Concept attribute labeling and context-aware named entity recognition in electronic health records
dc.contributor.author | Pomares-Quimbaya, Alexandra | |
dc.contributor.author | González, Rafael A. | |
dc.contributor.author | Muñoz, Óscar | |
dc.contributor.author | Garcia-Pena, A.A. | |
dc.contributor.author | Daza Rodríguez, Julián Camilo | |
dc.contributor.author | Sierra Múnera, Alejandro | |
dc.contributor.author | Labbé, Cyril | |
dc.contributor.corporatename | Pontificia Universidad Javeriana. Facultad de Medicina. Departamento de Medicina Interna. Cardiología | |
dc.contributor.corporatename | Pontificia Universidad Javeriana. Facultad de Medicina. Departamento de Medicina Interna. Medicina Interna | |
dc.contributor.javerianateacher | Garcia-Pena, A.A. | |
dc.contributor.javerianateacher | Muñoz, Óscar | |
dc.date.accessioned | 2021-09-13T13:47:20Z | |
dc.date.available | 2021-09-13T13:47:20Z | |
dc.date.created | 2020 | |
dc.description.abstractenglish | Extracting valuable knowledge from Electronic Health Records (EHR) represents a challenging task due to the presence of both structured and unstructured data, including codified fields, images and test results. Narrative text in particular contains a variety of notes which are diverse in language and detail, as well as being full of ad hoc terminology, including acronyms and jargon, which is especially challenging in non-English EHR, where there is a dearth of annotated corpora or trained case sets. This paper proposes an approach for NER and concept attribute labeling for EHR that takes into consideration the contextual words around the entity of interest to determine its sense. The approach proposes a composition method of three different NER methods, together with the analysis of the context (neighboring words) using an ensemble classification model. This contributes to disambiguate NER, as well as labeling the concept as confirmed, negated, speculative, pending or antecedent. Results show an improvement of the recall and a limited impact on precision for the NER process. | spa |
dc.description.orcid | https://orcid.org/0000-0002-3606-2102 | |
dc.description.orcid | https://orcid.org/0000-0001-5401-0018 | |
dc.format | spa | |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | http://dx.doi.org/10.4018/978-1-7998-1204-3.ch017 | spa |
dc.identifier.instname | instname:Pontificia Universidad Javeriana | spa |
dc.identifier.isbn | 9781799812043 / 9781799812050 (Electrónico) | spa |
dc.identifier.reponame | reponame:Repositorio Institucional - Pontificia Universidad Javeriana | spa |
dc.identifier.repourl | repourl:https://repository.javeriana.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/10554/57112 | |
dc.language.iso | N/A | spa |
dc.publisher | IGI Global | spa |
dc.relation.ispartofbook | Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.licence | Atribución-NoComercial 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.title | Concept attribute labeling and context-aware named entity recognition in electronic health records | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_3248 | |
dc.type.hasversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.local | Capítulo de libro | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Concept-Attribute-Labeling-and-Context-Aware-Named.pdf
- Tamaño:
- 1021.52 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Capítulo de libro
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.54 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: