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-0.024</td>
<td>-0.004</td>
<td>16.404</td>
<td>0.289</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-0.033</td>
<td>-0.029</td>
<td>16.961</td>
<td>0.321</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-0.004</td>
<td>-0.014</td>
<td>16.970</td>
<td>0.388</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>-0.018</td>
<td>0.008</td>
<td>17.129</td>
<td>0.446</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0.020</td>
<td>0.028</td>
<td>17.328</td>
<td>0.501</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0.037</td>
<td>0.037</td>
<td>18.021</td>
<td>0.521</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.006</td>
<td>0.018</td>
<td>18.039</td>
<td>0.585</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.116</td>
<td>0.116</td>
<td>6.6416</td>
<td>0.010</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.101</td>
<td>0.089</td>
<td>11.720</td>
<td>0.003</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.041</td>
<td>0.020</td>
<td>12.536</td>
<td>0.006</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.053</td>
<td>0.038</td>
<td>13.921</td>
<td>0.008</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.022</td>
<td>0.008</td>
<td>14.170</td>
<td>0.015</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.095</td>
<td>0.085</td>
<td>18.692</td>
<td>0.005</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.052</td>
<td>0.029</td>
<td>20.025</td>
<td>0.006</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-0.013</td>
<td>-0.041</td>
<td>20.114</td>
<td>0.010</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-0.035</td>
<td>-0.043</td>
<td>20.717</td>
<td>0.014</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-0.028</td>
<td>-0.025</td>
<td>21.110</td>
<td>0.020</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-0.010</td>
<td>-0.001</td>
<td>21.159</td>
<td>0.032</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>-0.004</td>
<td>-0.002</td>
<td>21.166</td>
<td>0.048</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-0.024</td>
<td>-0.026</td>
<td>21.463</td>
<td>0.064</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-0.022</td>
<td>-0.011</td>
<td>21.700</td>
<td>0.085</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-0.012</td>
<td>0.006</td>
<td>21.774</td>
<td>0.114</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-0.017</td>
<td>-0.005</td>
<td>21.926</td>
<td>0.146</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>-0.023</td>
<td>-0.017</td>
<td>22.206</td>
<td>0.177</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>-0.046</td>
<td>-0.042</td>
<td>23.302</td>
<td>0.179</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>-0.034</td>
<td>-0.019</td>
<td>23.689</td>
<td>0.200</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>-0.043</td>
<td>-0.026</td>
<td>24.851</td>
<td>0.207</td>
</tr>
</tbody>
</table>
Ecuación 6 Canacol

\[R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \varepsilon_t \quad (6) \]

\[h_t = \omega_0 + \omega_1 \varepsilon^2_{t-1} + \omega_2 h_{t-1} \]

Correlograma residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.055</td>
<td>0.055</td>
<td>1.4952</td>
<td>0.221</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.032</td>
<td>0.029</td>
<td>1.9887</td>
<td>0.370</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-0.022</td>
<td>-0.026</td>
<td>2.2333</td>
<td>0.525</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.046</td>
<td>0.048</td>
<td>3.2876</td>
<td>0.511</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.095</td>
<td>0.092</td>
<td>7.8123</td>
<td>0.107</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.012</td>
<td>-0.001</td>
<td>7.8836</td>
<td>0.247</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.010</td>
<td>0.006</td>
<td>7.9364</td>
<td>0.338</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.066</td>
<td>0.069</td>
<td>10.101</td>
<td>0.258</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.031</td>
<td>-0.047</td>
<td>10.577</td>
<td>0.306</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-0.052</td>
<td>-0.063</td>
<td>11.958</td>
<td>0.288</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.023</td>
<td>0.035</td>
<td>12.220</td>
<td>0.347</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-0.091</td>
<td>-0.103</td>
<td>16.449</td>
<td>0.172</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.015</td>
<td>0.010</td>
<td>16.657</td>
<td>0.220</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-0.042</td>
<td>-0.024</td>
<td>17.492</td>
<td>0.231</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0.037</td>
<td>-0.035</td>
<td>18.101</td>
<td>0.253</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-0.014</td>
<td>-0.008</td>
<td>18.280</td>
<td>0.308</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0.002</td>
<td>0.028</td>
<td>18.263</td>
<td>0.371</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0.022</td>
<td>0.026</td>
<td>18.534</td>
<td>0.421</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0.048</td>
<td>0.049</td>
<td>19.720</td>
<td>0.412</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.016</td>
<td>-0.001</td>
<td>19.858</td>
<td>0.407</td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-0.013</td>
<td>-0.013</td>
<td>0.0785</td>
<td>0.770</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-0.010</td>
<td>-0.010</td>
<td>0.1269</td>
<td>0.939</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-0.018</td>
<td>-0.013</td>
<td>0.2907</td>
<td>0.962</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.015</td>
<td>-0.016</td>
<td>0.4059</td>
<td>0.982</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.002</td>
<td>0.001</td>
<td>0.4072</td>
<td>0.995</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.042</td>
<td>0.041</td>
<td>1.2740</td>
<td>0.973</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.019</td>
<td>0.019</td>
<td>1.4504</td>
<td>0.984</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-0.016</td>
<td>-0.015</td>
<td>1.5770</td>
<td>0.991</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-0.034</td>
<td>-0.032</td>
<td>2.1470</td>
<td>0.989</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-0.025</td>
<td>-0.025</td>
<td>2.4675</td>
<td>0.991</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-0.034</td>
<td>-0.036</td>
<td>3.0562</td>
<td>0.990</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.003</td>
<td>-0.002</td>
<td>3.0610</td>
<td>0.995</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>-0.007</td>
<td>-0.011</td>
<td>3.0862</td>
<td>0.998</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-0.019</td>
<td>-0.020</td>
<td>3.2612</td>
<td>0.999</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0.007</td>
<td>0.009</td>
<td>3.2839</td>
<td>0.999</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>-0.014</td>
<td>-0.011</td>
<td>3.3639</td>
<td>1.000</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-0.019</td>
<td>-0.017</td>
<td>3.5540</td>
<td>1.000</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>-0.021</td>
<td>-0.023</td>
<td>3.8001</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>-0.031</td>
<td>-0.035</td>
<td>4.3080</td>
<td>1.000</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>-0.024</td>
<td>-0.028</td>
<td>4.6000</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Ecuación 7 Canacol

\[V_t = \gamma_0 + \gamma_1 V_{t-1} + \gamma_2 V_{t-2} + \gamma_3 V_{t-3} + \gamma_4 R_t^2 + \varepsilon_t \quad (7) \]

