Estimation based on acceleration measures of an active suspension plant

View/ Open
Date
2015Authors
García Guzmán, Sara DanielaDirectors
Patiño Guevara, Diego AlejandroPublisher
Pontificia Universidad Javeriana
Faculty
Facultad de Ingeniería
Program
Maestría en Ingeniería Electrónica
Obtained title
Magíster en Ingeniería Electrónica
Type
Tesis/Trabajo de grado - Monografía - Maestría
COAR
Tesis de maestríaShare this record
Citación
Metadata
Show full item record
PDF documents
Abstract
The vehicle suspension system is responsible for comfort, safety and vehicle control. In order to positively manipulate these properties, control and estimation theory are used to adapt the system to different road conditions. This paper considers three estimation methods, which are designed to retrieve the system states using only acceleration measures: the Kalman Filter, Particle Filter and Artificial Neuronal Network. Also it considers three control methods: LQR and pole location which it minimizes, the chassis acceleration (a variable used to improve the vehicle comfort). Finally the controllers and estimators are implemented in simulation and in the real plant, using the model of the Quanser active suspension plant.
Themes
Maestría en ingeniería electrónica - Tesis y disertaciones académicasFiltración Kalman
Partículas
Google Analytics Statistics