La Metacognición como activador el desarrollo del pensamiento matemático en el aprendizaje de la noción de variable

Date
2022-05-28Authors
Niño Becerra, Yenny RocíoDirectors
Parada Alfonso, LiliánEvaluators
Jaime Hernando, Sarmiento LozanoPublisher
Pontificia Universidad Javeriana
Faculty
Facultad de Educación
Program
Maestría en Educación
Obtained title
Magíster en Educación
Type
Tesis/Trabajo de grado - Monografía - Maestría
COAR
Tesis de maestríaShare this record
Citación
Metadata
Show full item record
PDF documents
English Title
Metacognition as an activator of the development of mathematical thinking in learning the notion of variableResumen
La metacognición está relacionada con el aprendizaje regulado y las estrategias involucradas en su desarrollo (Mateos 2001). El fortalecimiento de estas estrategias favorece el aprendizaje significativo y la capacidad de aprender a aprender. Por lo tanto, es fundamental reflexionar sobre la práctica docente y su impacto en el aprendizaje significativo. Considerando esto, la presente investigación parte de la pregunta: ¿De qué manera intervienen las estrategias metacognitivas en la resolución de problemas matemáticos para la comprensión de la noción de variable en tres estudiantes de octavo grado identificados en un nivel académico alto y medio? La investigación está guiada por el paradigma cualitativo e interpretativo y corresponde a un estudio de caso. La elección del enfoque dio lugar al diseño de la secuencia didáctica que se construyó a partir de los indicadores de Robson (2016) y traducción propia de Díaz, L (2018). La aplicación de la secuencia didáctica se realizó en tres estudiantes de octavo grado. Se pudo concluir que el uso de estrategias metacognitivas surge con mayor contundencia en situaciones de mayor grado de dificultad. Esto permite a los estudiantes abordar situaciones de manera significativa y movilizar su pensamiento
Abstract
Metacognition is related to regulated learning and the strategies involved in its development (Mateos 2001). The strengthening of these strategies favors meaningful learning and the ability to learn to learn. Thus, it is essential to reflect on teaching practice and its impact on meaningful learning. Considering this, the present research is based on the question: In what way do metacognitive strategies intervene in the resolution of mathematical problems for the understanding of the notion of variable in three eighth grade students identified in a high and medium academic level? The research is guided by the qualitative and interpretative paradigm and corresponds to a case study. The choice of the approach gave room for the design of the didactic sequence that was built based on the indicators of Robson (2016) and own translation of Diaz, L (2018). The application of the didactic sequence was carried out in three eighth grade students. It was possible to conclude that the use of metacognitive strategies emerges with greater forcefulness in situations of greater degree of difficulty. This allows students to approach situations in a meaningful way and to mobilize their thinking.
The posing of problem situations requires a reflective process about which concepts are involved, how to pose the question in a way that is meaningful to the student, how to bring it closer to its context and how to favor the development of metacognitive strategies. The situations imply a reflection on the strategies used to solve them and to recognize the concept applied.
The development of problem situations configures the trigger of cognitive and metacognitive activity, since it involves the functioning of the cognitive assembly and the strategies developed previously. On the other hand, a suggestive question generates restlessness, curiosity and mobilizes thought. Unconventional situations break out of a mechanical thinking model. This aspect favors creativity and the development of metacognitive reflection. It is important that the student leaves his comfort zone in which he repeats processes and algorithms and faces destabilizing questions that allow him to relate concepts studied in new contexts. It is essential to include the management of situations in the didactic sequences in the classroom.
The use of metacognitive strategies emerges more forcefully in situations of greater difficulty and this allows students to approach situations in a meaningful way.
These results call for teachers to allow students to take a convenient time in deciphering the proposed challenges and to express explicit questions and resolution routes that help them to effectively develop the proposed problems.
The didactic sequence proposed is a sample of the way in which the teacher can favor the development of metacognitive skills in the student. Timely questions, suggestive challenges and mediation at the right time can configure a different way of approaching mathematics. The application of concepts in situations of different contexts is important. As well as integration with other areas.
. The teacher's role in the design and implementation of strategies that can favor them from every point of view so that they can develop metacognitive strategies that allow them to learn to learn and adapt to the demands of society.
Themes
Maestría en educación - Tesis y disertaciones académicasMetacognición
Habilidades cognoscitivas
Matemáticas
Google Analytics Statistics
Collections
- Maestría en Educación [626]