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\cdot)</td>
<td></td>
<td>1</td>
<td>0.019</td>
<td>0.1698</td>
<td>0.680</td>
</tr>
<tr>
<td>2 (\cdot)</td>
<td></td>
<td>2</td>
<td>0.029</td>
<td>0.5877</td>
<td>0.745</td>
</tr>
<tr>
<td>3 (\cdot)</td>
<td></td>
<td>3</td>
<td>-0.003</td>
<td>0.5919</td>
<td>0.898</td>
</tr>
<tr>
<td>4 (\cdot)</td>
<td></td>
<td>4</td>
<td>-0.003</td>
<td>0.5969</td>
<td>0.963</td>
</tr>
<tr>
<td>5 (\cdot)</td>
<td></td>
<td>5</td>
<td>0.128</td>
<td>8.0991</td>
<td>0.122</td>
</tr>
<tr>
<td>6 (\cdot)</td>
<td></td>
<td>6</td>
<td>0.068</td>
<td>11.025</td>
<td>0.088</td>
</tr>
<tr>
<td>7 (\cdot)</td>
<td></td>
<td>7</td>
<td>0.005</td>
<td>13.139</td>
<td>0.069</td>
</tr>
<tr>
<td>8 (\cdot)</td>
<td></td>
<td>8</td>
<td>0.071</td>
<td>15.671</td>
<td>0.047</td>
</tr>
<tr>
<td>9 (\cdot)</td>
<td></td>
<td>9</td>
<td>0.076</td>
<td>18.585</td>
<td>0.029</td>
</tr>
<tr>
<td>10 (\cdot)</td>
<td></td>
<td>10</td>
<td>-0.064</td>
<td>20.641</td>
<td>0.024</td>
</tr>
<tr>
<td>11 (\cdot)</td>
<td></td>
<td>11</td>
<td>0.032</td>
<td>21.155</td>
<td>0.032</td>
</tr>
<tr>
<td>12 (\cdot)</td>
<td></td>
<td>12</td>
<td>-0.036</td>
<td>21.802</td>
<td>0.040</td>
</tr>
<tr>
<td>13 (\cdot)</td>
<td></td>
<td>13</td>
<td>0.045</td>
<td>22.818</td>
<td>0.044</td>
</tr>
<tr>
<td>14 (\cdot)</td>
<td></td>
<td>14</td>
<td>0.025</td>
<td>23.140</td>
<td>0.058</td>
</tr>
<tr>
<td>15 (\cdot)</td>
<td></td>
<td>15</td>
<td>-0.026</td>
<td>23.473</td>
<td>0.075</td>
</tr>
<tr>
<td>16 (\cdot)</td>
<td></td>
<td>16</td>
<td>-0.042</td>
<td>24.348</td>
<td>0.082</td>
</tr>
<tr>
<td>17 (\cdot)</td>
<td></td>
<td>17</td>
<td>-0.042</td>
<td>25.256</td>
<td>0.089</td>
</tr>
<tr>
<td>18 (\cdot)</td>
<td></td>
<td>18</td>
<td>0.019</td>
<td>25.433</td>
<td>0.113</td>
</tr>
<tr>
<td>19 (\cdot)</td>
<td></td>
<td>19</td>
<td>-0.029</td>
<td>25.873</td>
<td>0.134</td>
</tr>
<tr>
<td>20 (\cdot)</td>
<td></td>
<td>20</td>
<td>-0.010</td>
<td>25.928</td>
<td>0.160</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\cdot)</td>
<td></td>
<td>1</td>
<td>0.167</td>
<td>0.167</td>
<td>13.732</td>
</tr>
<tr>
<td>2 (\cdot)</td>
<td></td>
<td>2</td>
<td>0.216</td>
<td>0.194</td>
<td>36.822</td>
</tr>
<tr>
<td>3 (\cdot)</td>
<td></td>
<td>3</td>
<td>0.059</td>
<td>-0.003</td>
<td>38.923</td>
</tr>
<tr>
<td>4 (\cdot)</td>
<td></td>
<td>4</td>
<td>0.321</td>
<td>0.290</td>
<td>89.518</td>
</tr>
<tr>
<td>5 (\cdot)</td>
<td></td>
<td>5</td>
<td>0.249</td>
<td>0.194</td>
<td>120.25</td>
</tr>
<tr>
<td>6 (\cdot)</td>
<td></td>
<td>6</td>
<td>0.227</td>
<td>0.091</td>
<td>145.89</td>
</tr>
<tr>
<td>7 (\cdot)</td>
<td></td>
<td>7</td>
<td>0.107</td>
<td>0.016</td>
<td>151.57</td>
</tr>
<tr>
<td>8 (\cdot)</td>
<td></td>
<td>8</td>
<td>0.050</td>
<td>-0.087</td>
<td>153.33</td>
</tr>
<tr>
<td>9 (\cdot)</td>
<td></td>
<td>9</td>
<td>0.128</td>
<td>0.004</td>
<td>161.52</td>
</tr>
<tr>
<td>10 (\cdot)</td>
<td></td>
<td>10</td>
<td>0.062</td>
<td>-0.083</td>
<td>163.48</td>
</tr>
<tr>
<td>11 (\cdot)</td>
<td></td>
<td>11</td>
<td>0.114</td>
<td>0.003</td>
<td>170.05</td>
</tr>
<tr>
<td>12 (\cdot)</td>
<td></td>
<td>12</td>
<td>-0.006</td>
<td>-0.051</td>
<td>170.06</td>
</tr>
<tr>
<td>13 (\cdot)</td>
<td></td>
<td>13</td>
<td>0.011</td>
<td>-0.049</td>
<td>170.13</td>
</tr>
<tr>
<td>14 (\cdot)</td>
<td></td>
<td>14</td>
<td>0.026</td>
<td>0.039</td>
<td>170.48</td>
</tr>
<tr>
<td>15 (\cdot)</td>
<td></td>
<td>15</td>
<td>0.004</td>
<td>-0.042</td>
<td>170.49</td>
</tr>
<tr>
<td>16 (\cdot)</td>
<td></td>
<td>16</td>
<td>-0.030</td>
<td>-0.040</td>
<td>170.96</td>
</tr>
<tr>
<td>17 (\cdot)</td>
<td></td>
<td>17</td>
<td>-0.019</td>
<td>0.013</td>
<td>171.14</td>
</tr>
<tr>
<td>18 (\cdot)</td>
<td></td>
<td>18</td>
<td>0.014</td>
<td>0.033</td>
<td>171.24</td>
</tr>
<tr>
<td>19 (\cdot)</td>
<td></td>
<td>19</td>
<td>-0.003</td>
<td>0.023</td>
<td>171.26</td>
</tr>
<tr>
<td>20 (\cdot)</td>
<td></td>
<td>20</td>
<td>-0.035</td>
<td>-0.020</td>
<td>171.89</td>
</tr>
</tbody>
</table>
Ecuación 8 Canacol

