IMPLEMENTACIÓN DE UN SISTEMA DE COMPENSACIÓN DE REACTIVOS

MIGUEL EMILIO VIVERT DEL PINO

TRABAJO DE GRADO DE PROFUNDIZACIÓN DE MAESTRÍA PARA OPTAR POR EL TITULO DE MAGISTER EN INGENIERÍA ELECTRÓNICA

DIRECTORES

- ING. RAFAEL FERNANDO DIEZ MEDINA Ph.D
- ING. DIEGO ALEJANDRO PATIÑO GUEVARA Ph.D

PONTIFICIA UNIVERSIDAD JAVERIANA
FACULTAD DE INGENIERÍA
DEPARTAMENTO DE ELECTRÓNICA
BOGOTÁ DC, 2015

PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE INGENIERÍA MAESTRÍA EN INGENIERÍA ELECTRÓNICA

RECTOR MAGNÍfICO: PADRE JORGE HUMBERTO PELÁEZ PIEDRAHITA S.J DECANO: ING. JORGE LUIS SÁNCHEZ TÉLLEZ M.Sc

DIRECTOR DE MAESTRÍA: ING. CESAR LEONARDO NIÑO BARRERA Ph.D DIRECTORES DE PROYECTO:

- ING. RAFAEL FERNANDO DIEZ MEDINA Ph.D
- ING. DIEGO ALEJANDRO PATIÑO GUEVARA Ph.D

ARTículo 23 DE LA RESOLUCIÓN No 13 DE JUNIO DE 1946

"La universidad no se hace responsable de los conceptos emitidos por sus alumnos en sus proyectos de grado.

Sólo velará porque no se duplique nada contrario al dogma y la moral católica y porque los trabajos no contengan ataques o polémicas puramente personales. Antes bien, que se vea en ellos el anhelo de buscar la verdad y la justicia".

Table of Contents

HB: H-Bridge 6
1 Introduction: 7
1.1 Objectives 8
1.1.1 General Objectives: 8
1.1.2 Specific Objectives 8
2 Theoretical Framework 8
2.1 H bridge multilevel Inverter: 9
2.1.1 Cascaded Equal Voltage Multilevel Inverter (CEMI): 9
2.1.2 Quasi-Linear Multilevel Inverter (QLMI): 10
2.1.3 Binary Hybrid Multilevel Inverter (BHMI): 10
2.1.4 Trinary Hybrid Multilevel Inverter (THMI): 11
2.1.5 Comparative Analysis of the different topologies: 11
2.2 Switching function of THMI 12
2.3 Modulation Strategies of THMI: 13
2.3.1 Step Modulation 13
2.3.2 Virtual Stage Modulation: 14
2.3.3 Hybrid Modulation: 15
2.3.4 Sub-Harmonic PWM Modulation: 15
2.3.5 Comparative analyzing of the different modulation strategies: 16
2.4 Linear Controller: 17
2.4.1 PI Controller: 17
2.5 Nonlinear Control 18
2.5.1 Lyapunov Function 18
2.5.2 Sliding Mode Control 18
3 Specifications: 19
3.1 Inputs/Outputs: 19
3.2 Structure of the system: 19
4 Design and Simulations 20
4.1 Design of gate signals: 20
4.2 Design of the switching frequency and the switching devices: 25
4.3 Design of the output filter 26
4.4 Design of the inputs filters of high and low H bridge converters. 27
4.5 Simulation of the system in open loop with a RC load. 29
4.6 Model of the inverter with input filters 33
4.7 Model of the inverter without input filters 36
4.8 Design and simulation of the linear controller 38
4.9 Design and simulation of the nonlinear controller 41
5 Implementation: 46
5.1 Inverters with RC load in open loop. 46
5.2 Implementation of the linear control of the inverter in grid tie mode 49
5.3 Implementation of the sliding mode control. 52
6 Comparative analyses of results 55
7 Conclusions: 56
References: Error! Bookmark not defined.
Appendix:

\qquad
Error! Bookmark not defined.

LIST OF FIGURES

Figure 1-1 Block diagram of the thesis 8
Figure 2-1 H-Bridge Multilevel Inverter 9
Figure 2-2 Waveform of CEMI of 3 H -Bridge 10
Figure 2-3 Waveform of QLMI of 3 H -Bridge 10
Figure 2-4 Waveform of a BHMI of 3 H -Bridge 11
Figure 2-5 Waveform of a THMI of 3 H -Bridge 11
Figure 2-6 THMI Topology 12
Figure 2-7 Step Modulation Waveform 14
Figure 2-8 Virtual stage modulation 15
Figure 2-9 Sub-Harmonic PWM Modulation 16
Figure 2-10 PI controller Block Diagram 17
Figure 2-11 PI controller Block Diagram. 17
Figure 3-1 System Structure 20
Figure 4-1 Block Diagram to obtain l(t) 22
Figure 4-2 waveforms of carrier and sliced signal 21
Figure 4-3 PWM Sub-Harmonic modulation 23
Figure 4-4 Duties cycles 24
Figure 4-5 Converting into a common PWM 25
Figure 4-6 output voltage without in/out filters 25
Figure 4-7 inverter in open loop off grid without input filter 27
Figure 4-8 wave form of the input currents without input filter 27
Figure 4-9 Frequency analysis 28
Figure 4-10 Circuits Higher HB at 120 Hz and lower HB at 240 Hz 28
Figure 4-11 $\mathrm{Vo}(\mathrm{t})$, lo(t) 30
Figure 4-12 inverter wit RC load in open loop 31
Figure 4-13 $V_{h h}(t), V_{h 1}(t), V_{a n}(t)$ 32
Figure $4-14 \mathrm{Vh}(\mathrm{t}), \mathrm{Vl}(\mathrm{t})$ 32
Figure 4-15 average model 35
Figure 4-16 average model vs switching model 36
Figure 4-17 block diagram of average model and switching model without inputs filters 37
Figure 4-18 Average model Vs switching model without inputs filter 37
Figure 4-19 linear controller block diagram 39
Figure 4-20 Changes on phase and magnitude of Iref with linear controller. 40
Figure 4-21 zoom of Iref, lo 40
Figure 4-22 Disturbance in Vh with linear controller 41
Figure 4-23 Error in linear controller 41
Figure 4-24 43
Figure 4-25 Changes on phase and magnitude of Iref with sliding mode controller 44
Figure 4-26 zoom in lo and Iref. 44
Figure 4-27 Disturbance in Vh with Sliding mode control.... 45
Figure 4-28 Error in nonlinear control 45
Figure 5-1 Hardware of the inverter 46
Figure 5-2 $V_{a n}(t), V H_{l}(t), V H h(t)$ 47
Figure 5-3 $V_{o}(t), V_{a n}(t)$, and $I_{o}(t)$. 47
Figure 5-4 ripple current in open loop 48
Figure 5-5 linear controller with 1A peak in phase 49
Figure 5-6 linear controller with 2A peak in phase 50
Figure 5-7 Linear controller with 1,7A peak in leading phase 50
Figure $5-8$ ripple current in the unstable zone 51
Figure 5-9 ripple current with linear controller in stable zone 51
Figure 5-10 comparison between measured current vs simulated current changing Vh 52
Figure 5-11 lo(t) with reference of 1A peak in phase 52
Figure 5-12 lo(t) with reference of 2A peak in phase 53
Figure 5-13 Io(t) with reference of 2A peak and 33 degrees in lagging 53
Figure 5-14 $\operatorname{Van}(t)$, $l o(t)$ and $\operatorname{Vac}(\mathrm{t})$ with a reference of 1,5A peak and 36 degree in lagging. 54
Figure 5-15 Ripple current with nonlinear controller 54
Figure 5-16 comparison between lo simulated and lo measured 55
INDEX OF TABLE
Table 2.1 Comparative analysis of multilevel H-Bridge Inverters 12
Table 2.2 Comparative analysis of modulation strategies 17
Table 4.1 math description of inverter with input filter 34
Table 4.2 Comparative analysis of the controllers 45
Table 5.1 Power in each part of the inverter 48
Table 6.1 Comparative analysis between simulated and measured circuits 55
GLOSSARY

HB: H-Bridge
CEMI: Cascade Equal Multilevel Inverter
QLMI: Quasi-Linear Multilevel Inverter
BHMI: Binary Hybrid Multilevel Inverter
THMI: Trinary Hybrid Multilevel Inverter
DC: Direct Voltage
AC: Alternative voltage
DSP: Digital Signal Processor

1 Introduction:

Nowadays renewable energies are very popular around the world. One that is commonly used is the solar photovoltaic energy, which converts the light energy radiated by the sun into electrical energy, by means of an array of photovoltaic cells.

In faraway places the solar energy is generated to be used in an isolated mode. This means that energy storage is necessary to cover the differences between the instantaneous demanded and produced power.

In cities or big towns the solar energy is used in a grid tie mode, supplying current to the local network while the grid is working properly.

The energy produced by this array can be considered as a DC power supply. In consequence this energy needs to be converted to AC voltage for its use in standard power appliances.

Due to the needs to convert DC voltage to AC voltage, a lot of persons are working designing and studying different kinds of inverters, improving efficiency and robustness working in isolated or grid tie mode.

About the inverter in grid tie mode, these inverters can work supplying current in phase or with any phase shift. This function is called reactive power compensator. This helps to improve the Displacement Power Factor of the load in the vicinity of the inverter.

