Equations over finite fields: Zeta function and Weil conjectures

View/ Open
Date
2022-11-24Authors
Neira Lopez, SantiagoDirectors
Ochoa Arango, Jesus AlonsoPublisher
Pontificia Universidad Javeriana
Faculty
Facultad de Ciencias
Program
Matemáticas
Obtained title
Matemático (a)
Type
Tesis/Trabajo de grado - Monografía - Pregrado
Share this record
Citación
Metadata
Show full item record
PDF documents
English Title
Equations over finite fields: Zeta function and Weil conjecturesResumen
This work is a review of the congruent zeta function and the Weil conjectures for non-singular
curves. We derive an equation to obtain the number of solutions of equations over finite fields
using Jacobi sums in order to compute the Zeta function for specific equations. Also, we
introduce the necessary algebraic concepts to prove the rationality and functionality of the zeta
function.
Abstract
This work is a review of the congruent zeta function and the Weil conjectures for non-singular
curves. We derive an equation to obtain the number of solutions of equations over finite fields
using Jacobi sums in order to compute the Zeta function for specific equations. Also, we
introduce the necessary algebraic concepts to prove the rationality and functionality of the zeta
function.
Keywords
Weil ConjecturesCongruent Zeta function
Equations over finite fields
Gauss sum
Jacobi sum
Nonsingular Complete Curves
Divisors
Riemann-Roch Theorem
Keywords
Weil ConjecturesCongruent Zeta function
Equations over finite fields
Gauss sum
Jacobi sum
Nonsingular Complete Curves
Divisors
Riemann-Roch Theorem
Themes
Matemáticas - Tesis y disertaciones académicasCampos finitos (Álgebra)
Ecuaciones
Procesos de Gauss
Google Analytics Statistics
Collections
- Matemáticas [72]