\[V_t = \varphi_0 + \varphi_1 V_{t-1} + \varphi_2 V_{t-2} + \varphi_3 V_{t-3} + \varphi_4 R_t^2 + \varepsilon_t \quad (8) \]

\[h_t = \omega_0 + \omega_1 \varepsilon_{t-1}^2 + \omega_2 h_{t-1} \]

Correlograma de los residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.060</td>
<td>0.060</td>
<td>1.7970 0.180</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.027</td>
<td>0.023</td>
<td>2.1436 0.342</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0.016</td>
<td>0.013</td>
<td>2.2757 0.517</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>-0.001</td>
<td>-0.004</td>
<td>2.2705 0.685</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0.101</td>
<td>0.101</td>
<td>7.3649 0.195</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>0.062</td>
<td>0.051</td>
<td>9.2652 0.159</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>0.091</td>
<td>0.082</td>
<td>13.431 0.062</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>0.101</td>
<td>0.089</td>
<td>18.553 0.018</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td>0.067</td>
<td>0.057</td>
<td>20.806 0.014</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>-0.013</td>
<td>-0.003</td>
<td>20.891 0.022</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11</td>
<td>0.008</td>
<td>0.008</td>
<td>20.921 0.034</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12</td>
<td>-0.017</td>
<td>-0.037</td>
<td>21.055 0.049</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13</td>
<td>0.030</td>
<td>0.007</td>
<td>21.531 0.003</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0.032</td>
<td>0.001</td>
<td>22.039 0.078</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15</td>
<td>-0.002</td>
<td>-0.021</td>
<td>22.040 0.107</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
<td>0.019</td>
<td>0.001</td>
<td>22.216 0.136</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>17</td>
<td>-0.050</td>
<td>-0.055</td>
<td>23.507 0.133</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>18</td>
<td>0.040</td>
<td>0.046</td>
<td>24.334 0.144</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>19</td>
<td>0.018</td>
<td>0.018</td>
<td>24.506 0.177</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>20</td>
<td>0.009</td>
<td>0.010</td>
<td>24.546 0.219</td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-0.016</td>
<td>-0.016</td>
<td>0.1216 0.727</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-0.020</td>
<td>-0.021</td>
<td>0.3269 0.849</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-0.037</td>
<td>-0.038</td>
<td>1.0000 0.801</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>-0.001</td>
<td>-0.003</td>
<td>1.0009 0.910</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0.026</td>
<td>0.025</td>
<td>1.3474 0.930</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>0.008</td>
<td>0.007</td>
<td>1.3761 0.967</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>0.028</td>
<td>0.027</td>
<td>1.7151 0.974</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>-0.007</td>
<td>-0.004</td>
<td>1.7430 0.988</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td>0.085</td>
<td>0.087</td>
<td>5.3914 0.800</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>-0.053</td>
<td>-0.050</td>
<td>6.8017 0.744</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11</td>
<td>-0.003</td>
<td>-0.002</td>
<td>6.8075 0.814</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12</td>
<td>-0.063</td>
<td>-0.061</td>
<td>8.7951 0.720</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13</td>
<td>-0.038</td>
<td>-0.044</td>
<td>9.5273 0.732</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14</td>
<td>-0.016</td>
<td>-0.026</td>
<td>9.6562 0.787</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15</td>
<td>-0.024</td>
<td>-0.030</td>
<td>9.9548 0.823</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
<td>0.024</td>
<td>0.016</td>
<td>10.254 0.853</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>17</td>
<td>-0.034</td>
<td>-0.029</td>
<td>10.327 0.865</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>18</td>
<td>0.075</td>
<td>0.071</td>
<td>13.369 0.750</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>19</td>
<td>-0.025</td>
<td>-0.009</td>
<td>13.999 0.784</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>20</td>
<td>-0.047</td>
<td>-0.045</td>
<td>15.150 0.768</td>
</tr>
</tbody>
</table>
Ecuación 11 Canacol

\[R_{l,t} = C_0 \cdot i + C_{1,i} \cdot R_{l,t-1} + C_{2,i} \cdot V_{l,t-1} \cdot R_{l,t-1} + \varepsilon_{l,t} \quad (11) \]

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.053</td>
<td>0.053</td>
<td>1.4053</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.039</td>
<td>0.037</td>
<td>2.1711</td>
<td>0.338</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.021</td>
<td>-0.025</td>
<td>2.3965</td>
<td>0.494</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.048</td>
<td>0.049</td>
<td>3.5336</td>
<td>0.473</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.100</td>
<td>0.097</td>
<td>8.4762</td>
<td>0.132</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.016</td>
<td>0.002</td>
<td>8.6037</td>
<td>0.197</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.012</td>
<td>0.005</td>
<td>8.6787</td>
<td>0.277</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.072</td>
<td>0.075</td>
<td>11.287</td>
<td>0.186</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-0.020</td>
<td>-0.037</td>
<td>11.479</td>
<td>0.244</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.044</td>
<td>-0.059</td>
<td>12.468</td>
<td>0.255</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.028</td>
<td>0.039</td>
<td>12.961</td>
<td>0.303</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-0.087</td>
<td>-0.099</td>
<td>16.706</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.023</td>
<td>0.015</td>
<td>16.979</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-0.032</td>
<td>-0.015</td>
<td>17.511</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-0.027</td>
<td>-0.028</td>
<td>17.894</td>
<td>0.268</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-0.007</td>
<td>-0.004</td>
<td>17.920</td>
<td>0.329</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.014</td>
<td>0.038</td>
<td>18.021</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.033</td>
<td>0.036</td>
<td>18.590</td>
<td>0.417</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.055</td>
<td>0.052</td>
<td>20.123</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-0.011</td>
<td>0.003</td>
<td>20.185</td>
<td>0.446</td>
<td></td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.114</td>
<td>0.114</td>
<td>6.4217</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.106</td>
<td>0.095</td>
<td>12.027</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.044</td>
<td>0.022</td>
<td>12.978</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.063</td>
<td>0.047</td>
<td>14.959</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.024</td>
<td>0.006</td>
<td>15.237</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.098</td>
<td>0.086</td>
<td>20.070</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.043</td>
<td>0.019</td>
<td>20.975</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-0.019</td>
<td>-0.047</td>
<td>21.163</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-0.040</td>
<td>-0.047</td>
<td>21.992</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.036</td>
<td>-0.033</td>
<td>22.598</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-0.004</td>
<td>0.008</td>
<td>22.606</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.003</td>
<td>0.006</td>
<td>22.609</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-0.024</td>
<td>-0.025</td>
<td>22.898</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-0.026</td>
<td>-0.014</td>
<td>23.244</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-0.016</td>
<td>0.003</td>
<td>23.367</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-0.006</td>
<td>0.009</td>
<td>23.384</td>
<td>0.104</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-0.016</td>
<td>-0.012</td>
<td>23.511</td>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-0.048</td>
<td>-0.050</td>
<td>24.672</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-0.033</td>
<td>-0.020</td>
<td>25.224</td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-0.050</td>
<td>-0.032</td>
<td>26.488</td>
<td>0.150</td>
<td></td>
</tr>
</tbody>
</table>
Ecuación 12 Canacol

\[R_{i,t} = C_{0,i} + C_{1,i} \cdot R_{i,t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{i,t-1} + \varepsilon_{i,t}, \quad (12) \]

\[h_t = \omega_0 + \omega_1 \varepsilon_{t-1}^2 + \omega_2 h_{t-1} \]

Correlograma de los residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.053</td>
<td>0.053</td>
<td>1.4053</td>
<td>0.236</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.039</td>
<td>0.037</td>
<td>2.1711</td>
<td>0.338</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-0.021</td>
<td>-0.025</td>
<td>2.3965</td>
<td>0.494</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.048</td>
<td>0.049</td>
<td>3.9386</td>
<td>0.473</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.100</td>
<td>0.097</td>
<td>8.4762</td>
<td>0.132</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.016</td>
<td>0.002</td>
<td>8.6037</td>
<td>0.197</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.012</td>
<td>0.006</td>
<td>8.6787</td>
<td>0.277</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.002</td>
<td>0.005</td>
<td>11.297</td>
<td>0.186</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-0.020</td>
<td>-0.037</td>
<td>11.479</td>
<td>0.244</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-0.044</td>
<td>-0.059</td>
<td>12.468</td>
<td>0.255</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.028</td>
<td>0.039</td>
<td>12.861</td>
<td>0.303</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>-0.087</td>
<td>-0.099</td>
<td>16.706</td>
<td>0.161</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.023</td>
<td>0.015</td>
<td>16.979</td>
<td>0.200</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-0.032</td>
<td>-0.016</td>
<td>17.511</td>
<td>0.230</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-0.027</td>
<td>-0.028</td>
<td>17.894</td>
<td>0.268</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-0.007</td>
<td>-0.004</td>
<td>17.920</td>
<td>0.329</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.014</td>
<td>0.038</td>
<td>18.021</td>
<td>0.387</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0.033</td>
<td>0.036</td>
<td>18.590</td>
<td>0.417</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0.055</td>
<td>0.052</td>
<td>20.123</td>
<td>0.387</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>-0.011</td>
<td>-0.003</td>
<td>20.185</td>
<td>0.446</td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-0.011</td>
<td>-0.011</td>
<td>0.0550</td>
<td>0.815</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-0.014</td>
<td>-0.014</td>
<td>0.1545</td>
<td>0.926</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-0.020</td>
<td>-0.021</td>
<td>0.3580</td>
<td>0.949</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-0.012</td>
<td>-0.013</td>
<td>0.4287</td>
<td>0.980</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.006</td>
<td>0.005</td>
<td>0.4445</td>
<td>0.994</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.041</td>
<td>0.041</td>
<td>1.3017</td>
<td>0.972</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.015</td>
<td>0.015</td>
<td>1.4103</td>
<td>0.085</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-0.019</td>
<td>-0.017</td>
<td>1.5893</td>
<td>0.991</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-0.035</td>
<td>-0.033</td>
<td>2.1942</td>
<td>0.888</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-0.032</td>
<td>-0.031</td>
<td>2.6949</td>
<td>0.888</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-0.034</td>
<td>-0.037</td>
<td>3.2802</td>
<td>0.886</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.010</td>
<td>0.004</td>
<td>3.3264</td>
<td>0.933</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-0.005</td>
<td>-0.009</td>
<td>3.3399</td>
<td>0.996</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-0.022</td>
<td>-0.022</td>
<td>3.8088</td>
<td>0.998</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.003</td>
<td>0.005</td>
<td>3.8548</td>
<td>0.999</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-0.014</td>
<td>-0.011</td>
<td>3.8641</td>
<td>0.999</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>-0.013</td>
<td>-0.012</td>
<td>3.7720</td>
<td>1.000</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0.023</td>
<td>0.025</td>
<td>4.0485</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>-0.033</td>
<td>-0.037</td>
<td>4.5953</td>
<td>1.000</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>-0.029</td>
<td>-0.033</td>
<td>5.0378</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Ecuación 5 Pacific Rubiales

\[R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \varepsilon_t \] \hspace{1cm} (5)

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>-0.005</td>
<td>-0.005</td>
<td>0.0129</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0.057</td>
<td>0.057</td>
<td>1.6071</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>-0.047</td>
<td>-0.046</td>
<td>2.6853</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>-0.001</td>
<td>-0.004</td>
<td>2.6855</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>0.009</td>
<td>0.014</td>
<td>2.7238</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>-0.034</td>
<td>-0.036</td>
<td>3.3108</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>-0.074</td>
<td>-0.075</td>
<td>6.0656</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>0.001</td>
<td>0.005</td>
<td>6.0651</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>-0.038</td>
<td>-0.033</td>
<td>6.7830</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>-0.021</td>
<td>-0.030</td>
<td>7.0027</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>0.096</td>
<td>0.102</td>
<td>11.662</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>-0.102</td>
<td>-0.104</td>
<td>16.893</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>0.055</td>
<td>0.053</td>
<td>18.438</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>-0.082</td>
<td>-0.067</td>
<td>21.509</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>0.068</td>
<td>0.055</td>
<td>24.154</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>-0.005</td>
<td>-0.007</td>
<td>26.280</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>0.053</td>
<td>0.053</td>
<td>27.740</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>-0.087</td>
<td>-0.078</td>
<td>31.597</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>0.029</td>
<td>0.012</td>
<td>32.020</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>-0.030</td>
<td>-0.015</td>
<td>32.500</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0.097</td>
<td>0.097</td>
<td>4.0806</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0.144</td>
<td>0.135</td>
<td>14.894</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>0.134</td>
<td>0.112</td>
<td>23.822</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>0.064</td>
<td>0.016</td>
<td>25.267</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>0.049</td>
<td>0.011</td>
<td>26.446</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>-0.001</td>
<td>-0.030</td>
<td>26.447</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>0.056</td>
<td>0.045</td>
<td>28.034</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>0.010</td>
<td>-0.001</td>
<td>28.085</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>0.036</td>
<td>0.027</td>
<td>28.732</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>0.077</td>
<td>0.003</td>
<td>31.083</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>0.031</td>
<td>0.012</td>
<td>32.168</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>0.107</td>
<td>0.081</td>
<td>37.925</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>0.061</td>
<td>0.029</td>
<td>39.818</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>0.026</td>
<td>-0.016</td>
<td>40.150</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>0.013</td>
<td>-0.024</td>
<td>40.240</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>0.064</td>
<td>0.051</td>
<td>42.342</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>-0.005</td>
<td>-0.024</td>
<td>42.354</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>-0.002</td>
<td>-0.012</td>
<td>42.367</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>0.034</td>
<td>0.020</td>
<td>42.952</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>0.069</td>
<td>0.065</td>
<td>45.406</td>
</tr>
</tbody>
</table>
Ecuación 6 Pacific Rubiales

\[R_t = \alpha_0 + \alpha_1 V_t + \alpha_2 V_{t-1} + \alpha_3 R_{t-1} + \varepsilon_t \quad (6) \]

\[h_t = \omega_0 + \omega_1 \varepsilon_{t-1}^2 + \omega_2 h_{t-1} \]

