Recent Submissions

  • Introducción a la teoría geométrica de groups 

    Rodríguez Quinche, Juan Felipe (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2020-01-07)
    El propósito de este documento es introducir conceptos de un área de las matemáticas conocida como teoría geométrica de grupos que desarrolla el estudio de grupos finitamente generados, explorando la conexión entre las ...
  • La paradoja de Banach-Tarski y teoría de grupos 

    Ariza Sánchez, David Leonardo (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2019-02-15)
    El propósito de este trabajo de grado será dar una introducción a la teoría de grupos amenables. En el primer capítulo se estudiará la paradoja de Banach-Tarski, que más adelante se volvería en el ejemplo pionero de lo ...
  • The Riemann Zeta Function 

    Carrillo Santana, Sebastián (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2019-11-15)
    El propósito de este trabajo de grado es dar una breve introducción a la función Zeta de Riemann, explorando sus principales propiedades como lo son su continuación analítica, fórmula de reflexión y estudiar los ceros de ...
  • Eigenvalues of a Hessenberg-Toeplitz matrix 

    Gasca Arango, Juanita (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2019-05-20)
    Una matriz de Hessenberg Toeplitz es un tipo especial de matriz cuadrada que es “casi” triangular, estás matriz tiene ceros en las entradas sobre la primera superdiagonal, cada diagonal descendente de derecha a izquierda ...
  • Funciones multisimétricas y politopos de transporte 

    Sierra Vargas, Jhoan Sebastian (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2019-05-05)
    Los politopos son objetos combinatorios presentes en diversas ramas de las matemáticas. En este trabajo realizamos un estudio de la estructura de politopos de transporte presente en el anillo de funciones multisimétricas, ...
  • Deformation theory of Galois representations 

    Rodríguez Camargo, Juan Esteban (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2017)
    Este documento pretende exponer la teoría de deformaciones de representaciones introducida por Barry Mazur a finales de los 80’s. Adicionalmente se menciona su relación con representaciones de Galois y la prueba de Andrew ...
  • Algebrización del Teorema de Hammersley-Clifford 

    Bernal Guevara, Aura Juliana (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2015)
    Se planteará una reformulación del teorema de Hammerslye-Clifford utilizando el lenguaje del álgebra conmutativa y las variedades afines.
  • Commutative algebra and some results in algébrale geometry 

    Luque Duque, Daniel Felipe (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2016)
    Se estudian los anillos Noetherianos, variedades algebraicas afines y resultados importantes de ellos, como el Teorema de los ceros de Hilbert (Nullstellesatz), el cual nos da una correspondencia entre conjuntos algebraicos ...
  • Aritmética de cuerpos de números. Álgebra conmutativa y teoría de Galois 

    Prieto Martínez, Camila Alexandra (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2016)
    Los cuerpos de números son los objetos centrales de la teoría de números. Los posibles análogos del teorema fundamental de la aritmética en los anillos de enteros de estos cuerpos nos trasladan a pensar, ¿cómo y bajo que ...
  • Some geometric aspects of Ricci flow's role in Poincaré's Conjecture 

    Gil Gallego, Santiago (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-12-07)
    En éste trabajo se presentan brevemente algunas propiedades geométricas basic del flujo de Ricci usadas para entender el papel que jugó éste flujo en la prueba de la conjetura de Poincaré.
  • Amalgam decomposition and cohomology of the group SL_2(Z) and the Bianchi groups 

    Muñoz Ramírez, David Esteban (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-11-21)
    Este trabajo de grado contiene un par de ejemplos de cómo los grupos de cohomología de ciertos grupos de matrices se pueden calcular usando su descomposición como producto amalgamado y, la relación entre esos grupos y sus ...
  • Information Geometry applied to action classification 

    Millan Arias, Pablo Andrés (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-12-10)
    El trabajo presenta un marco unificado que le permitirá al lector comprender de una manera detallada y completa la técnica de los Vectores de Fisher que se utiliza para dar solución al problema de clasificación de actividades ...
  • Introducción al problema de los n-cuerpos en espacios de curvatura constante 

    Daza Alfonso, Sebastián Camilo (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-06-25)
    En este documento se habla de la interacción de n partículas puntuales de masas no necesariamente iguales sujetas a la ley de gravitación universal planteada por Newton. Se da una generalización del planteamiento del ...
  • Style transfer with convolutional neural networks 

    Moreno Ramírez, Luis Fernando (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-05-22)
    El objetivo principal de esta tesis es analizar un algoritmo conocido como Neural Style Transfer el cual consiste en transferir estilos artísticos de pintores reconocidos como Vincent Van Gogh, Claude Monet, entre otros ...
  • Algorithms for Lossy Compression 

    Gómez Romero, Juanita (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-05-25)
    El objetivo principal de esta tesis es proporcionar una visión general de los diferentes métodos de compresión de datos. Actualmente, la información se comparte en todo el mundo, incluso en el espacio exterior, a excelentes ...
  • Transformada de Radon y su inversión 

    Lozano Penagos, Juan Sebastián (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-05-25)
    Se introducen las coordenadas polares generalizadas y las funciones Gamma y Beta, estudiaremos las integrales y derivadas fraccionarias para posteriormente usarlas en el desarrollo de una fórmula de inversión para la ...
  • Classification of rank 1 and 2 affine homogeneous distributions on 3-manifolds 

    Devia Pinzón, Carlos Andrés (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2018-05-24)
    El trabajo presenta la clasificación de distribuciones homogéneas estrictamente afines de rango 1 y 2 en variedades de dimensión 3. El método de clasificación usado fue el Método de Reducción de Cartán.
  • Continuity of the asymptotic spectra for Toeplitz matrices 

    Castro Anaya, Laura Andrea (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2016)
    En este Trabajo de Grado, consideramos los espacios de Hilbert L^2(T) y l^2(Z), y los relacionamos mediante un isomorfismo isométrico el cual llamamos la transformada de Fourier. Es importante conocer las matrices de ...
  • Introducción al cálculo cuántico e integrales de Jackson 

    Bolaños Núñez, Sara Alejandra (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2016)
    En este trabajo se introducen los conceptos básicos del cálculo cuántico, y con la ayuda de las integrales de Feynman Jackson construimos un q-análogo para los momentos de la medida de Gauss. Estos q-análogos establecen ...
  • Producto cuántico entre funciones simétricas 

    Gnecco Heredia, Lucas (Pontificia Universidad Javeriana, Matemáticas, Facultad de Ciencias, 2016)
    Las funciones simétricas presentan resultados de interés para diversas áreas de la matemática. Una generalización de estos objetos son las funciones multi simétricas, que serán el objeto de estudio del presente trabajo. ...

View more