Logotipo del repositorio
 

Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip

dc.contributor.advisorCocuzza, Matteospa
dc.contributor.advisorNombre por normalizar
dc.contributor.authorRosero Realpe, Mateospa
dc.contributor.evaluatorCocuzza, Matteospa
dc.contributor.evaluatorMartina, Mauriziospa
dc.contributor.evaluatorMasera, Guidospa
dc.contributor.evaluatorPiccinini, Gianlucaspa
dc.contributor.evaluatorGraziano, Mariagraziaspa
dc.date.accessioned2024-03-04T19:06:14Z
dc.date.available2024-03-04T19:06:14Z
dc.date.created2023-10-27spa
dc.description.abstractCurrently quantum computing has proven to make fast and accurate logical calculations and promises to drastically change the field of computing. One of the main limitations are the short coherence times of qubits, which precludes information storage, and the possibility of making distant communications between quantum registers that is challenging using microwave photons (these are resonant with qubit transitions). The MOCA project proposes the use of an integrated chip combining superconducting resonators with optical waveguides and cavities that converts the microwave photons to optical photons. The chip is then coupled to an ensemble of cold atoms for the long term storage of the information. In this way, the fabrication of a Radio Frequency (RF) resonator and a photonic resonator play an important role in the creation of the device. The project is part of the QuantERA programme, created to develop quantum technologies in Europe. However, the tasks to accomplish the goal are divided into 5 research groups in which experimental and theoretical physics are applied. INRIM is in charge of fabricating the RF and photonic resonators, and in my thesis I focused on developing the photonic components. The resonator consists of 3 parts: a waveguide in which the optical photons are confined, a cavity with bragg reflectors to create a resonator for efficient photon conversion and a grating to couple the signal from the waveguide to the optical fibers. The operating wavelength chosen is 760 nm. For the good confinement of the wave in the waveguide, a high refractive index material with low losses is needed. We chose Silicon Nitride (SiN), and we modified the recipe for deposition in order to increase the refractive index up to 2.4. The SiN thin films are deposited by Chemical Vapor Deposition (CVD) on a dielectric substrate (in this case, thick corning glass). We calibrated the deposition process and measured the deposition rate in order to obtain a final thickness of 200 nm, which is the thickness required for the waveguides. We optimized the final geometry for the waveguides and the gratings by means of a Finite Element Method commercial software and the obtained structures were replicated in a CAD software for Electron Beam Lithography (EBL). The lithographic process was followed by an Aluminum deposition to obtain an hard mask that could be used in a Reactive Ion Etching step to remove the exceeding Silicon Nitride. For the RIE step we optimized a recipe that approximates to a Silicon Etching recipe more than a SiN recipe, and taking into account the need of a conformal structure, a pseudo-bosch etching was used. Secondly is the grating coupler, whose parameters can be calculated considering the angle of incidence of the light into the grating and the Bragg’s condition for the proper diffraction of the light. Finite Element Method (FEM) modeling was performed to optimize the structure. Thirdly, we want to confine light in a microcavity by fabricating Distributed Bragg Reflectors (DBR) along the waveguide. In such a way, we want to increase the photon density within the cavity and enable the conversion of microwave photons radiated by the cold atom ensemble into optical ones. As an alternative route for the light confinement and manipulation, we also considered using a metasurface made of SiN nanopillars. FEM models show that such structures can sustain resonant modes with a quality factor as high as 10^5.spa
dc.description.abstractenglishCurrently quantum computing has proven to make fast and accurate logical calculations and promises to drastically change the field of computing. One of the main limitations are the short coherence times of qubits, which precludes information storage, and the possibility of making distant communications between quantum registers that is challenging using microwave photons (these are resonant with qubit transitions). The MOCA project proposes the use of an integrated chip combining superconducting resonators with optical waveguides and cavities that converts the microwave photons to optical photons. The chip is then coupled to an ensemble of cold atoms for the long term storage of the information. In this way, the fabrication of a Radio Frequency (RF) resonator and a photonic