Correlograma residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0.007</td>
<td>0.007</td>
<td>0.0203</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0.060</td>
<td>0.060</td>
<td>1.8217</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>-0.007</td>
<td>-0.008</td>
<td>1.8438</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>0.000</td>
<td>-0.003</td>
<td>1.8438</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>0.014</td>
<td>0.015</td>
<td>1.9439</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>-0.022</td>
<td>-0.022</td>
<td>2.1779</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>-0.054</td>
<td>-0.056</td>
<td>3.6391</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>0.001</td>
<td>0.005</td>
<td>3.6401</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>-0.044</td>
<td>-0.038</td>
<td>4.6210</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>-0.002</td>
<td>-0.003</td>
<td>4.6234</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>0.086</td>
<td>0.103</td>
<td>9.2934</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>-0.092</td>
<td>-0.095</td>
<td>13.605</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>0.038</td>
<td>0.026</td>
<td>14.320</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>-0.075</td>
<td>-0.066</td>
<td>17.209</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>0.008</td>
<td>0.005</td>
<td>19.508</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>-0.029</td>
<td>-0.032</td>
<td>20.010</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>0.031</td>
<td>0.033</td>
<td>20.497</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>-0.059</td>
<td>-0.065</td>
<td>22.279</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>0.020</td>
<td>0.013</td>
<td>22.489</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>-0.008</td>
<td>0.004</td>
<td>22.522</td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>-0.015</td>
<td>-0.015</td>
<td>0.1041</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0.019</td>
<td>0.019</td>
<td>0.2851</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>0.020</td>
<td>0.020</td>
<td>0.4757</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>-0.035</td>
<td>-0.035</td>
<td>1.0993</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>-0.019</td>
<td>-0.021</td>
<td>1.2876</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>-0.031</td>
<td>-0.031</td>
<td>1.7760</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>-0.022</td>
<td>-0.021</td>
<td>2.0238</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>-0.008</td>
<td>-0.008</td>
<td>2.0551</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>0.003</td>
<td>0.003</td>
<td>2.0592</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>-0.009</td>
<td>-0.011</td>
<td>2.1010</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>0.019</td>
<td>0.016</td>
<td>2.2889</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>0.035</td>
<td>0.033</td>
<td>2.9013</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>0.018</td>
<td>0.018</td>
<td>3.0705</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>-0.010</td>
<td>-0.013</td>
<td>3.1220</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>-0.026</td>
<td>-0.028</td>
<td>3.4602</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>0.016</td>
<td>0.018</td>
<td>3.5950</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>-0.022</td>
<td>-0.017</td>
<td>3.6417</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>-0.019</td>
<td>-0.017</td>
<td>4.0343</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>0.016</td>
<td>0.017</td>
<td>4.1737</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>0.008</td>
<td>0.011</td>
<td>4.2090</td>
</tr>
</tbody>
</table>
Ecuación 7 Pacific Rubiales

\[V_t = \gamma_0 + \gamma_1 V_{t-1} + \gamma_2 V_{t-2} + \gamma_3 V_{t-3} + \gamma_4 R_t^2 + \varepsilon_t \]

(7)

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-0.120</td>
<td>-0.120</td>
<td>7.7990</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.006</td>
<td>-0.023</td>
<td>7.8195</td>
<td>0.020</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.052</td>
<td>0.049</td>
<td>9.1640</td>
<td>0.027</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-0.068</td>
<td>-0.057</td>
<td>11.485</td>
<td>0.022</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.033</td>
<td>0.019</td>
<td>12.040</td>
<td>0.034</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-0.023</td>
<td>-0.021</td>
<td>12.299</td>
<td>0.056</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.020</td>
<td>0.022</td>
<td>12.502</td>
<td>0.085</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-0.014</td>
<td>-0.010</td>
<td>12.602</td>
<td>0.120</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.044</td>
<td>0.047</td>
<td>13.502</td>
<td>0.138</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.080</td>
<td>0.087</td>
<td>16.753</td>
<td>0.080</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-0.059</td>
<td>-0.033</td>
<td>18.474</td>
<td>0.071</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.043</td>
<td>0.027</td>
<td>19.398</td>
<td>0.080</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-0.019</td>
<td>-0.013</td>
<td>19.574</td>
<td>0.105</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0.053</td>
<td>0.063</td>
<td>20.973</td>
<td>0.102</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-0.042</td>
<td>-0.041</td>
<td>21.882</td>
<td>0.111</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-0.015</td>
<td>-0.015</td>
<td>21.996</td>
<td>0.143</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.035</td>
<td>0.019</td>
<td>22.633</td>
<td>0.162</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>-0.020</td>
<td>-0.000</td>
<td>22.830</td>
<td>0.197</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>-0.009</td>
<td>-0.029</td>
<td>22.873</td>
<td>0.243</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.055</td>
<td>0.050</td>
<td>24.415</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.158</td>
<td>0.158</td>
<td>12.294</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.096</td>
<td>0.073</td>
<td>16.623</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.019</td>
<td>-0.007</td>
<td>17.003</td>
<td>0.001</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-0.002</td>
<td>-0.011</td>
<td>17.005</td>
<td>0.002</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-0.009</td>
<td>-0.008</td>
<td>17.046</td>
<td>0.004</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-0.014</td>
<td>-0.010</td>
<td>17.142</td>
<td>0.009</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.000</td>
<td>0.005</td>
<td>17.142</td>
<td>0.017</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.023</td>
<td>0.025</td>
<td>17.415</td>
<td>0.026</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-0.009</td>
<td>-0.017</td>
<td>17.456</td>
<td>0.042</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.012</td>
<td>0.012</td>
<td>17.531</td>
<td>0.063</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.014</td>
<td>-0.010</td>
<td>17.625</td>
<td>0.081</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.002</td>
<td>0.005</td>
<td>17.627</td>
<td>0.127</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-0.008</td>
<td>-0.007</td>
<td>17.661</td>
<td>0.171</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0.004</td>
<td>0.002</td>
<td>17.670</td>
<td>0.222</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.004</td>
<td>0.005</td>
<td>17.677</td>
<td>0.280</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0.014</td>
<td>0.014</td>
<td>17.780</td>
<td>0.337</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.012</td>
<td>-0.017</td>
<td>17.848</td>
<td>0.396</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>-0.012</td>
<td>-0.011</td>
<td>17.921</td>
<td>0.461</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>-0.005</td>
<td>0.002</td>
<td>17.932</td>
<td>0.527</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>-0.009</td>
<td>-0.007</td>
<td>17.976</td>
<td>0.589</td>
</tr>
</tbody>
</table>
Ecuación 8 Pacific Rubiales

\[V_t = \varphi_0 + \varphi_1 V_{t-1} + \varphi_2 V_{t-2} + \varphi_3 V_{t-3} + \varphi_4 R_t^2 + \varepsilon_t \quad (8) \]

\[h_t = \omega_0 + \omega_1 \varepsilon_{t-1}^2 + \omega_2 h_{t-1} \]

