Metodologías para el pronóstico de series de tiempo

Date
2018Publisher
Pontificia Universidad Javeriana
Faculty
Facultad de Ingeniería
Facultad de Ciencias Económicas y Administrativas
Program
Maestría en Analítica para la Inteligencia de Negocios
Obtained title
Magíster en Analítica para la Inteligencia de Negocios
Type
Tesis/Trabajo de grado - Monografía - Maestría
COAR
Tesis de maestríaShare this record
Citación
Metadata
Show full item record
PDF documents
Resumen
Los proyectos que incluyen series de tiempo son cada vez más comunes de encontrar en el entorno de la consultoría de analítica, los datos que se pueden obtener tienen cada día un mayor volumen y mayor detalle, lo que hace importante el estudio de estas y las oportunidades de mejorar tanto en tiempos de procesamiento como en la precisión del resultados. El presente proyecto busca comparar dos metodologías, la primera generando clústeres de series de tiempo y la segunda a través de un benchmark para diferentes algoritmos de pronóstico, con el fin de determinar cuál es la mejor alternativa de pronóstico en precisión y tiempo de procesamiento, para los datos entregados por Everis correspondientes a un cliente del sector Retail, con la necesidad de realizar pronósticos de las series desagregadas de las ventas por tienda para el mes de mayo; los resultados se medirán mediante el error absoluto medio (MAD), error porcentual absoluto medio (MAPE) y el error cuadrático medio (MSE). Se utilizará la metodología CRISP-DM como guía para el desarrollo de los objetivos de negocio y de minería de datos identificados.
Abstract
Projects that include time series are increasingly common to find in the analytical consulting environment, the data that can be obtained have a greater volume and greater detail every day, what makes it important to study these and the opportunities to improve both in processing times and in the accuracy of the results. The present project seeks to compare two methodologies, the first generating clusters of time series and the second through a benchmark for different forecasting algorithms, in order to determine which is the best alternative forecast in precision and processing time, for the data delivered by Everis corresponding to a client of the Retail sector, with the need to make forecasts of the disaggregated series of sales per store for the month of May; the results will be measured by the mean absolute error (MAD), mean absolute percentage error (MAPE) and the mean square error (MSE). The CRISP-DM methodology will be used as a guide for the development of business and data mning objectives identified.
Themes
Maestría en analítica para la inteligencia de negocios - Tesis y disertaciones académicasAnálisis de series de tiempo
Pronóstico de los negocios
Benchmarking (Administración)
Google Analytics Statistics