Nowadays the inverters have one or more levels. The inverters of one level needs inductors with high inductance and able to support high current, in the other hand the commons multilevel inverters are flying capacitors inverter and clamped diode inverter. Flying capacitor inverter with high number of level the control of charge and discharge of the capacitor is very complicated. In Clamped diode inverter, with high number of levels needs a lot of diodes and produce an imbalance on the DC links made by capacitors, and the inverter would be very complex to implement and control [1].

Due to these disadvantages of the commons PWM and multilevel inverters this project seeks a novel topology of a inverter to solves the disadvantages of the inverters mentioned previously.

The objective of this project is to design, simulate and implement an inverter topology to supply current to the local network. This current could be in phase, lagging or leading to the grid voltage.

The first part of the project is the study of several topologies of multilevel inverters, selecting the Trinary Hybrid Multilevel Inverter as the best choice. This is a novel multilevel inverter that has the most number of levels per H -Bridge. Then this topology is modeled and simulated in open loop, in order to verify the model and proceed with the design and simulation of a linear control and a nonlinear control. The nonlinear control is designed with Sliding mode control technique using a novel nonlinear function. Finally, the implementation of the hardware and both controls are made, in order to validate the theory. Also comparative analysis between the nonlinear control and linear control are done evaluating performance, efficiency and robustness.

The block diagram of the project is shown in Figure 1-1.

Figure 1-1 Block diagram of the thesis

1.1 Objectives

1.1.1 General Objectives:

- Design an Inverter of 200 VA at 120 Vrms of output and a total input of 200 V able to supply current to the local network on phase, lagging, or leading to reduce the electricity consumption from the local network and improve the displacement power factor.

1.1.2 Specific Objectives

- Implement a novel topology of an inverter of 200 VA at 120 Vrms of output and a total input of 200 V of input in open loop with a resistive load.
- Design and simulate one linear control and one nonlinear control to the inverter in grid tie mode and evaluate performance, transient response and disturbance response.
- Validate the two controls designed in the inverter implemented in grid tie mode and analyze and compare performance (robustness, transient response and disturbance response).

2 Theoretical Framework

This Theoretical framework deals with the previous work about H bridge multilevel inverter. It begins explaining the different kinds of multilevel H bridge inverters and then explains the different modulation strategies of this kind of inverters. This part also talks about linear and nonlinear control specially sliding mode control on inverters.
2.1 H bridge multilevel Inverter:

H-Bridge multilevel Inverter is an array of H-bridges with a different isolate DC bus in each H-Bridge. Depending of the DC voltage of each H-Bridge, the Multilevel Inverter known as Cascade Multilevel Inverter, Quasi-Linear Multilevel Inverter, Binary Multilevel Inverter, or Trinary Multilevel Inverter [2]. Figure 2-1 H-Bridge Multilevel Inverter shows the general topology of the H -Bridge Multilevel Inverter.

Figure 2-1 H-Bridge Multilevel Inverter

Where $H B_{i}$ is the i-th H -Bridge, $V_{d c_{i}}$ is the power supply of the $H B_{i}$ and $V_{H_{i}}$ is the output voltage of $H B_{i}$.

2.1.1 Cascaded Equal Voltage Multilevel Inverter (CEMI):

In a CEMI all DC links are the same.

$$
V_{d c_{1}}=V_{d c_{2}}=. .=V_{d c_{i}}=V_{d c_{i+1}}=V_{d c_{h}}=E
$$

Where E is the voltage of the first H-Bridge, that in CEMI is the same of the other H -Bridge.
In this case a CEMI of h H -Bridges generate $2 h+1$ Levels and has maximum amplitude of $h E$. The Figure 2-2 Waveform of CEMI of 3 H -Bridge shows the waveform of a CEMI of 3 H -Bridges.

Figure 2-2 Waveform of CEMI of 3 H-Bridge

2.1.2 Quasi-Linear Multilevel Inverter (QLMI):

In the QLMI the i-th DC link can be expressed as:

$$
V_{d c_{i}}=\left\{\begin{array}{c}
E ; i=1 \\
2 * 3^{i-2} E ; i \geq 2
\end{array}\right.
$$

In this case a QLMI of nH bridge has a $2\left(3^{h-1}\right)+1$ Levels and has a maximum amplitude of $3^{h-1} E$. The Figure 2-3 shows the waveform of QLMI of 3 H -Bridges.

Figure 2-3 Waveform of QLMI of 3 H-Bridge
2.1.3 Binary Hybrid Multilevel Inverter (BHMI):

In the BHMI the i-th DC link is double of the ($i-1$)-th H bridge DC link.

$$
V d c_{1}=E, V_{d c_{2}}=2 E, V_{d c_{3}}=4 E \ldots V_{d c_{i}}=2^{i-1} E
$$

In this case an BHMI of h H -Bridge has a $2^{n+1}-1$ Levels and has a maximum amplitude of $\left(2^{n}-1\right) E$. The Figure 2-4 shows the waveform of BHMI 3 H -Bridges.

Figure 2-4 Waveform of a BHMI of 3 H-Bridge

2.1.4 Trinary Hybrid Multilevel Inverter (THMI):

In the THMI the i-th DC link is three times of the ($i-1$)-th H bridge DC link.

$$
V d c_{1}=E, V_{d c_{2}}=3 E, V_{d c_{3}}=9 E \ldots V_{d c_{i}}=3^{i-1} E
$$

Eq. 2-4

In this case an THMI of h H -Bridge has a 3^{h} Levels and has a maximum amplitude of $\frac{\left(3^{h}-1\right)}{2} E$. The Figure 2-5 shows the waveform of a THMI of 3 H -Bridges.

Figure 2-5 Waveform of a THMI of 3 H-Bridge

2.1.5 Comparative Analysis of the different topologies:

This is a comparative analysis of each Multilevel Inverter of h H-Bridges

Multilevel Inverter	levels	Maximum amplitude
CEMI	$2 h+1$	$h E$
QLMI	$2 *\left(3^{h-2}\right)+1$	$3^{h-1} E$
BHMI	$2^{n+1}-1$	$\left(2^{h}-1\right) E$
THMI	3^{h}	$\frac{3^{h}-1}{2} E$

Table 2.1 Comparative analysis of multilevel H-Bridge Inverters
Table 2.1 shows that the maximum number of levels is THMI. Thus, this converter is considered the best choice.

Because THMI has the highest number of levels, this presents the less THD among the alternative of Table 2.1.

2.2 Switching function of THMI

Suppose a THMI of h H -Bridge where $v_{a n}$ is the output voltage.

Figure 2-6 THMI Topology
According Figure 2-6 THMI Topology the output voltage $V H_{i}$ is:

$$
V H_{i}=F_{i} V_{d c_{i}}
$$

Where F_{i} is a function modulation of the i-th H -Bridge. This defines the position of the switching device and it is defined as:

$$
F_{i}=\left\{\begin{array}{cc}
-1 ; & S_{1} \equiv S_{4} \equiv 0 \wedge S_{2} \equiv S_{3} \equiv 1 \\
0 ; & S_{1} \equiv S_{3} \equiv \overline{S_{2}} \equiv \overline{S_{4}} \\
1 ; & S_{1} \equiv S_{4} \equiv 1 \wedge S_{2} \equiv S_{3} \equiv 0
\end{array}\right.
$$

The output voltage of each H -Bridge $V H_{i}$ is:

$$
V H_{i}=3^{i-1} F_{i} E
$$

The total output voltage $v_{a n}[1]$ is:

$$
\begin{gathered}
v_{a n}=\sum_{i=1}^{h} V H_{i} \\
v_{a n}=E \sum_{i=1}^{h} 3^{i-1} F_{i}
\end{gathered}
$$

Eq. 2-8

Eq. 2-9

In order to obtain a $v_{a n}=l * E, l$ must be an integer defined as:

$$
\begin{gather*}
-\frac{\left(3^{h}-1\right)}{2}<l<\frac{\left(3^{h}-1\right)}{2} \\
v_{a n}=l E=E \sum_{i=1}^{h} 3^{i-1} F_{i} \\
l=\sum_{i=1}^{h} 3^{i-1} F_{i}
\end{gather*}
$$

F function is defined as:

$$
\begin{align*}
& F_{h}=\operatorname{sign}(l) * \operatorname{sign}\left(|l|-\frac{3^{h-1}-1}{2}\right) \\
& F_{h-1}=\operatorname{sign}(l) * \operatorname{sign}\left(|l|-3^{h-1}\left|F_{h}\right|-\frac{3^{h-2}-1}{2}\right) \\
& \ldots \\
& F_{i}=\operatorname{sign}(l) * \operatorname{sign}\left(|l|-\sum_{k=i+1}^{h}\left(3^{k-1}\left|F_{k}\right|\right)-\frac{3^{i-1}-1}{2}\right) \\
& \ldots \\
& F_{2}=\operatorname{sign}(l) * \operatorname{sign}\left(|l|-\sum_{k=3}^{h}\left(3^{k-1}\left|F_{k}\right|\right)-1\right) \\
& F_{1}=\operatorname{sign}(l) * \operatorname{sign}\left(|l|-\sum_{k=2}^{h}\left(3^{k-1}\left|F_{k}\right|\right)\right)
\end{align*}
$$

2.3 Modulation Strategies of THMI:

This chapter explains the modulation strategies to THMI. The modulation strategies can be at low frequency or at high frequency, and seeks the harmonic elimination.

2.3.1 Step Modulation

The objective of step modulation is to build a symmetrical quarter wave eliminating harmonics switching at a certain angle from one level to other.

Consider ζ the number of angles in the first quarter-wave and σ the numbers of positives levels.
In a step modulation $\zeta=\sigma$, because the switching is only to the immediately higher level. The step modulation can eliminate a limited number of harmonics depending on the number of possible levels.

Applying Fourier analysis to the odds harmonics (even harmonics are 0) the j-th harmonic can be expressed as:

$$
\left|v_{a n}\right|_{j}=\frac{4}{j \pi} \sum_{i=1}^{\sigma}\left(E \cos \left(j \theta_{i}\right)\right)
$$

Where $\left|v_{a n}\right|_{j}$ is the component of the j-th harmonic of the output voltage.
And θ_{i} is the switching angle that switchs from ($i-1$)-th level to i-th level.
And consider MR the relative modulation index and is expressed as:

$$
M R=\frac{\pi\left|v_{a n}\right|_{1}}{4 \sigma E}
$$

We can obtain the next system of nonlinear equation:

Figure 2-7 Step Modulation Waveform
Figure 2-7 shows the Waveform of a THMI with a step modulation strategy.

2.3.2 Virtual Stage Modulation:

The virtual stage modulation is another low frequency strategy like step modulation with the difference that it can pass to a higher or lower level in the same quarter -wave if it would be necessary, considering this condition in a virtual stage modulation the number of switching angle ζ is more than the positives levels σ.

$$
\begin{align*}
& \sum_{i=1}^{\alpha} \cos \left(\theta_{p i}\right)-\sum_{i=1}^{\beta} \cos \left(\theta_{n i}\right)=\sigma M R \\
& \sum_{i=1}^{\alpha} \cos \left(3 \theta_{p i}\right)-\sum_{i=1}^{\beta} \cos \left(3 \theta_{n i}\right)=0 \\
& \sum_{i=1}^{\alpha} \cos \left(5 \theta_{p i}\right)-\sum_{i=1}^{\beta} \cos \left(5 \theta_{n i}\right)=0 \\
& \cdots \\
& \sum_{i=1}^{\alpha} \cos \left((2 \sigma-1) \theta_{p i}\right)-\sum_{i=1}^{\beta} \cos \left((2 \sigma-1) \theta_{n i}\right)=0
\end{align*}
$$

Where $\theta_{\mathrm{p} i}$ is the i-th angle that switches to a higher level and θ_{ni} is the i-th angle that switches to a lower level, and α is the number of switching to higher and β are the number of switching to lower.

Figure 2-8 Virtual stage modulation shows the Virtual Stage Modulation.

Figure 2-8 Virtual stage modulation

2.3.3 Hybrid Modulation:

The Hybrid modulation strategy is a mixed technique where the higher Power H-Bridge switch at step modulation and the lower-power H-Bridge switch at High frequency PWM

2.3.4 Sub-Harmonic PWM Modulation:

A Sub-Harmonic modulation is a high frequency PWM technique with the difference that in this case it used I-1 carrier triangles wave.

(a) Reference and carrier signals

Figure 2-9 Sub-Harmonic PWM Modulation

2.3.5 Comparative analysis of the different modulation strategies:

Modulation strategy	Advantages	Disadvantages
Step Modulation	1. The inverter Switches at Low frequency produces low switching losses	1. Limited number of harmonics eliminated 2. Complicated math operations to the processor
Virtual Stage Modulation	1. The inverter switches at Low frequency produces low switching losses 2. Unlimited number of harmonics eliminated	3. The complexity of math operations increase as the number of harmonics to be eliminated
Hybrid modulation	1. The higher voltage H -Bridges switches at low frequency and produces low switching losses. 2. The lower voltage H -Bridges switches at high frequency eliminating the high order harmonics	1. Calculate the switching angle of the higher voltage H -Bridge needs a lots resource of the processor. 2. Switching at high frequency the lower voltage H -Bridge produce high switching losses.

Table 2.2 Comparative analysis of modulation strategies.
Table 2.2 shows the characteristics of each modulation strategy and infers that the Sub-Harmonic PWM modulation is the best choice because it is easy to implement in a DSP, eliminate high harmonics and in THMI the switching losses is not higher.

2.4 Linear Controller:

One of the objectives of the Project is to compare a linear controller and a nonlinear controller in the inverter .

2.4.1 PI Controller:

The Proportional-Integral (PI) controller is described in Figure 2-10

Figure 2-10 PI controller Block Diagram

Solving the block diagram in Figure 2-10 PI controller Block Diagram

$$
\begin{gathered}
I_{r e f}(s)-I_{o}(s)=E(s) \\
E(s)=\frac{\left(\frac{K_{i}}{s}+K_{p}\right) K}{\tau s+1} \\
I_{o}(s)=\frac{\frac{K_{i} K+K_{p} K s}{s(\tau s+1)}}{\frac{K_{i} K+K_{p} K s}{s(\tau s+1)}+1}
\end{gathered}
$$

$$
\begin{array}{r}
I_{o}(s)=\frac{K_{p} K s+K_{i} K}{\tau s^{2}+s\left(K_{p} K+1\right)+K_{i} K} \\
I_{o}(s)=\frac{K_{p}}{K_{i}}\left(s+\frac{K_{i}}{K_{p}}\right)\left(\frac{\frac{K_{i} K}{\tau}}{s^{2}+\frac{K_{p} K+1}{\tau} s+\frac{K_{i} K}{\tau}}\right)
\end{array}
$$

Eq. 2-18 describes the close loop transfer function with a PI controller. In the PI controller the transfer function is defined by a gain, a real zero and a pair of complex pole or two real poles depending the values on K_{p} and K_{i}. [3]

2.5 Nonlinear Control

2.5.1 Lyapunov Function

Suppose a nonlinear system defined as Eq. 2-19 where the equilibrium point is $\mathrm{X}=0$, and suppose a Function $\mathrm{V}(\mathrm{X}) .[4]$

$$
\dot{\boldsymbol{X}}=\boldsymbol{F}(\boldsymbol{X}, \boldsymbol{U})
$$

$V(X)$ is a Lyapunov function if:

$$
\begin{aligned}
& V(X)>0 ; X \neq 0 \\
& V(X)=0 ; X=0 \\
& \dot{V}(X) \leq 0
\end{aligned}
$$

If exist a Lyapunov Function the system is stable.

2.5.2 Sliding Mode Control

Suppose a Surface S function of the states of Eq. 2-19

$$
S=\left\{X \in R^{n} \mid S(X)=0\right\}
$$

Now suppose a Lyapunov Function of the surface defined in Eq. 2-20

$$
\begin{align*}
V(S) & =\frac{1}{2} S^{2} \\
\dot{V}(S) & =S \dot{S} \\
\dot{V}(S) & =S \frac{\partial S}{}^{T}
\end{align*} \quad F(X, U)
$$

The objective of the technique is to find an input $\mathrm{U}(\mathrm{t})$ to ensure that $\mathrm{V}(\mathrm{S})$ is a Lyapunov Function.[5]-[8]

3 Specifications:

This chapter defines how many H -Bridges is going to have the inverter, the DC voltage of each H Bridge, the switching devices of each H -Bridge and the dead time of the switching devices.
3.1 Inputs/Outputs:

The inverter must have a total power supply inputs of 200 V , and an output of 120 Vrms tied to the grid. The inverter has to be able to supply 200 VA

3.2 Structure of the system:

In the Table 2.1 it can be inferred that the best multilevel converter is THMI because is the inverter that produce the most number of levels per H-Bridge.

Table 2.2 describes all the modulation strategies and the result is that Sub-Harmonic PWM modulation is the best choice for a THMI inverter because the switching losses is not too high, it is easy to model and does not need a lot of computational resources.

Once the topology and the modulation strategy are defined, it is necessary to define the quantity of H -Bridges that is going to have the inverter. Considering the total input voltage is 200 V and according Figure 2-6 THMI Topology the value of the smallest power supply is E. E can be defined as $E=200 / \mathrm{h}$ where h is the number of H -Bridges. The Lowest power supply will be 50 V because at this value we can find MOSFETs fast enough and with the enough current capacity for a 200 VA inverter.

If the lowest H -Bridge (LV) is supplied at 50 V , according the THMI topology the highest H -Bridge must be supplied at 150 V (HV).

Because the sources may supply positive currents at any time, it is necessary input filters in each H-Bridge.

Considering all of these issues, the structure of the system is the one shown in Figure 3-1 System Structure

Figure 3-1 System Structure

Where L_{h}, C_{h} are the inductor and the capacitor respectively of the input filter of the higher H Bridge. L_{1}, C_{1} are the inductor and the capacitor respectively of the input filter of the lower H Bridge L_{o} is the output inductors. I_{h}, I_{I}, I_{o} are the currents through L_{h}, L_{1}, L_{o} respectively. V_{h}, V_{l} are the voltages in C_{h} and C_{1} respectively. V_{ac} is the voltage in the local network.

4 Design and Simulations

4.1 Design of gate signals:

Considering the F function in Eq. 2-6 for the switching device of THMI of 2 H -Bridges shown in Figure 3-1 System Structure is described in Eq. 4-1

$$
F_{h}=\left\{\begin{array}{cc}
1 ; & S_{\text {hap }} \equiv S_{h b n} \equiv 1 \wedge S_{\text {han }} \equiv S_{h b p} \equiv 0 \\
0 ; & S_{\text {hap }} \equiv S_{h b p} \equiv \overline{S_{\text {han }} \equiv \bar{S}} \overline{\text { hbn }} \\
-1 & S_{\text {hap }} \equiv S_{h b n} \equiv 0 \wedge S_{\text {han }} \equiv S_{h b p} \equiv 1
\end{array}\right.
$$

Where 1 represent the switch in ON state, and 0 represent the switch in OFF state.
The gate signals to obtain a specific level l is defined replacing Eq. 2-13 in Eq. 4-2

$$
\begin{aligned}
& F_{2}=\operatorname{sgn}(l) * \operatorname{sgn}(|l|-1) \\
& F_{1}=\operatorname{sgn}(l) * \operatorname{sgn}\left(|l|-3\left|F_{2}\right|\right)
\end{aligned}
$$

Eq. 4-2

Where l is an integer between $[-4,4]$ and represents the level of the inverter at this moment.

In the PWM modulation the signal is a continuous reference between $[-4,4]$, because 4 is the highest value of the reference and -4 the lowest.

Vref is divided in 8 intervals, $[-4,-3] ;[-3,-2] ;[-2,-1] ;[-1,0] ;[0,1] ;[1,2] ;[2,3] ;[3,4]$ and is shown in Figure 4-1.

8 carrier signals are generated, one for each interval, and compared with each sliced of $V_{\text {ref }}$.
Then the results of the PWM for each piece are added, and the result of the sum is the $l(t)$, which is an integer between $[-4,4]$. This will be the input to obtain F_{2} and F_{1}.

The block diagram in Figure 4-2 Block Diagram to obtain $I(t)$ describes this process to obtain $l(t)$, on the top of left part describes the process to divide $V_{\text {ref }}$, on the top of right part describes the generation of the 8 carrier signals, and in the bottom part describes the sum of each PWM modulation of each part of $\mathrm{V}_{\text {ref. }}$.

Figure 4-1 shows the waveform of the carrier signals and the sliced $v_{r e f}$.

Figure 4-1 waveforms of carrier and sliced signal

Figure 4-2 Block Diagram to obtain I(t)

Figure 4-3 PWM Sub-Harmonic modulation
In Figure 4-3 PWM Sub-Harmonic modulation that describes the $l(t)$ function according $v_{r e f}$.
In order to implement a PWM in a DSP(Digital Signal Processor) with de PWM modules of the DSP, it is necessary to convert the sub-harmonic modulation into a common modulation, for this reason a look up table is generated by a F function described in Eq. 4-3
$F(l)=\left(S_{h a}, S_{h b}, S_{l a}, S_{l b}\right)$
Eq. 4-3
$F(-4)=(0,1,0,1)$
$F(-3)=(0,1,0,0) ;(0,1,1,1)$
$F(-2)=(0,1,1,0)$
$F(-1)=(0,0,0,1) ;(1,1,0,1)$;
$F(0)=(0,0,0,0) ;(0,0,1,1) ;(1,1,0,0) ;(1,1,1,1)$
$F(1)=(0,0,1,0) ;(1,1,1,0)$
$F(2)=(1,0,0,1)$
$F(3)=(1,0,0,0) ;(1,0,1,1)$
$F(4)=(1,0,1,0)$
Where $S_{h a} \equiv S_{\text {hap }} \equiv \overline{S_{\text {han }}} ; S_{h b} \equiv S_{h b p} \equiv \overline{S_{\text {hbn }}} ; S_{l a} \equiv S_{l a p} \equiv \overline{S_{l a n}} ; S_{l b} \equiv S_{l a p} \equiv \overline{S_{l a n}}$;
It could generate many duty cycle function for $S_{h a}, S_{h b}, S_{l a}$, and $S_{l b}$
A possible duty cycle function of each switching device that satisfies Eq. 4-3 is shown in Figure 4-4 Duties cycles

Figure 4-4 Duties cycles
Where $u_{x y}=\widehat{s_{x y}}$
The analytic function of each duty cycle is defined in Eq. 4-4

$$
\begin{aligned}
& \text { if }\left(-4<v_{r e f}<-3\right) \quad \text { if }\left(-3<v_{r e f}<-2\right) \quad \text { if }\left(-2<v_{r e f}<-1\right) \quad \text { if }\left(-1<v_{r e f}<0\right) \\
& \left(\begin{array}{c}
u_{h a} \\
u_{h b} \\
u_{l a} \\
u_{l b}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\mathbf{1} \\
0 \\
-v_{r e f}-3
\end{array}\right)\left(\begin{array}{c}
u_{h a} \\
u_{h b} \\
u_{l a} \\
u_{l b}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\mathbf{1} \\
0 \\
v_{r e f}+3
\end{array}\right)\left(\begin{array}{c}
u_{h a} \\
u_{h b} \\
u_{l a} \\
u_{l b}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-v_{r e f}-1 \\
-v_{r e f}-1 \\
v_{r e f}+2
\end{array}\right)\left(\begin{array}{l}
u_{h a} \\
u_{h b} \\
u_{l a} \\
u_{l b}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-v_{r e f}
\end{array}\right) \\
& \text { if }\left(0<v_{r e f}<1\right) \quad \text { if }\left(1<v_{r e f}<2\right) \quad \text { if }\left(2<v_{r e f}<3\right) \quad \text { if }\left(3<v_{r e f}<4\right) \\
& \left(\begin{array}{c}
u_{h a} \\
u_{h b} \\
u_{l a} \\
u_{l h}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
v_{r e f} \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { if }\left(3<v_{r e f}<4\right) \\
\left(\begin{array}{c}
u \\
u_{h a} \\
u_{h a} \\
u_{l b}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
1 \\
-v_{r e f}+4
\end{array}\right)
\end{array}
\end{aligned}
$$

Notice in Figure 4-4 Duties cycles that $\boldsymbol{u}_{\boldsymbol{l} \boldsymbol{a}}$ and $\boldsymbol{u}_{\boldsymbol{l} \boldsymbol{b}}$ when one function is constant, the other is a linear function, except between $[-2,-1]$ and $[2,1]$ in this case both are linear function with different slope signs, and the Eq. 4-3 shows in this points the switching devices are the negative of the others. For this reason it is necessary to change the PWM modulation in $\boldsymbol{S}_{\boldsymbol{l a}} \boldsymbol{o r} \boldsymbol{S}_{\boldsymbol{l b}}$, inverting the carrier or changing the comparison function between the carrier and reference, then take the complement of the duty cycle.

Figure 4-5 shows a block diagram of the PWM of each input

Figure 4-5 Converting into a common PWM
4.2 Design of the switching frequency and the switching devices:

In this chapter the objective is to select the switching frequency of the system and the switching devices of each H -Bridge.

The switching frequency is chosen at 100 kHz because with a period of $10 \mu \mathrm{~s}$ the dead time can be 200ns, time enough for a commercial MOSFET. Due to this frequency, the switching devices of the higher H -Bridge are 4 MOSFETs IRFP350 with a $\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}$, $\mathrm{I}_{\mathrm{ds}}=10 \mathrm{~A}$ (at $100{ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{ds}}=0,3 \Omega$; $\mathrm{T}_{\text {rise }}=65 \mathrm{~ns}$ $T_{\text {fall }}=135 n s$ and the switching devices of the lower H -Bridge are 4 MOSFETs IRF540N with a V_{DS} $=100 \mathrm{~V}, \mathrm{I}_{\mathrm{ds}}=33 \mathrm{~A}$ (at $100{ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{ds}}=0,044 \Omega ; \mathrm{T}_{\text {rise }}=46 \mathrm{~ns} \mathrm{~T}_{\text {fall }}=74 \mathrm{~ns}$.

Figure 4-6 output voltage without in/out filters shows the waveform of the output of the inverter without output and input filter

Figure 4-6 output voltage without in/out filters

4.3 Design of the output filter

Suppose that the converter is switching between a level / and a level $/+1$, with a $d T$ subinterval in level $I+1$ and (1-d)T subinterval in level I, the output v_{o} will be[9], [10]:

$$
\begin{aligned}
& \text { if } u=l \\
& \left(l E=v_{l}+v_{o}\right)(1-d) T \\
& \text { if } u=l+1 \\
& \left((l+1) E=v_{l}+v_{o}\right) d T
\end{aligned}
$$

Taking the average of the output $\overline{\nu_{o}}$:

$$
\overline{v_{o}}=(l+d) E
$$

now to find the output inductor

$$
v_{l}=L \frac{\Delta i}{\Delta t}=v_{a n}-\overline{v_{o}}
$$

Where $v_{a n}$ is the voltage before the inductor (switched voltage).

$$
\begin{aligned}
& L \frac{\Delta i}{d T}=(l+1) E-(l+d) E \\
& L \frac{\Delta i}{d T}=E(1-d) \\
& L \Delta i=E T\left(d-d^{2}\right) \\
& \text { taking the worst value } \\
& 0=1-2 d \\
& d=\frac{1}{2}
\end{aligned}
$$

$$
L \Delta_{\max } i=\frac{E T}{4}
$$

Where $\mathrm{E}=50, \mathrm{~T}=10 \mathrm{us}$;
To select $\Delta_{\max } i$, the criteria was that is the 5% of $I_{\max }$

$$
\begin{aligned}
& \Delta_{\max } i=5 \% \text { of } I_{\max } . I_{\max }=\frac{\sqrt{2} P_{\max }}{V_{r m s}}=2,35 \mathrm{~A} \\
& \qquad \begin{aligned}
L & =\frac{50 \mathrm{~V} * 10 * 10^{-6} s}{4 * 0.05 * 2.35 \mathrm{~A}} \\
L & =1.06 \mathrm{mH}
\end{aligned}
\end{aligned}
$$

The nearest commercial value of this inductor is $L_{o}=1.14 \mathrm{mH}$
4.4 Design of the inputs filters of high and low H bridge converters.

In order to design the input filters it is necessary to simulate the inverter with a resistive load at maximum power in open loop and measure the inputs currents as it is shown Figure 4-7 where $\mathrm{L}_{01}=\mathrm{L}_{02}=0,5 \mathrm{~L}$

Figure 4-7 inverter in open loop off grid without input filter

Figure 4-8 wave form of the input currents without input filter
Figure 4-8 shows the wave form of the input currents of the inverter in off grid with RC load without input filters.

Now it is necessary to know the harmonics components of each current. Frequency analyses of the input currents of the inverter without input filters are showed in Figure 4-9

Figure 4-9 Frequency analysis

In the higher H -bridge the most harmonic component is at $120 \mathrm{HzI}(120 \mathrm{~Hz})=1,5 \mathrm{~A}$ and $\mathrm{I}(0 \mathrm{~Hz})=1,6 \mathrm{~A}$
The electric diagram of the circuit at 120 Hz and 240 Hz is described in Figure $4-10$

Figure 4-10 Circuits Higher HB at $\mathbf{1 2 0 H z}$ and lower HB at $\mathbf{2 4 0 H z}$
Where L_{h} is the inductor of the input filter for the higher H -Bridge, C_{h} the capacitor of the input filter for the higher H -Bridge, L_{1} is the inductor of the input filter for the lower H -Bridge, C_{1} the capacitor of the input filter for the lower H -Bridge, $i_{h}(f)$ the harmonic component at f Hz of the input current of the Higher H -Bridge, $i_{i h}(f)$ the harmonic component at f Hz of the output current of the Higher H -Bridge, $i_{l}(f)$ the harmonic component at fHz of the input current of the Lower H-Bridge, $i_{i l}(f)$ the harmonic component at fHz of the output current of the Lower H Bridge.

If the maximum supply current at 120 Hz in Higher H -Bridge is defined at 7% of the DC current

$$
\begin{aligned}
& i_{h}(120 \mathrm{~Hz}) L_{h} \omega j=\left(i_{i h}(120 \mathrm{~Hz})-i_{h}(120 \mathrm{~Hz})\right)\left(-\frac{j}{\omega C_{h}}\right) \\
& i_{h}(120 \mathrm{~Hz})=\frac{i_{i h}(120 \mathrm{~Hz})}{\omega^{2} L_{h} C_{h}+1} \\
& L_{h} C_{h}=\frac{1}{\omega^{2}}\left(\frac{i_{i h}(120 \mathrm{~Hz})}{i_{h}(120 \mathrm{~Hz})}-1\right) \\
& L_{h} C_{h}=2.022 * 10^{-5} \\
& \boldsymbol{L}_{\boldsymbol{h}}=\mathbf{4 . 4 m H} ; \boldsymbol{C}_{\boldsymbol{h}}=\mathbf{4 . 7} \mathbf{m F}
\end{aligned}
$$

The series resistance $R_{L_{h}}$ of the L_{h} is $0,2 \Omega$.
To design the input lower H -Bridge filter due to the input current is almost 0 , it is necessary a source able to receive current instantly, and the filter is a low pass filter of $2^{\text {nd }}$ order with $\mathrm{fc}<10 \%$ of the most significant harmonic. In order to ensure that the filter removes the component of $120 \mathrm{~Hz}, \mathrm{fc}$ is defined at 16 Hz .

$$
\begin{aligned}
& \sqrt{L_{l} C_{l}}=\frac{1}{2 \pi f_{c}} \\
& L_{l} C_{l}=98.9 * 10^{-6} \\
& \boldsymbol{L}_{\boldsymbol{l}}=\mathbf{1 0 m H} ; \boldsymbol{C}_{\boldsymbol{l}} \mathbf{1 0 m F}
\end{aligned}
$$

The series resistance $R_{L_{l}}$ of the L_{l} is $3,4 \Omega$.

4.5 Simulation of the system in open loop with a RC load.

In this chapter the system will simulate with an RC load instead of the grid, this chapter is necessary to compare the simulation in open loop and the implementation.

Figure 4-12 describes the system to simulate, with and $\mathrm{R}_{\mathrm{o}}=72 \Omega$ to obtain the maximum power, and a $C_{0}=2,2 \mu \mathrm{~F}$, to obtain an output filter with a cut off frequency much bigger than ten times of power grid frequency (60 Hz), and much smaller than 0,1 times of the switching frequency $(100 \mathrm{kHz})$. The system is simulated with losses in the inductors and switching devices.

In Figure 4-11 $\mathrm{Vo}(\mathrm{t})$, $\mathrm{lo}(\mathrm{t})$ shows the output voltage V_{o} and output current I 。

Figure 4-11 Vo(t) , lo(t)

Figure 4-12 inverter wit RC load in open loop

Notice that the ripple current in Figure 4-11 is very small. This satisfies the allowed ripple current in the output, and notice that the output voltage v_{o} do not have ripple.

Figure 4-13 $V_{h h}(t), V_{h l}(t), V_{a n}(t)$ shows the voltage on each H-bridge and the output of the total HBridges. Notice that the levels are clearly defined.

Figure 4-13 $V_{h h}(t), V_{h 1}(t), V_{a n}(t)$
Figure 4-14 shows the voltage input on each H-Bridge, a small voltage ripple is generated due to the input filters that the controller has to compensate

Figure $4-14 \mathrm{Vh}(\mathrm{t}), \mathrm{VI}(\mathrm{t})$

4.6 Model of the inverter with input filters

In this chapter the inverter will be modeled in state variables
Suppose S_{x} a vector defined in R^{2} where $S_{x}=\left(S_{h}, S_{1}\right)$ where $S_{h}=S_{h a}-S_{h b}$, and $S_{l}=S_{l a}-S_{\mid b}$.
The Table 4.1 math description of inverter with input filter shows the math description of all the possible values of S_{x}

$S_{x}=\left(S_{h}, S_{l}\right)$

$(1,1)$
$(1,0)$
$(1,-1)$
$(0,1)$

$$
\begin{aligned}
& \text { Model } \\
& 3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h} \\
& i_{h}=C_{h} \frac{d v_{h}}{d t}+i_{o} \\
& E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
& i_{l}=C_{l} \frac{d v_{l}}{d t}+i_{o} \\
& \left.v_{h}+v_{l}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}\right] \\
& 3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h} \\
& i_{h}=C_{h} \frac{d v_{h}}{d t}+i_{o} \\
& E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
& i_{l}=C_{l} \frac{d v_{l}}{d t} \\
& \left.v_{h}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}\right] \\
& {\left[3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h}\right.} \\
& i_{h}=C_{h} \frac{d v_{h}}{d t}+i_{o} \\
& E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
& i_{l}=C_{l} \frac{d v_{l}}{d t}-i_{o} \\
& \left.v_{h}-v_{l}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}\right] \\
& {\left[\begin{array}{c}
3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h} \\
i_{h}=C_{h} \frac{d v_{h}}{d t} \\
E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
i_{l}=C_{l} \frac{d v_{l}}{d t}+i_{o} \\
v_{l}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& (0,0) \\
& {\left[\begin{array}{c}
3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h} \\
i_{h}=C_{h} \frac{d v_{h}}{d t} \\
E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
i_{l}=C_{l} \frac{d v_{l}}{d t} \\
0=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}
\end{array}\right]} \\
& {\left[\begin{array}{c}
3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h} \\
i_{h}=C_{h} \frac{d v_{h}}{d t} \\
E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
i_{l}=C_{l} \frac{d v_{l}}{d t}-i_{o} \\
-v_{l}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}
\end{array}\right]} \\
& {\left[3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h}\right.} \\
& i_{h}=C_{h} \frac{d v_{h}}{d t}-i_{o} \\
& (-1,1) \\
& E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
& i_{l}=C_{l} \frac{d v_{l}}{d t}+i_{o} \\
& {\left[-v_{h}+v_{l}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}\right]} \\
& {\left[\begin{array}{c}
3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h} \\
i_{h}=C_{h} \frac{d v_{h}}{d t}-i_{o} \\
E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
i_{l}=C_{l} \frac{d v_{l}}{d t} \\
-v_{h}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}
\end{array}\right]} \\
& (-1,0) \\
& 3 E=L_{h} \frac{d i_{h}}{d t}+R_{L_{h}} i_{h}+v_{h} \\
& i_{h}=C_{h} \frac{d v_{h}}{d t}-i_{o} \\
& (-1,-1) \\
& E=L_{l} \frac{d i_{l}}{d t}+R_{L_{l}} i_{l}+v_{l} \\
& i_{l}=C_{l} \frac{d v_{l}}{d t}-i_{o} \\
& {\left[-v_{h}-v_{l}=L_{o} \frac{d i_{o}}{d t}+\left(R_{L o}+2 R_{d s h}+2 R_{d s l}\right) i_{o}+v_{a c}\right]}
\end{aligned}
$$

Table 4.1 math description of inverter with input filter

Accordingly the model can be written as
$\left[\begin{array}{c}\dot{i}_{h} \\ \dot{v}_{h} \\ \dot{i}_{l} \\ \dot{v}_{l} \\ \dot{o}_{o}\end{array}\right]=\left[\begin{array}{ccccc}-\frac{R_{L_{h}}}{L_{h}} & -\frac{1}{L_{h}} & 0 & 0 & 0 \\ \frac{1}{C_{h}} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{R_{L_{l}}}{L_{l}} & 0 & 0 \\ 0 & 0 & \frac{1}{C_{l}} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{R x}{L_{o}}\end{array}\right]\left[\begin{array}{l}i_{h} \\ v_{h} \\ i_{l} \\ v_{l} \\ i_{o}\end{array}\right]+\left[\begin{array}{cc}0 & 0 \\ -\frac{i_{o}}{C_{h}} & 0 \\ 0 & 0 \\ 0 & -\frac{i_{o}}{C_{l}} \\ \frac{v_{h}}{2 L_{o}} & \frac{v_{l}}{2 L_{o}}\end{array}\right]\left[\begin{array}{l}S_{h} \\ S_{l}\end{array}\right]+\left[\begin{array}{c}\frac{3 E}{L_{h}} \\ 0 \\ \frac{E}{L_{l}} \\ 0 \\ -\frac{v_{a}}{2 L_{o}}\end{array}\right] \quad$ Eq. 4-5
Where $R_{x}=R_{L o}+2 R_{d s h}+2 R_{d s l}$
The average model is:

$$
\left[\begin{array}{c}
i_{h} \\
\dot{v}_{h} \\
\dot{\boldsymbol{i}_{l}} \\
\dot{\boldsymbol{v}_{l}} \\
\dot{i}_{o}
\end{array}\right]=\left[\begin{array}{ccccc}
-\frac{R_{L_{h}}}{L_{h}} & -\frac{1}{L_{h}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\frac{1}{C_{h}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\frac{R_{L_{l}}}{L_{l}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \frac{1}{C_{l}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\frac{R x}{L_{o}}
\end{array}\right]\left[\begin{array}{c}
i_{h} \\
\boldsymbol{v}_{h} \\
\boldsymbol{i}_{l} \\
\boldsymbol{v}_{l} \\
i_{o}
\end{array}\right]+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
-\frac{i_{o}}{C_{h}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & -\frac{i_{o}}{C_{l}} \\
\frac{v_{h}}{2 L_{o}} & \frac{v_{l}}{2 L_{o}}
\end{array}\right]\left[\boldsymbol{u}_{h}\right]+\left[\begin{array}{c}
\frac{3 E}{L_{h}} \\
\mathbf{0} \\
\boldsymbol{u}_{l}
\end{array}\right]{ }^{\mathrm{Eq} .4-6}
$$

According to Eq. 4-6 the inverter can be modeled as the circuit shown in Figure 4-15

Figure 4-15 average model

Figure 4-16 average model vs switching model shows the switching model and the average model with an input $u=1,014 \mathrm{v}_{\mathrm{ac}}$ and can be inferred that the average model proposed is a very good model of THMI.

Figure 4-16 average model vs switching model

$$
e_{r m s}=24,62 \times 10^{-3} \mathrm{~A}
$$

$e_{r m s}$ is the RMS error between the output current of the switching circuit with input filters and the output current of the average model with inputs filters during a period of $16,66 \mathrm{~ms}$.

Consider that the RMS error is much lower than the amplitude of the currents; the model can be accepted as a very good model.

4.7 Model of the inverter without input filters

For complexity reasons is better to take the average model of the inverter without inputs filter instead of linearizing the average model.

The model equation is showed in

$$
I_{o}(s)=\left(\left(3 U_{h}(s)+U_{l}(s)\right)-\frac{V_{a c}(s)}{E}\right) \frac{E}{L_{o} s+R_{x}}
$$

Eq. 4-7

If $U(s)=3 U_{h}(s)+U_{l}(s)$

$$
I_{o}(s)=\left(U(s)-\frac{V_{a c}(s)}{E}\right) \frac{E}{L_{o} s+R_{x}}
$$

Figure 4-17 block diagram of average model and switching model without inputs filters
Figure 4-17 block diagram of average model and switching model without inputs filtersshows the model and the switching circuit

Figure 4-18 Average model Vs switching model without inputs filter
Figure 4-18 Average model Vs switching model without inputs filter shows the wave form of the average model and the switching circuit

$$
e_{r m s}=24,15 \times 10^{-3} \mathrm{~A}
$$

$e_{r m s}$ is the RMS error between the output current of the switching circuit without input filters and the output current of the average model without inputs filters during a period of $16,66 \mathrm{~ms}$.

Consider that the RMS error is much lower than the amplitude of the currents, the model can be accepted as a very good model.

4.8 Design and simulation of the linear controller

The average model with input filters can be modeled as the invert without input filter plus an uncertainty voltage $\Delta \mathrm{V}$,

According the last state equation is described as:

$$
\begin{gather*}
L_{o} \frac{d i_{o}}{d t}=v_{h}(t) u_{h}(t)+v_{l}(t) u_{l}(t)-R_{x} i_{o}(t)-v_{a c}(t) \\
v_{h}(t)=3 E+\Delta v_{h}(t) ; v_{l}(t)=E+\Delta v_{l}(t) \\
L_{o} \frac{d i_{o}}{d t}=E\left(3 u_{h}(t)+u_{l}(t)\right)-R_{x} i_{o}(t)-v_{a c}(t)+\left(\Delta v_{h}(t) u_{h}(t)+\Delta v_{l}(t) u_{l}(t)\right) \\
\Delta v(t)=\Delta v_{h}(t) u_{h}(t)+\Delta v_{l}(t) u_{l}(t) ; u(t)=3 u_{h}(t)+u_{l}(t) \\
\boldsymbol{L}_{\boldsymbol{o}} \frac{\boldsymbol{d} \boldsymbol{i}_{\boldsymbol{o}}}{\boldsymbol{d} \boldsymbol{t}}=\boldsymbol{E} \boldsymbol{u}(\boldsymbol{t})-\boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{i}_{\boldsymbol{o}}(\boldsymbol{t})-\boldsymbol{v}_{\boldsymbol{a c}}(\boldsymbol{t})+\Delta \boldsymbol{v}(\boldsymbol{t}) \\
\boldsymbol{I}_{\boldsymbol{o}}(\boldsymbol{s})=\left(\boldsymbol{U}(\boldsymbol{s})-\frac{\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{c}}(\boldsymbol{s})}{\boldsymbol{E}}\right)\left(\frac{\boldsymbol{E}}{\boldsymbol{L}_{\boldsymbol{o}} \boldsymbol{s}+\boldsymbol{R}_{\boldsymbol{x}}}\right)+\frac{\Delta \boldsymbol{V}(\boldsymbol{s})}{\boldsymbol{L}_{\boldsymbol{o}} \boldsymbol{s}+\boldsymbol{R}_{\boldsymbol{x}}}
\end{gather*}
$$

A Proportional controller never reaches a steady-state error of 0 . Integral controller could not adjust zita without altering the natural frequency of the feedback system. A controller with a derivative action amplifies the noise measurement of the sensor resulting in an unstable loop.

For this reason a Proportional-Integral (PI) controller would be the only viable option for linear control.

Due that the 11-th harmonic is the last significant harmonic of the grid voltage, the linear controller will be defined in SISOTOOL with the criteria that the fc will be equal at on decade after the 11-th Harmonics.

$$
G_{c}(s)=0.9+\frac{450}{s}
$$

$G_{c}(s)$ is the controller selected that satisfies the criteria.
To implement the PI controller in Digital signals processor (DSP), is necessary to convert into a Z transfer function.

To convert into a Z transfer function is necessary to define a sampling frequency of all the variables $\left(v_{0}, i_{o}, v_{i}\right)$. This sampling frequency must be equal or a sub-multiple to the switching frequency. If the sampling frequency is the same of the switching frequency $(100 \mathrm{kHz})$, the
processing time is not enough, because the complexity of the process to conversion of $u(t)$ to the duty cycle of each MOSFET, for this reason the sample time, Ts, of all the variables is $20 \mu \mathrm{~s}$.

With the sample time, Ts, defined the Z transform of the linear controller is:

$$
G_{c d}(z)=0.9 \frac{\left(1-0.99 z^{-1}\right)}{1-z^{-1}}
$$

In order to generate the reference current, $i_{\text {ref }}$ it is assumed that the signal $v_{a c}(t)$ equals $v_{a c}(n T+t)$, where T is the period of the voltage waveform, and n is a positive integer. Due to the sample time is $20 \mu \mathrm{~s}$, the last period of the voltage signals is saved in an array with a size of 84 samples, that is uploading constantly. Then the array is scaled and the index of the current position on the array is slid according to the desired phase displacement.

If the phase displacement is too much, the power supplies of the inverter could have negative instant current and the power supplies used in this project do not allow that. For this reason the maximum power factor is 0.7 , and obtains a maximum and minimum phase displacement of $\pm 45^{\circ}$.

Figure 4-19 linear controller block diagram shows the block diagram of the average model of the inverter controlled by the linear controller.

Figure 4-19 linear controller block diagram
Figure 4-20 shows the waveform of the linear controller changing phase and magnitude of the reference current.

Figure 4-20 Changes on phase and magnitude of Iref with linear controller

Figure 4-21 zoom of Iref, lo
Figure 4-21 shows a zoom of $I_{r e f}$ and I_{o} and the transient response time is $80 \mu \mathrm{~s}$

Figure 4-22 shows the waveform with the linear controller with a disturbance in the power supply of the higher H -bridge. Notice that if the voltage disturbance increases, I_{o} do not reach $I_{\text {ref }}$

Figure 4-22 Disturbance in Vh with linear controller

Figure 4-23 Error in linear controller
Figure 4-23 shows the waveform of the error. Notice that the maximum error is 0,27 A.

The $e_{r m s}=99,8 \times 10^{-3} A$

The Total Harmonic Distortion (THD) of i_{o} without disturbance at nominal current (1,66Arms) on phase in linear control is 2.38%.

4.9 Design and simulation of the nonlinear controller

The nonlinear controller is designed with Sliding Mode Control using an integral surface

Accordingly:

$$
e(t)=i_{o}(t)-i_{r e f}(t)
$$

Suppose a sliding surface S_{1} as:

$$
\begin{array}{r}
S_{1}(e)=e(t)+e_{0}+\alpha \int_{0}^{t} e(\tau) d \tau \\
\text { where } e_{0}=e(0)
\end{array}
$$

Suppose a Lyapunov function of S_{1} as:

$$
V\left(S_{1}\right)=\frac{1}{2} S_{1}^{2}
$$

The Derivative of the $\mathrm{V}(\mathrm{s})$ is:

$$
\begin{gathered}
\dot{V}\left(S_{1}\right)=S_{1} \dot{S_{1}} \\
\dot{V}\left(S_{1}\right)=S_{1}\left(\dot{e}(t)+\alpha e(t)-\alpha e_{0}\right) \\
\left.\dot{e}(t)=\iota_{o} \dot{(} t\right)-\iota_{r e f}(t)
\end{gathered}
$$

Eq. 4-11

According to Eq. 4-8 :

$$
\dot{e}(t)=\frac{\boldsymbol{E}}{\boldsymbol{L}_{\boldsymbol{o}}} \boldsymbol{u}(\boldsymbol{t})-\frac{\boldsymbol{R}_{x}}{\boldsymbol{L}_{\boldsymbol{o}}} \boldsymbol{i}_{\boldsymbol{o}}(\boldsymbol{t})-\frac{\mathbf{1}}{\boldsymbol{L}_{\boldsymbol{o}}} \boldsymbol{v}_{\boldsymbol{a} c}(\boldsymbol{t})+\frac{\mathbf{1}}{\boldsymbol{L}_{\boldsymbol{o}}} \Delta v(\boldsymbol{t})-\iota_{\text {ref }}(t)
$$

If Eq. 4-12 is used in Eq. 4-11

$$
\begin{gathered}
\dot{V}\left(S_{1}\right)=S_{1}\left(\frac{E}{L_{o}} u(t)-\frac{R_{x}}{L_{o}} i_{o}(t)-\frac{1}{L_{o}} v_{a c}(t)+\frac{1}{L_{o}} \Delta v(t)-l_{r e f}(t)+\alpha e(t)-\alpha e_{0}\right)<0 \\
\dot{V}\left(S_{1}\right)=\frac{S_{1}}{L_{o}}\left(E u(t)-R_{x} i_{o}(t)-v_{a c}(t)+\Delta v(t)-2 L_{o} l_{r e f}(t)+2 L_{o} \alpha e(t)-L_{o} \alpha e_{0}\right)<0
\end{gathered}
$$

$u(t)$ is defined as the sum of 2 different signals:

$$
u(t)=u_{1}(t)+u_{2}(t)
$$

$u_{1}(t)$ nullifies all the terms except the uncertainly variations.

$$
u_{1}(t)=\frac{1}{E}\left(R_{x} i_{o}(t)+v_{a c}(t)+L_{o} i_{r e f}(t)-L_{o} \alpha e(t)+L_{o} \alpha e_{0}\right.
$$

Replacing $u_{1}(t)$ in Eq. 4-13

$$
\dot{V}\left(S_{1}\right)=S_{1}\left(E u_{2}(t)+\Delta v(t)\right)<0
$$

$u_{2}(t)$ try to stabilize the system for uncertainly variations or disturbance and it is defined as:

$$
u_{2}(t)=-\frac{\gamma}{E} S_{1}
$$

Replacing Eq. 4-14 in Eq. 4-13:

$$
\begin{gathered}
\dot{V}\left(S_{1}\right)=S_{1}\left(-\gamma S_{1}+\Delta v(t)\right)<0 \\
\left(S_{1}>0 \wedge S_{1}>\frac{\Delta v(t)}{\gamma}\right) \vee\left(S_{1}<0 \wedge S_{1}<\frac{\Delta v(t)}{\gamma}\right)
\end{gathered}
$$

Replacing Eq. 4-10 in Eq. 4-15

$$
\begin{aligned}
& \left(e(t)+e_{0}+\alpha \int_{0}^{t} e(\tau) d \tau>0 \wedge e(t)+e_{0}+\alpha \int_{0}^{t} e(\tau) d \tau>\frac{\Delta v(t)}{\gamma}\right) \vee \\
& \left(e(t)+e_{0}+\alpha \int_{0}^{t} e(\tau) d \tau<0 \wedge e(t)+e_{0}+\alpha \int_{0}^{t} e(\tau) d \tau<\frac{\Delta v(t)}{\gamma}\right)
\end{aligned}
$$

Solving the differential inequality:

$$
\begin{aligned}
& \left(e(t)>-e_{0} e^{-\alpha t} \wedge e(t)>\left(-e_{0}+\frac{\Delta v(t)}{\gamma}\right) e^{-\alpha t}\right) \vee \\
& \left(e(t)<-e_{0} e^{-\alpha t} \wedge e(t)<\left(-e_{0}+\frac{\Delta v(t)}{\gamma}\right) e^{-\alpha t}\right)
\end{aligned}
$$

Figure 4-24 shows with blue color the region with unknown stability but this zone tend to 0 .
S_{1} will be stable in a Lyapunov sense while $\lim _{t \rightarrow \alpha} \Delta v(t) \neq \propto$.

Figure 4-24

Figure 4-25 Changes on phase and magnitude of Iref with sliding mode controller
Figure 4-25 Changes on phase and magnitude of Iref with sliding mode controllershows I_{o} if the amplitude and the phase of $I_{r e f}$ is changed.

Figure 4-26 zoom in lo and Iref
Figure 4-26 shows a zoom of $I_{r e f}$ and I_{o} and the transient responses time is $450 \mu \mathrm{~s}$.

Figure 4-27 Disturbance in Vh with Sliding mode control
Figure 4-27 shows the waveform of the nonlinear controller with a disturbance in the power supply of the higher H-bridge. Notice that if the voltage disturbance increase, always I_{o} reach $I_{\text {ref }}$

Figure 4-28 Error in nonlinear control
Figure 4-28 shows the waveform of the error with the disturbance in V_{h}, described in Figure 4-27. Notice that the maximum error is $0,1 \mathrm{~A}$.

The $e_{r m s}=18 \times 10^{-3} \mathrm{~A}$
The Total Harmonic Distortion (THD) of io without disturbance at nominal current (1.66 Arms) on phase in nonlinear control is 1.44%.

Controller	Transient response time	Max error in disturbance $\left(\boldsymbol{e}_{\boldsymbol{m a x}}\right)$	$\boldsymbol{e}_{\boldsymbol{r m s}}$	THD
PI controller	$80 \mu \mathrm{~s}$	0,27	$99,8 \times 10^{-3}$	$2,38 \%$
Sliding mode control	$450 \mu \mathrm{~s}$	0,1	18×10^{-3}	$1,44 \%$

Table 4.2 Comparative analysis of the controllers

In Table 4.2 shows the main features of both controllers and indicate that both have good transient responses; although PI controller is faster, this is not very important because both controllers respond fast enough to control the inverter. The difference is in magnitude of the errors and THD. PI controller has a max error and $\mathrm{e}_{\mathrm{rms}}$ much bigger than the Sliding mode control, and THD is bigger too. It can be inferred that the sliding mode control is better for the inverter,

5 Implementation:

This chapter shows the implementation process, elements and techniques of the inverter and both controllers.

To implement the hardware, 4 main circuits were designed: higher H -Bridge card, Lower H -Bridge card, Sensing card and output filter card. In Annex 1 shows the schematic of whole the inverter.

Figure 5-1 Hardware of the inverteris a photo of the hardware of the inverter.

Figure 5-1 Hardware of the inverter

5.1 Inverters with RC load in open loop.

Figure 5-2 shows the output voltage of each H-Bridge (yellow HV and red LV) and the total output of the H-Bridges (blue) $\left(V H_{l}, V H_{h}, V_{a n}\right)$. Notice that due to the dead time many intervals of the waveform of $V_{a n}$ have a considerable overshoot, this occurs because in this interval one H-Bridge switches first than the other because the dead time.

Figure 5-2 $V_{a n}(t), V H_{l}(t), V H h(t)$
Figure 5-3 shows the output voltage $V_{o}(t)($ yellow $), V_{a n}(t)(b l u e)$, and $I_{o}(t)(r e d)$. Notice that $V_{o}(t)$ has a small distortions in the intervals that $V_{a n}(t)$ has the overshoots.

Figure 5-3 $V_{o}(t), V_{a n}(t)$, and $I_{o}(t)$.
The implementation in open loop with RC load was done to find the efficiency of the inverter, and determine how much power dissipates each element. Table 5.1 shows the power supplying of each H-Bridge $\left(\mathrm{P}_{150 \mathrm{v}}, \mathrm{P}_{50} \mathrm{v}\right)$, the output Power $\left(\mathrm{P}_{\text {out }}\right)$, and the power losses of the output inductor, Higher H -Bridge and Lower H -Bridge. $\left(\mathrm{P}_{\mathrm{Lo}}, \mathrm{P}_{\mathrm{Lh}}, \mathrm{P}_{\mathrm{L}}\right)$ and the respective percentage of the total power supplying.

$\boldsymbol{P}_{\boldsymbol{x}}$ (power measures)	Power	Percentage ($\mathbf{\eta}$)
$P_{150 V}$	215 W	100%
$P_{\text {out }}$	200 W	$93,03 \%$
$P_{50 V}$	$-2 W$	$0,93 \%$
$P_{L_{o}}$	$0.3 W$	$0,14 \%$
$P_{L_{h}}$	$1.5 W$	$0,7 \%$
$P_{L_{l}}$	$0.18 W$	$0,08 \%$

Table 5.1 Power in each part of the inverter.

Notice that the Source of 50 V , do not supply power, and consume a small quantity of power, this is because the source of 50 V serves to improve the THD not to supply power.

The losses in the switching devices are calculated with as:

$$
\begin{gathered}
P_{R D S}+P_{s w} \\
P_{150 V}+P_{50 V}=P_{\text {out }}+P_{L_{o}}+P_{L_{h}}+P_{L_{l}}+P_{R D S}+P_{s w}
\end{gathered}
$$

Eq. 5-1

Where $\mathrm{P}_{\text {RDS }}$ are the conduction losses in the MOSFETs and $\mathrm{P}_{\text {sw }}$ the switching losses in the MOSFETs. Accordingly the losses in the MOSFETs are:

$$
P_{R D S}+P_{S W}=11.02 \mathrm{~W}
$$

Figure 5-4 ripple current in open loop shows the ripple current in the inductor in open loop with RC load, and it is 300 mA .

Figure 5-4 ripple current in open loop
5.2 Implementation of the linear control of the inverter in grid tie mode In order that the controller will be implemented in a DSP the discrete controller has to be converted in a differences equation.

$$
\begin{array}{r}
u(z)=e(z) G_{c d}(z) \\
u(z)=0.9 e(z) \frac{\left(1-0.99 z^{-1}\right)}{1-z^{-1}} \\
u_{0}-u_{-1}=0.9 e_{0}-0.891 e_{-1} \\
\boldsymbol{u}_{\mathbf{0}}=\boldsymbol{u}_{-\mathbf{1}}+\mathbf{0 . 9}\left(\boldsymbol{e}_{\mathbf{0}}-\mathbf{0 . 9 9} \boldsymbol{e}_{-\mathbf{1}}\right)
\end{array}
$$

Eq. 5-2 shows the difference equation of the PI controller

Figure 5-5 linear controller with 1A peak in phaseshows the output current (red) and the grid voltage (yellow) with a current reference of 1A peak in phase. Notice the current ripple is approximately the 15% of the current amplitude.

MSO-X 3024A, M 52161602 : Fri Apr 0306:24:182015

Figure 5-5 linear controller with 1A peak in phase
MSO-X 3024A, MY52161602: Fri Apr 0306:38:58 2015

Figure 5-6 linear controller with 2A peak in phase

Figure 5-6 linear controller with 2A peak in phase shows the output current (red) and the grid voltage (yellow) with a current reference of 2A peak in phase. Notice the current ripple did not change if the amplitude reference is changed.

Figure 5-7 Linear controller with 1,7A peak in leading phaseshows the output current $i_{o}(t)$ (blue) in phase leading, the grid voltage $v_{a c}(t)$ (green), and the total ouput voltages of the H-Bridges $v_{a n}(t)$ (yellow). Notice that the current is unstable in the intervals that $v_{a n}(t)$ has the overshoots.

Figure 5-7 Linear controller with 1,7A peak in leading phase
Figure $5-8$ shows the ripple current in the unstable zone and it is $1,5 \mathrm{~A}$. this ripple increase if the amplitude of $i_{r e f}(t)$ increase.

Figure 5-8 ripple current in the unstable zone

Figure 5-9 shows the ripple current with linear controller in the stable zone, and it is 200mA. This ripple does not increase if the amplitude of $\mathrm{I}_{\text {ref }}$ increases.

Figure 5-9 ripple current with linear controller in stable zone

Figure 5-10 comparison between measured current vs simulated current changing Vh
Figure $5-10$ shows a disturbance in the higher H -Bridge and the behavior of the simulated current and the measured current. Notice that those are very similar and the $e_{r m s}=0.27 \mathrm{~A}$

The $e_{r m s}$ between the reference and the measurement current in linear controller is 0,189 A.

5.3 Implementation of the sliding mode control.

In this chapter shows the results of the implementation of the nonlinear control
Figure 5 -11shows the output current $i_{o}(t)$ (red) and the grid voltage (green) with a reference current of 1 A peak in phase, notice the ripple current is almost the same as the linear controller.

Figure 5-11 lo(t) with reference of 1A peak in phase
Figure 5-12 shows the output current $i_{o}(t)$ (red) and the grid voltage (blue) with a reference of 2A peak in phase, notice the ripple current is lower for the nonlinear controller.

Figure 5-12 $\mathrm{lo}(\mathrm{t})$ with reference of 2A peak in phase
Figure 5-13 shows the output current $i_{o}(t)$ (red) and the grid voltage (blue and/or green) with a reference current of 2A peak and 43 degrees in lagging. Notice the nonlinear control the current ripple is less than the linear controller, and the current waveform is not distorted to phase change.

MSO-X 3024A, MY52161602: Tue Apr $1408: 12: 522015$

Figure 5-13 $\mathrm{lo}(\mathrm{t})$ with reference of 2A peak and 43 degrees in lagging
MSO-X 3024A, M 552161602 : Fri May 0803:52:45 2015

Figure 5-14 $\operatorname{Van}(t)$, $l o(t)$ and $\operatorname{Vac}(t)$ with a reference of 1,5A peak and 36 degree in lagging.
Figure 5-14 shows the total output of the H -Bridges $v_{a n}(t)$ (green) the output current $i_{o}(t)$ (blue), and the grid voltage $v_{a c}(t)(r e d)$, when the reference is in lagging. Notice that the unstable zone in linear controller is stable in nonlinear controller.

Figure 5-15 Ripple current with nonlinear controller
Figure 5-15 shows the ripple current with nonlinear controller, and it is 200 mA . This ripple does not increase if amplitude of the current increase.

Figure 5-16 comparison between lo simulated and lo measured
Figure 5-16 comparison between lo simulated and lo measuredshows a disturbance in the higher H -Bridge and show the behavior of the simulated current and the measured current. Notice that are very similar and the $e_{r m s}=0.18 \mathrm{~A}$

The $e_{r m s}$ between the reference and the measurement current nonlinear controller is 0.06 A . The tracking error in nonlinear control is much lower than the linear controller.

6 Comparative analyses of results

The transient response time reference changes cannot be measure because the changes did softly
In the simulations the ripple current in the linear and nonlinear controller are the same of the open loop.

This probes were done with a variation of amplitude from 0,8A peak to 2,5 Apeak, and a variation of phase from -45 degrees to 45 degrees.

	Simulated			Measured		
	Open loop	Linear controller	Nonlinear controller	Open Loop	Linear Controller	Nonlinear controller
$\boldsymbol{e}_{\text {rms }}$	-	$99,8 \mathrm{~mA}$	18 mA	-	190 mA (Avg)	60 mA (Avg)
$\boldsymbol{e}_{\text {max }}$	-	270 mA	100 mA	-	-	-
Ripple current	100 mA	100 mA	100 mA	300 mA	$1,5 \mathrm{~A}$	200 mA
Transient response time reference change	-	$80 \mu \mathrm{~m}$	$450 \mu \mathrm{~s}$	-		

7 Conclusions:

- THMI is the inverter that has the most number of levels and this reduce the inductor dimension.
- Sub-harmonic PWM strategy is a straightforward modulation to implement in a THMI of 2 H-Bridges.
- To control a THMI a nonlinear control is better because it does not present problems with the intervals that may generate higher overshoots in the total outputs of the H -Bridges. The Sliding mode control defined in the project is a good control method because it ensures the stability independently of the value of the uncertainly while this do not tend to ∞.

References:

[1] JOSÉ ANTONIO VILA GARCÍA, "CONTROL NO LINEAL DE CONVERTIDORES ELECTRICOS DE POTENCIA," UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, 2005.
[2] Fang Lin Luo and Hong Ye, ADVANCED DC / AC INVERTERS. 2013.
[3] K. Ogata, Modern Control Engineering, 5th ed. Prentice Hall, 2009.
[4] H. K. Khalil, NONLINEAR SYSTEM, 3rd ed. Prentice Hall, 2001.
[5] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromecanical systems. 1999.
[6] R. J. Wai and W. H. Wang, "Design of grid-connected photovoltaic generation system with high step-up converter and sliding-mode inverter control," Proc. IEEE Int. Conf. Control Appl., no. October, pp. 1179-1184, 2007.
[7] A. Mohan, D. Mathew, and V. M. Nair, "Grid connected PV inverter using adaptive total sliding mode controller," 2013 Int. Conf. Control Commun. Comput., no. Iccc, pp. 457-462, 2013.
[8] S.-C. Tan, Y.-M. Lai, and C. K. Tse, Sliding Mode Control of Switching Power Converter Techniques and Implementation. 2012.
[9] R. W. Erikson and D. Maksimovic, FUNDAMENTALS OF POWER ELECTRONICS, 2nd ed. 2001.
[10] N. Mohan, T. M. Undeland, and W. P. Robins, ELECTRÓNICA DE POTENCIA Convertidores, aplicaciones y diseño, 3rd ed.

Appendix

In the DVDs attached to the document are the complementary files of this dissertation, which include each board schematic circuits, and the programs codes for the linear and nonlinear control in Code Composer Studio.