Correlograma de los residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 \ -0.062 \ -0.062</td>
<td>1.8885</td>
<td>0.169</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 \ -0.029 \ -0.033</td>
<td>2.2954</td>
<td>0.317</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 \ 0.022 \ 0.019</td>
<td>2.5435</td>
<td>0.467</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 \ -0.034 \ -0.033</td>
<td>3.1291</td>
<td>0.536</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 \ 0.089 \ 0.085</td>
<td>7.0088</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 \ -0.025 \ -0.017</td>
<td>7.3103</td>
<td>0.293</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 \ 0.026 \ 0.031</td>
<td>7.6541</td>
<td>0.364</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 \ -0.027 \ -0.030</td>
<td>8.0132</td>
<td>0.432</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 \ 0.073 \ 0.079</td>
<td>10.089</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 \ 0.081 \ 0.079</td>
<td>13.074</td>
<td>0.174</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 \ -0.051 \ -0.031</td>
<td>15.287</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 \ 0.035 \ 0.023</td>
<td>15.305</td>
<td>0.196</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 \ -0.002 \ 0.005</td>
<td>15.907</td>
<td>0.254</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 \ 0.063 \ 0.059</td>
<td>17.340</td>
<td>0.210</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 \ -0.019 \ -0.025</td>
<td>18.128</td>
<td>0.266</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 \ -0.044 \ -0.035</td>
<td>19.102</td>
<td>0.263</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 \ 0.017 \ 0.002</td>
<td>19.257</td>
<td>0.314</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 \ 0.002 \ 0.005</td>
<td>19.258</td>
<td>0.376</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 \ 0.036 \ 0.012</td>
<td>19.903</td>
<td>0.400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 \ 0.053 \ 0.062</td>
<td>21.358</td>
<td>0.376</td>
<td></td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 \ 0.114 \ 0.114</td>
<td>6.4160</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 \ -0.029 \ -0.042</td>
<td>6.8200</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 \ 0.066 \ 0.003</td>
<td>6.8353</td>
<td>0.077</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 \ 0.014 \ 0.013</td>
<td>6.9263</td>
<td>0.140</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 \ -0.031 \ -0.035</td>
<td>7.4102</td>
<td>0.192</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 \ -0.024 \ -0.015</td>
<td>7.6947</td>
<td>0.261</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 \ 0.043 \ 0.045</td>
<td>8.6073</td>
<td>0.282</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 \ 0.018 \ 0.006</td>
<td>8.7882</td>
<td>0.362</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 \ -0.023 \ -0.022</td>
<td>9.0217</td>
<td>0.435</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 \ 0.030 \ 0.037</td>
<td>9.4775</td>
<td>0.487</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 \ 0.005 \ 0.007</td>
<td>9.4892</td>
<td>0.577</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 \ -0.015 \ -0.011</td>
<td>9.5977</td>
<td>0.651</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 \ 0.034 \ 0.042</td>
<td>10.193</td>
<td>0.678</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 \ -0.026 \ -0.041</td>
<td>10.539</td>
<td>0.722</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 \ 0.014 \ 0.024</td>
<td>10.635</td>
<td>0.778</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 \ 0.012 \ 0.010</td>
<td>10.711</td>
<td>0.827</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 \ -0.006 \ -0.013</td>
<td>10.728</td>
<td>0.870</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 \ -0.006 \ -0.002</td>
<td>10.748</td>
<td>0.905</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 \ -0.015 \ -0.012</td>
<td>10.864</td>
<td>0.928</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 \ 0.016 \ 0.013</td>
<td>10.987</td>
<td>0.947</td>
<td></td>
</tr>
</tbody>
</table>
Ecuación 11 Pacific Rubiales

\[R_{i,t} = C_{0,i} + C_{1,i} \cdot R_{t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{t-1} + \varepsilon_{i,t}, \quad (11) \]

Correlograma de los residuos

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0011</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.059</td>
<td>0.059</td>
<td>1.7045</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-0.036</td>
<td>-0.037</td>
<td>2.3610</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0.007</td>
<td>0.004</td>
<td>2.3038</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0.020</td>
<td>0.024</td>
<td>2.5791</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>-0.028</td>
<td>-0.030</td>
<td>2.8629</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>-0.006</td>
<td>-0.008</td>
<td>5.1233</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>0.005</td>
<td>0.011</td>
<td>5.1372</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td>-0.052</td>
<td>-0.047</td>
<td>6.5198</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>-0.023</td>
<td>-0.029</td>
<td>6.7778</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11</td>
<td>0.004</td>
<td>0.104</td>
<td>11.207</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12</td>
<td>-0.119</td>
<td>-0.121</td>
<td>10.305</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13</td>
<td>0.042</td>
<td>0.288</td>
<td>19.192</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14</td>
<td>-0.001</td>
<td>-0.073</td>
<td>23.418</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15</td>
<td>0.058</td>
<td>0.045</td>
<td>25.103</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
<td>-0.066</td>
<td>-0.070</td>
<td>27.294</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>17</td>
<td>0.053</td>
<td>0.057</td>
<td>28.715</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>18</td>
<td>-0.083</td>
<td>-0.078</td>
<td>32.238</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>19</td>
<td>0.028</td>
<td>0.010</td>
<td>32.647</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>20</td>
<td>-0.026</td>
<td>-0.003</td>
<td>32.982</td>
</tr>
</tbody>
</table>

Correlograma de los residuos al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.125</td>
<td>0.125</td>
<td>7.6933</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.164</td>
<td>0.150</td>
<td>29.940</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0.128</td>
<td>0.096</td>
<td>29.104</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0.050</td>
<td>0.004</td>
<td>30.359</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0.039</td>
<td>0.000</td>
<td>31.111</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>-0.006</td>
<td>-0.031</td>
<td>31.128</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>0.041</td>
<td>0.035</td>
<td>31.984</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>0.007</td>
<td>0.002</td>
<td>32.011</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td>0.040</td>
<td>0.035</td>
<td>32.833</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>0.066</td>
<td>0.053</td>
<td>35.000</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11</td>
<td>0.042</td>
<td>0.020</td>
<td>35.883</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12</td>
<td>0.110</td>
<td>0.083</td>
<td>42.006</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13</td>
<td>0.059</td>
<td>0.022</td>
<td>43.778</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14</td>
<td>0.021</td>
<td>-0.025</td>
<td>44.005</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15</td>
<td>0.019</td>
<td>-0.014</td>
<td>44.186</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
<td>0.074</td>
<td>0.066</td>
<td>47.008</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>17</td>
<td>-0.014</td>
<td>-0.033</td>
<td>47.105</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>18</td>
<td>-0.010</td>
<td>-0.024</td>
<td>47.153</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>19</td>
<td>0.022</td>
<td>0.013</td>
<td>47.407</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>20</td>
<td>0.068</td>
<td>0.071</td>
<td>49.759</td>
</tr>
</tbody>
</table>
Ecuación 12 Pacific Rubiales

\[R_{i,t} = C_{0,i} + C_{1,i} \cdot R_{i,t-1} + C_{2,i} \cdot V_{i,t-1} \cdot R_{i,t-1} + \varepsilon_{i,t}, \quad (12) \]

\[h_t = \omega_0 + \omega_1 \varepsilon^2_{t-1} + \omega_2 h_{t-1} \]

Correlograma de los residuos estandarizados

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.014</td>
<td>0.014</td>
<td>0.1012</td>
<td>0.750</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.064</td>
<td>0.064</td>
<td>2.1589</td>
<td>0.340</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-0.003</td>
<td>-0.005</td>
<td>2.1026</td>
<td>0.539</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.004</td>
<td>-0.000</td>
<td>2.1703</td>
<td>0.704</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.016</td>
<td>0.016</td>
<td>2.2929</td>
<td>0.897</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-0.025</td>
<td>-0.025</td>
<td>2.6138</td>
<td>0.856</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-0.049</td>
<td>-0.051</td>
<td>3.8306</td>
<td>0.799</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.002</td>
<td>0.007</td>
<td>3.8323</td>
<td>0.872</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>-0.052</td>
<td>-0.047</td>
<td>5.2153</td>
<td>0.915</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-0.003</td>
<td>-0.003</td>
<td>5.2190</td>
<td>0.876</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.095</td>
<td>0.103</td>
<td>9.7475</td>
<td>0.553</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-0.099</td>
<td>-0.103</td>
<td>14.096</td>
<td>0.259</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.029</td>
<td>0.018</td>
<td>15.133</td>
<td>0.299</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>-0.079</td>
<td>-0.068</td>
<td>18.306</td>
<td>0.193</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0.064</td>
<td>0.061</td>
<td>20.358</td>
<td>0.159</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>-0.029</td>
<td>-0.032</td>
<td>20.799</td>
<td>0.186</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>0.027</td>
<td>0.031</td>
<td>21.184</td>
<td>0.218</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>-0.056</td>
<td>-0.054</td>
<td>22.732</td>
<td>0.201</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>0.021</td>
<td>0.014</td>
<td>22.952</td>
<td>0.239</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-0.005</td>
<td>0.003</td>
<td>22.965</td>
<td>0.290</td>
</tr>
</tbody>
</table>

Correlograma de los residuos estandarizados al cuadrado

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0007</td>
<td>0.979</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.017</td>
<td>0.017</td>
<td>0.1371</td>
<td>0.934</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.011</td>
<td>0.011</td>
<td>0.2004</td>
<td>0.978</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-0.036</td>
<td>-0.035</td>
<td>0.6406</td>
<td>0.933</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-0.022</td>
<td>-0.023</td>
<td>1.0919</td>
<td>0.955</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-0.037</td>
<td>-0.035</td>
<td>1.7656</td>
<td>0.940</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-0.035</td>
<td>-0.034</td>
<td>2.3862</td>
<td>0.935</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-0.006</td>
<td>-0.006</td>
<td>2.4065</td>
<td>0.986</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.004</td>
<td>0.005</td>
<td>2.4157</td>
<td>0.983</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-0.012</td>
<td>-0.014</td>
<td>2.4851</td>
<td>0.991</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.028</td>
<td>0.024</td>
<td>2.8882</td>
<td>0.992</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.036</td>
<td>0.033</td>
<td>3.5408</td>
<td>0.990</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.017</td>
<td>0.014</td>
<td>3.6868</td>
<td>0.994</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>-0.015</td>
<td>-0.019</td>
<td>3.7058</td>
<td>0.997</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>-0.024</td>
<td>-0.025</td>
<td>4.0969</td>
<td>0.997</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.025</td>
<td>0.028</td>
<td>4.4168</td>
<td>0.998</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>-0.028</td>
<td>-0.024</td>
<td>4.6222</td>
<td>0.988</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>-0.025</td>
<td>-0.022</td>
<td>5.1518</td>
<td>0.999</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>0.007</td>
<td>0.008</td>
<td>5.1736</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0.011</td>
<td>0.013</td>
<td>5.2376</td>
<td>1.000</td>
</tr>
</tbody>
</table>