resonator play an important role in the creation of the device. The project is part of the QuantERA programme, created to develop quantum technologies in Europe. However, the tasks to accomplish the goal are divided into 5 research groups in which experimental and theoretical physics are applied. INRIM is in charge of fabricating the RF and photonic resonators, and in my thesis I focused on developing the photonic components. The resonator consists of 3 parts: a waveguide in which the optical photons are confined, a cavity with bragg reflectors to create a resonator for efficient photon conversion and a grating to couple the signal from the waveguide to the optical fibers. The operating wavelength chosen is 760 nm. For the good confinement of the wave in the waveguide, a high refractive index material with low losses is needed. We chose Silicon Nitride (SiN), and we modified the recipe for deposition in order to increase the refractive index up to 2.4. The SiN thin films are deposited by Chemical Vapor Deposition (CVD) on a dielectric substrate (in this case, thick corning glass). We calibrated the deposition process and measured the deposition rate in order to obtain a final thickness of 200 nm, which is the thickness required for the waveguides. We optimized the final geometry for the waveguides and the gratings by means of a Finite Element Method commercial software and the obtained structures were replicated in a CAD software for Electron Beam Lithography (EBL). The lithographic process was followed by an Aluminum deposition to obtain an hard mask that could be used in a Reactive Ion Etching step to remove the exceeding Silicon Nitride. For the RIE step we optimized a recipe that approximates to a Silicon Etching recipe more than a SiN recipe, and taking into account the need of a conformal structure, a pseudo-bosch etching was used. Secondly is the grating coupler, whose parameters can be calculated considering the angle of incidence of the light into the grating and the Bragg’s condition for the proper diffraction of the light. Finite Element Method (FEM) modeling was performed to optimize the structure. Thirdly, we want to confine light in a microcavity by fabricating Distributed Bragg Reflectors (DBR) along the waveguide. In such a way, we want to increase the photon density within the cavity and enable the conversion of microwave photons radiated by the cold atom ensemble into optical ones. As an alternative route for the light confinement and manipulation, we also considered using a metasurface made of SiN nanopillars. FEM models show that such structures can sustain resonant modes with a quality factor as high as 10^5.spa
dc.description.degreelevelPregrado
dc.description.degreenameIngeniero (a) Electrónico
dc.description.degreenameMagíster en Ingeniería Electrónica
dc.formatPDF
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Pontificia Universidad Javeriana
dc.identifier.reponamereponame:Repositorio Institucional - Pontificia Universidad Javeriana
dc.identifier.repourlrepourl:https://repository.javeriana.edu.co
dc.identifier.urihttp://hdl.handle.net/10554/66800
dc.language.isospa
dc.publisherPontificia Universidad Javeriana
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.programIngeniería Electrónica
dc.publisher.programMaestría en Ingeniería Electrónica
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarinfo:eu-repo/semantics/openAccess
dc.rights.licenceAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.localDe acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización. De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis o Trabajo de Grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontifica Universidad Javeriana por tales aspectos. Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor. De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAtom
dc.subjectChip
dc.subjectResonator
dc.subjectPhotonics
dc.subjectQuantum
dc.subjectWaveguide
dc.subjectGrating
dc.subjectCoupler
dc.subject.armarcIngeniería electrónica - Tesis y disertaciones académicas
dc.subject.armarcMaestría en ingeniería electrónica - Tesis y disertaciones académicas
dc.subject.armarcFotónicaspa
dc.subject.armarcOndas sísmicas - Pruebasspa
dc.subject.keywordAtom
dc.subject.keywordChip
dc.subject.keywordResonator
dc.subject.keywordPhotonics
dc.subject.keywordQuantum
dc.subject.keywordWaveguide
dc.subject.keywordGrating
dc.subject.keywordCoupler
dc.titleFabrication of an integrated optical resonator for microwave to optical conversion on an atom chipspa
dc.title.englishFabrication of an integrated optical resonator for microwave to optical conversion on an atom chipspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
attachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdf
Tamaño:
17.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento