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si lo hubiera dictado otro profesor, pero al igual que con el profesor Mario lo que más aprend́ı
de Johan fueron consejos e ideas para dictar clases, si bien creo que nunca tendré una letra
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About this work

This document is the result of a year-long work at the end of a mathematics undergraduate
program. It deals with the classification of rank 1 and 2 affine homogeneous distributions
on 3-manifolds under a point-affine equivalence. Most of the results come from [1] and [2]
as well as the overall idea.

The classification is done using Cartan’s reduction method, which basically consists on the
reduction of ‘geometric objects’ into normal forms under some notion of equivalence. In the
words of Robert B. Gardner [3] The goal of the method of equivalence is to find necessary and
sufficient conditions in order that ‘geometric objects’ be ‘equivalent’. The word ‘equivalent’
usually ends up meaning that the geometric objects are mapped onto each other by a class of
diffeomorphisms characterized as the set of solutions of a system of differential equations.

In this case these geometric objects are affine distributions and the notion of equivalence
is point-affine equivalence. During the realization of this work [3] was the main reference
regarding this technique, as well as [4].

This work is organized as follows: first, the basic notions, definitions and tools are ad-
dressed in Chapter 1. Next, the main results are presented in Chapter 2 in the form of four
theorems. Finally two examples are given in Chapter 3. Appendix A shows the alternative
method followed in the original articles for computing the normal forms of the first theorem.
Basic knowledge of manifolds is assumed, in particular vector bundles, vector and covector
fields, and also tensor products as well as some background on group theory, specially Lie
groups. Most of the definitions were taken from [5] and [6].

The intended audience of this work are mathematic students with some interest in ge-
ometry of manifolds that wish to acquire a feeling of Cartan’s reduction method or have
detailed working examples of the method. Also everyone interested in the actual classifica-
tion theorems. The objective of this work is twofold:

1. To summarize the results obtained in [1] about the classification of rank 1 and 2
affine homogeneous distributions on 3-manifolds. Also, to provide the background
necessary to understand the proofs and overall context of the work, yielding a mostly
self-contained document.

2. To proof of the classification theorems exhibiting the maximum amount of detail of
the reduction method, particularly following the steps presented in [3].

The main theoretical contribution is Theorem 2.2.2 which is an extension of the work done
in [1] or [2]. There are two motivations for the realization of this work: a purely theoretical
one and a more broader one regarding the connection between geometry of manifolds and
nonlinear control theory.
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From a theoretical point of view, the point affine distributions can be directly associated
with input-affine control system [1]s. The notion of point-affine equivalence preserves the
optimal solutions given by the optimal control problem associated with the input-affine
control system. As a result, the classification theorems enable the solution of optimal control
problems subject to equivalent dynamical systems solving only the normal form case. This
result can be further enhanced by designing control laws for the normal case that can later be
applied to any equivalent dynamical system using the appropriate coordinate transformation.

On the other hand, a global motivation is the following: many of the tools and ideas
available in geometry of manifolds can be used to some extension in nonlinear control theory.
Both theories deal largely with the same problems but from different point of views and
with different objectives. Nonetheless, this connection implies that results of geometry of
manifolds can be applied to nonlinear control theory problems after some adjustments [7].
Conversely, nonlinear control theory is a very rich and exiting field in which the geometry
of manifolds can find many interesting applications [8].

This connection has not been exploited to the maximum because both branches have de-
veloped independently, consequently the notions and way of thinking about them is different.
This implies that in order to apply results of geometry to nonlinear control theory a good
level of understanding of both fields is required, and that is not very common. On the other
hand the different points of view and objectives about the same topics yield results that are
not compatible without some previous work. The classification theorems of this work are
a good example. At first glance they are useless for a control engineer, not only because
it is theoretically demanding to understand the hypothesis but also because they do not
contribute directly to the synthesis of a controller. However, after some work it is possible
to relate concepts such as bracket-generating distribution with controllable dynamical system
from geometry to control theory and apply the theorem to real physical systems.

Furthermore, if some properties useful from a control theory point of view such as stability
are proven to be invariant under the defined equivalence suddenly the classification theorem
implies that, for a wide range of dynamical system, a single controller in normal form can
be applied and like that, the previously abstract and seemingly not very useful theorem
transforms into a very powerful tool for the design of control laws.

This is only a very simple and limited example of what I belief to be a much larger bridge
between both fields.
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Chapter 1

Preliminaries

1.1 Notation and Basic Notions

The following definitions and examples will be used through the text (for details see [5], [6]):

Definition 1.1.1. A fiber bundle (E, π,M, S) consists of manifolds E, M and S, and
a smooth surjective submersion π : E → M satisfying that each x ∈ M has an open
neighborhood U such that E|U := π−1(U) is diffeomorphic to U × S.

The manifold E is called the total space, M the base space and S the standard fiber. The
map π is a called projection. If φ is the diffeomorphism between E|U and U × S, then the
pair (U, φ) is known as a fiber chart.

Definition 1.1.2. Let (E, π,M, S) be a fiber bundle and (Uα) an open cover of M , then a
collection of compatible fiber charts (Uα, φα) is called a fiber bundle atlas. Given a fiber
bundle atlas it is possible to consider of two fiber charts (Uα, φα) and (Uβ, φβ) and the map

φα ◦ φ−1β : Uβ ∩ Uα × S −→ Uβ ∩ Uα × S
(x, s) 7−→ (x, φβα(x, s)),

where the function φβα : Uβ ∩ Uα × S → S is a smooth function and φβα(x, ·) : S → S is
a diffeomorphism of S for each x ∈ Uβα := Uβ ∩ Uα. The mappings φβα are known as the
transition functions of the bundle (or bundle transition functions).

This transition functions satisfy a cocycle condition, namely:

• φαβ(x) ◦ φβγ(x) = φαγ(x) for x ∈ Uαβγ,

• φαα(x) = x for x ∈ Uα.

In the special case where S is a vector space we obtain the following definition:

Definition 1.1.3. A vector bundle is a fiber bundle where the fiber S is an n-dimensional
vector space V . In this case the reference to the vector space is omitted and the vector
bundle is denoted simply as the triple (E, π,M ).
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Definition 1.1.4. If the triple (E, π,M ) is a vector bundle, then the set Ex := π−1({x}) is
a fiber over x ∈ M and is an n-dimensional vector spaces. The smooth function σ : M → E
is called a section of the bundle if π ◦ σ(x) = x, for all x ∈ M .

There are two very important examples:

Example 1.1.1. The tangent bundle: Let

E = TM =
{

(x, v) | x ∈ M , v ∈ TxM
}
,

element (x, v) ∈ TM is identified with v for convenience. The fiber at x is the space
Ex := π−1({x}) = TxM , and the sections:

X : M −→ TM

x 7−→ Xx ∈ TxM ,

are called vector fields.

Example 1.1.2. The cotangent bundle: Let

E = T ∗M =
{

(x, η) | x ∈ M , η ∈ T ∗xM
}
,

element (x, η) ∈ T ∗M is identified with η for convenience. The fiber at x is the space
Ex := π−1({x}) = T ∗xM and the sections:

Ω : M −→ T ∗M

x 7−→ ηx ∈ T ∗xM ,

are called covector fields or 1-forms.

Definition 1.1.5. Let (E, π,M ) be a vector bundle, then a subbundle of E is a vector
bundle (D, πD,M ) in which D is a topological subspace of E and πD is the restriction of π
to D such that for each x ∈ M , the subset Dx = D ∩ Ex is a linear subspace of Ex and the
vector structure of Dx is the one inherited from Ex.

Definition 1.1.6. Given a vector bundle (E, π,M ), a frame at a point x ∈ M is an ordered
basis for the vector space Ex = π−1({x}). Define,

Fx(E) := set of all frames at x ∈ M .

Example 1.1.3. For (TM ,M , π) we have:

Fx := Fx(TM ) =
{

(vi)
n
i=1 | vi ∈ TM , span{vi(x)} = TxM

}
.

Example 1.1.4. For (T ∗M ,M , π) we have:

F ∗x := Fx(T
∗M ) =

{
(vi)ni=1 | vi ∈ T ∗M , span{vi(x)} = T ∗xM

}
.
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The space Fx(E) has a natural left action by the general linear group GLn:

GLn × Fx −→ Fx

(g, p) 7−→ g · p.

Definition 1.1.7. The frame bundle is the triple (F (E),M , π) where

F (E) :=
⊔
x∈M

Fx(E) =
{

(x, p) | x ∈ M , p ∈ Fx(E)
}
,

with projection

π : F (E) −→ M

(x, p) 7−→ x.

Again there are two important examples:

Example 1.1.5. The tangent frame bundle (or frame bundle): (F (TM),M, π) where

F (TM) :=
⊔
x∈M

Fx(TM) =
{

(x, p) | x ∈M, p ∈ Fx(TM)
}
.

Example 1.1.6. The cotangent frame bundle (or coframe bundle): (F (T ∗M),M, π)
where:

F (T ∗M) :=
⊔
x∈M

Fx(T
∗M) =

{
(x, p) | x ∈M, p ∈ Fx(T ∗M)

}
.

Definition 1.1.8. Let G be a Lie group and (E, π,M , S) be a fiber bundle. A G-bundle
structure on the fiber bundle consists of:

1. a left action ρ : G× S → S of the Lie group G on the standard fiber S,

2. a fiber bundle atlas (Uα, φα) whose transition functions φαβ act on S via the G-action.
That is, there is a family of smooth mappings ϕαβ : Uαβ → G which satisfy that:

(a) ϕαβ(x)ϕβγ(x) = ϕαγ(x) for x ∈ Uαβγ,
(b) ϕαα(x) = e the identity of G,

(c) φαβ(x, s) = ρ(s, ϕαβ(x)) = sϕαβ.

A fiber bundle with a G-bundle structure is called a G-bundle.

Definition 1.1.9. A principal fiber bundle (P, π,M , G) is a G-bundle where the fiber is
a Lie group G and the left action of G on G is just the left translation.

Example 1.1.7. The frame bundle and coframe bundle are principal fiber bundles with Lie
group GLn.
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1.2 Method of Equivalence

First denote the coframe bundle by B(M) := F (T ∗M). Let ξ ∈ B(M), i.e. ξ = (x, (ξi)ni=1)
is a coframe of M , neglecting the reference to the point x ∈ M we have ξ = {ξi}ni=1, where
ξi ∈ T ∗xM and x = π(ξ).

Definition 1.2.1. The tautological forms are 1-forms on B(M) denoted θa, 1 ≤ a ≤ n
defined by:

θa : B(M) −→ T ∗ξ (B(M))

ξ 7−→ θaξ ,

where

θaξ : Tξ(B(M)) −→ R
Xξ 7−→ ξa(dξπ(Xξ)).

Let U be a neighborhood of x ∈ M . Take the coframe field η = {ηi}ni=1 (ηi ∈ Ω1(U)).
Define the function:

α : π−1(U) −→ U ×GLn
(x, ξ) ≡ ξ 7−→ (x, g),

where ξa = g̃ab η
b
x, [g̃ab ] = g−1. Now consider the pullbacks of these 1-forms, using the map

dπ∗(x,ξ) : T ∗xM −→ T ∗(x,ξ)(π
−1(U))

ηax 7−→ dπ∗(x,ξ)(η
a
x) = η̄ax,ξ.

We have the definition:
θa(x,ξ) = g̃ab η̄

b
(x,ξ) = g̃abdπ

∗
(x,ξ)(η

b
x).

Or in vector form:
θ(x,ξ) = g−1dπ∗(x,ξ)(ηx). (1.1)

Definition 1.2.2. A G-structure P →M is a principal subbundle of π : B(M)→M with
the group structure G ⊂ GLn, that is: (P, π|P ,M,G) is itself a principal bundle where

P =
⊔
x∈M

Ux,

and the Ux are vector subspaces of the fibers B(M)x = Fx(T
∗M).

Given a coframe of tautological forms θ = (θa)na=1 we define the structure equations
as:

dθa = ωab ∧ θb + T abcθ
b ∧ θc.

where ωab are the Maurer-Cartan forms. The functions T abc : P → R are called the torsion
functions, and the map

T : P → Λ2Rn⊗Rn , ξ 7→ T abc(ξ)e
b ∧ ec ⊗ ea,

where {ei} is the canonical base form R is called the torsion.
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Definition 1.2.3. The Spencer operator δ in an operator defined on T 2
1 (Rn) by:

δ : T 2
1 (Rn) −→ Λ2(Rn)⊗ Rn

tabc 7−→ ta[bc] =
1

2
(tabc − tacb).

Using the Spencer operator, we define the space:

T =
Λ2(Rn)⊗ Rn

δ(g⊗ (Rn)∗)
,

where g is the Lie algebra of G. Using this space we define the structure function:

C : P −→ T
ξ 7−→ [T abc(ξ)].

The structure equations are said to be homogeneous if all the structure functions T abc are
equal to constants. On the other hand the group G acts on T by:

ρ(g) : T −→ T
T abc 7−→ g̃arT

r
pqg

p
bg

q
c .

The orbits of this action relate with the torsion functions in the following form: Consider
two sets of structure equations

dθa = ωab ∧ θb + T abcθ
b ∧ θc, dθ̃a = ω̃ab ∧ θ̃b + T̃ abcθ̃

b ∧ θ̃c,

corresponding to the same G−structure. Then the torsion functions are related by the orbits
of the G action by

ρ(g)(T abcea ⊗ eb ∧ ec) = g̃arT
r
pqg

p
bg

q
cea ⊗ eb ∧ ec ⇐⇒ T̃ abc = g̃arT

r
pqg

p
bg

q
c . (1.2)

Given a G−structure P →M , let T =
⊔
T α be the partition of T into orbits by the action

of G. Assume that the structure function C takes values only on one orbit T 0. Then fix
τ0 ∈ T 0 and define:

P̂ = {ξ ∈ P | C(ξ) = τ0}, (1.3)

Ĝ = {g ∈ G | ρ(g)τ0 = τ0}. (1.4)

Here, P̂ is the total space of a principal Ĝ-subundle of P (which is itself a subbundle of
B(M) with the group structure GLn). This procedure of obtaining Ĝ-structure P̂ → M
from the G−structure P →M is known as the Cartan Reduction.

1.3 Distributions

Definition 1.3.1. Let M be an n-dimensional manifold, then a distribution of rank k on
M , is a rank-k subbundle D of TM , Dx ⊂ TxM is a linear subspace of dimension k for each
x ∈ M and the distribution D can be thought of as

D =
⋃
x∈M

Dx.
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Being a subbundle, each point x of M has a neighborhood U on which there are smooth
vector fields X1, X2, . . . , Xk : U → TM such that X1|x, X2|x, . . . Xk|x are a basis for Dx for
every x ∈ U .

Definition 1.3.2. Let D be a smooth distribution. A nonempty immersed submanifold
N ⊂ M is called an integral manifold of D if TxN = Dx at each point x ∈ N . A
smooth distribution D on M is said to be integrable if each point of M is contained in
an integral manifold of D. Furthermore, the distribution D is completely integrable if
for each x ∈ M there exists a neighborhood U such that the first k coordinate vector fields
∂/∂x1, ∂/∂x2, . . . , ∂/∂xk span DU . A completely integrable distribution is also known as a
Frobenius distribution.

1.4 Point-Affine Equivalence

Definition 1.4.1. A dynamical system is a triple (X ,U ,Γ) where X is an open subset
of Rn called the state space, U is an open subset of Rm and Γ is a smooth function that
satisfies

Γ : X ×U −→Rn

(x, u) 7−→ Γ(x, u) = ẋ.

Such a dynamical system is said to have n states, m inputs and represent the dynamics given
by ẋ = Γ(x, u) where x ∈ Rn are the states and u ∈ Rm are the controls.

Definition 1.4.2. An input-affine system is a dynamical system where the function Γ
has the form

Γ(x, u) = F (x) +G(x)u.

Representing the dynamics
ẋ = F (x) +G(x)u, (1.5)

where F : X → X is a smooth vector function known as the drift vector and G : X → Rn×m

is smooth matrix function.

Definition 1.4.3. A rank-s affine distribution F on an n-dimensional manifold X is a
smoothly-varying family of s-dimensional, affine linear subspaces Fx ⊂ TxX . The distribu-
tion F is strictly affine if none of the subspaces Fx ⊂ TxX are linear subspaces. Each
affine distribution F has a corresponding direction distribution:

LF = {X1 −X2 | X1, X2 ∈ F}

Let F be an affine distribution on a manifold X . Let F also denote the sheaf of smooth
vector fields on X which are local sections of F . The flag of subsheaves

F = F1 ⊂ F2 ⊂ · · · ⊂ T X

May be defined in the recursive way: Let F1 = F and then for i ≥ 1

F i+1 = F i +[F ,F i]
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Given a point x in the manifold X , the flag of subsheaves gives a flag of affine subspaces of
TxX :

F1
x ⊂ F2

x ⊂ · · · ⊂ TxX .

Definition 1.4.4. Denote F∞ = ∪i≥1F i ⊂ T X . Then the smallest integer r = r(x) such
that F rx = F∞x is called the step of the distribution at x. Let ni(x) = dim(F ix). The growth
vector of F at x is the list of integers (n1(x), n2(x), . . . , nr(x)), where r is the step of F
at x. The distribution F is bracket-generating if F∞ = T X . On the other hand F is
almost bracket-generating is rank(F∞) = n − 1 and for each x ∈ X and any v ∈ Fx,
span(v(x), (LF∞)x) = TxX . Furthermore the distribution F has constant type if:

• The growth vector of F is constant on X .

• For any section v of F , dim(span(v(x), (LFi)x)) is constant on X for all i.

Definition 1.4.5. A point affine distribution F on a manifold X is an affine distribution
F on X , together with a distinguished vector field v0 ∈ F .

Any input affine dynamical system

ẋ = v0(x) +
s∑
i=1

vi(x)ui,

has a canonical identification with the affine distribution F those fibers are

Fx =
{
v0(x) +

s∑
i=1

λivi(x) | λ1 ∈ R for i = 1, 2, . . . , s
}
.

Definition 1.4.6. Given two input affine systems

ẋ = a0(x) +
s∑
i=1

ai(x)ui, ẏ = b0(y) +
s∑
j=1

bj(y)vj,

defined on the manifolds X and Y , with local coordinate representation of the vector fields:

al(x) =
n∑
k=1

akl (x)
∂

∂xk
, bl(x) =

n∑
k=1

bkl (x)
∂

∂yk
, l = 0, 1, . . . , n

They are locally point-affine equivalent if there exist a diffeomorphism ψ : X −→Y that
satisfies

ψ∗(a0(x)) = b0(ψ(x)), ψ∗(ai(x)) =
s∑
j=1

λji (x)bj(ψ(x)) i = 1, 2, . . . , s

The condition of being locally point-affine equivalent translates in local coordinates to:

bk0(ψ(x)) =
n∑
q=1

∂ψk

∂xq
(x)aq0(x),

s∑
j=1

λji (x)bkj (ψ(x)) =
n∑
q=1

∂ψk

∂xq
(x)aqi (x),

k = 1, 2, . . . , n
i = 1, 2, . . . , s.
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Chapter 2

Classification Theorems

2.1 Rank-1 Distributions in 3-Manifolds

Theorem 2.1.1 (Local classification of rank-1 strictly affine distributions on 3-manifolds).
Let F be a rank 1 strictly affine point-affine distribution of constant type on a manifold M
of dimension 3. Then:

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any
point x ∈ M , there exist local coordinates (x1, x2, x3) such that

F =

(
∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)

where J is an arbitrary function on M .

2. If F is bracket-generating and LF2 is Frobenius, then in a sufficiently small neighbor-
hood of any point x ∈ M , there exist local coordinates (x1, x2, x3) such that

F =

(
x2

∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)

where J is an arbitrary function on M .

3. If F is bracket-generating and LF2 is not Frobenius, then in a sufficiently small neigh-
borhood of any point x ∈ M , there exist local coordinates (x1, x2, x3) such that

F =

(
(1 + x3J)

∂

∂x1
+ J

∂

∂x2
+ JH

∂

∂x3

)
+ span

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)

where J and H are arbitrary functions on M satisfying ∂H
∂x1
6= 0.

Proof. Let M be a 3-manifold and F be a rank 1 point-affine distribution on M . The
problem is to classify the possible point affine distributions that are of constant type and
strictly affine.
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Start with a local framing (v1, v2, v3) on M , the distinguished vector field will be v1 and
v2 will generate the distributions, that is:

F = v1 + span(v2).

In order for another local framing (ṽ1, ṽ2, ṽ3) to be equivalent it must generate the same
distribution, which implies that

ṽ1 = v1, ṽ2 = b2v2, ṽ3 = a3v1 + b3v2 + c3v3,

where b2 6= 0 and c3 6= 0.
These conditions extend to the coframings (η1, η2, η3) and (η̃1, η̃2, η̃3) in M by:η̃1η̃2

η̃3

 =

1 0 a3
0 b2 b3
0 0 c3

−1η1η2
η3

 . (2.1)

The problem of classifying equivalent coframings in M can be solved using the Cartan reduc-
tion method in the lifted space B(M) via the map g−1dπ as in (1.1) with the corresponding
principal bundle B0 with structure group G0 defined by:

B0 = {(x, ξx) ∈ B(M ) | x ∈ R3, ξx ∈ Fx(T ∗R3), i.e., ξx = (θ1x, θ
2
x, θ

3
x)
T},

G0 =

{1 0 a3
0 b2 b3
0 0 c3

∣∣∣∣∣ b2c3 6= 0

}
.

Step 0: G0-Structure B0−→R3

Let us consider the principal subbundle

B0 = {(x, ξx) ∈ B(M ) | x ∈ R3, ξx ∈ Fx(T ∗R3), i.e. ξx = (θ1x, θ
2
x, θ

3
x)
T}, (2.2)

and the corresponding Lie group and corresponding Lie algebra:

G0 =

{1 0 a3
0 b2 b3
0 0 c3

∣∣∣∣∣ b2c3 6= 0

}
⇐⇒ g0 =

{0 0 α3

0 β2 β3
0 0 γ3

}. (2.3)

With this Lie algebra the structure equations aredθ1

dθ2

dθ3

 =

0 0 α3

0 β2 β3
0 0 γ3

 ∧
θ1θ2
θ3

+

T 1
23 T 1

13 T 1
12

T 2
23 T 2

13 T 2
12

T 3
23 T 3

13 T 3
12

θ2 ∧ θ3θ1 ∧ θ3
θ1 ∧ θ2

 . (2.4)

In order to reduce the subbundle we need to compute the orbits of the G0-action:

1. A basis for g0 is:
g0 = {e2 ⊗ e2, e1 ⊗ e3, e2 ⊗ e3, e3 ⊗ e3}.
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2. Thus a basis for g0 ⊗ R3 is:

g0 ⊗ R3 = {e2 ⊗ e2 ⊗ ei, e1 ⊗ e2 ⊗ ei, e2 ⊗ e3 ⊗ ei, e3 ⊗ e3 ⊗ ei}i=1,2,3.

3. The action of the Spencer operator δ in each element of the basis is given by:

δ : g0 ⊗ R3 −→ Λ2(R3)⊗ R3

e1 ⊗ e3 ⊗ e1 7−→ e1 ⊗ e3 ∧ e1

e1 ⊗ e3 ⊗ e2 7−→ e1 ⊗ e3 ∧ e2

e1 ⊗ e3 ⊗ e3 7−→ 0

e2 ⊗ e2 ⊗ e1 7−→ e2 ⊗ e2 ∧ e1

e2 ⊗ e2 ⊗ e2 7−→ 0

e2 ⊗ e2 ⊗ e3 7−→ e2 ⊗ e2 ∧ e3

e2 ⊗ e2 ⊗ e1 7−→ e2 ⊗ e2 ∧ e1

e2 ⊗ e3 ⊗ e1 7−→ e2 ⊗ e3 ∧ e1

e2 ⊗ e3 ⊗ e2 7−→ e2 ⊗ e3 ∧ e2

e2 ⊗ e3 ⊗ e3 7−→ 0

e3 ⊗ e3 ⊗ e1 7−→ e3 ⊗ e3 ∧ e1

e3 ⊗ e3 ⊗ e2 7−→ e3 ⊗ e3 ∧ e2

e3 ⊗ e3 ⊗ e3 7−→ 0,

hence

δ(g0 ⊗ R3) = 〈e1 ⊗ e1 ∧ e2, e1 ⊗ e2 ∧ e3, e2 ⊗ e1 ∧ e2, e2 ⊗ e1 ∧ e3,
e2 ⊗ e2 ∧ e3, e3 ⊗ e1 ∧ e3, e3 ⊗ e2 ∧ e3〉.

4. This implies that

T 0 =
Λ2(R3)⊗ R3

δ(g0 ⊗ R3)
= 〈e1 ⊗ e1 ∧ e2, e3 ⊗ e1 ∧ e2〉,

and the structure function is:

C : B0−→T 0

ξ 7−→T 1
12(ξ)e1 ⊗ e1 ∧ e2 + T 3

12(ξ)e3 ⊗ e1 ∧ e2.

5. In order to compute the orbits of T 0 calculate the G0-action in the generators: Let
g ∈ G0, then

ρ(g)(e1 ⊗ e1 ∧ e2) = b2e1 ⊗ e1 ∧ e2,

ρ(g)(e3 ⊗ e1 ∧ e2) =
−a3
c3

b2e1 ⊗ e1 ∧ e2 +
b2
c3
e3 ⊗ e1 ∧ e2.

According to (1.2) the torsion functions transform as

T̃ 1
12 = b2T

1
12 −

a3b2
c3

T 3
12, T̃ 3

12 =
b2
c3
T 3
12.
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Step 1: G1-Structure B1−→R3

Take τ0 = e3 ⊗ e1 ∧ e2. Using (1.3) results in the G1-Structure B1 → R3 with principal
subbundle:

B1 = {(x, ξx) ∈ B0 | T 1
12(ξ) = 0, T 3

12(ξ) = 1}. (2.5)

Replacing in (1.4), the corresponding Lie structure group G1 and its Lie algebra g1 are:

G1 =

{1 0 0
0 c3 b3
0 0 c3

∣∣∣∣∣ c3 6= 0

}
⇐⇒ g1 =

{0 0 0
0 γ3 β3
0 0 γ3

}. (2.6)

With this Lie algebra and principal subbundle the structure equations aredθ1

dθ2

dθ3

 =

0 0 0
0 γ3 β3
0 0 γ3

 ∧
θ1θ2
θ3

+

T 1
23 T 1

13 0
T 2
23 T 2

13 T 2
12

T 3
23 T 3

13 1

θ2 ∧ θ3θ1 ∧ θ3
θ1 ∧ θ2

 . (2.7)

In order to reduce the subbundle we need to compute the orbits of the G1-action:

1. A basis for g1 is:
g1 = {e2 ⊗ e2 + e3 ⊗ e3, e2 ⊗ e3}.

2. Thus a basis for g1 ⊗ R3 is:

g1 ⊗ R3 = {e2 ⊗ e2 ⊗ ei + e3 ⊗ e3 ⊗ ei, e2 ⊗ e3 ⊗ ei}i=1,2,3.

3. The action of the Spencer operator δ in each element of the basis is:

δ : g1 ⊗ R3 −→ Λ2(R3)⊗ R3

e2 ⊗ e2 ⊗ e1 + e3 ⊗ e3 ⊗ e1 7−→ −e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3

e2 ⊗ e2 ⊗ e2 + e3 ⊗ e3 ⊗ e2 7−→ −e3 ⊗ e2 ∧ e3
e2 ⊗ e2 ⊗ e3 + e3 ⊗ e3 ⊗ e3 7−→ e2 ⊗ e2 ∧ e3

e2 ⊗ e3 ⊗ e1 7−→ −e2 ⊗ e1 ∧ e3

e2 ⊗ e3 ⊗ e2 7−→ −e2 ⊗ e2 ∧ e3

e2 ⊗ e3 ⊗ e3 7−→ 0,

hence

δ(g1 ⊗ R3) = 〈e2 ⊗ e1 ∧ e2 + e3 ⊗ e1 ∧ e3, e3 ⊗ e2 ∧ e3, e2 ⊗ e2 ∧ e3, e2 ⊗ e1 ∧ e3〉.

4. This implies that

T 1 =
Λ2(R3)⊗ R3

δ(g1 ⊗ R3)
= 〈e2⊗e1∧e2−e3⊗e1∧e3, e1⊗e1∧e2, e1⊗e1∧e3, e1⊗e2∧e3, e3⊗e1∧e2〉

and the structure function is:

C : B1−→T 1

ξ 7−→T 2
12(ξ)(e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3) + T 1

12(ξ)e1 ⊗ e1 ∧ e2+
T 1
13(ξ)e1 ⊗ e1 ∧ e3 + T 1

23(ξ)e1 ⊗ e2 ∧ e3 + T 3
12(ξ)e3 ⊗ e1 ∧ e2.
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5. In order to compute the orbits of T 1 calculate the G1-action in the generators, let
g ∈ G1.

ρ(g)(e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3) = e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3,
ρ(g)(e1 ⊗ e1 ∧ e2) = c3e1 ⊗ e1 ∧ e2 + b3e1 ⊗ e1 ∧ e3,
ρ(g)(e1 ⊗ e1 ∧ e3) = c3e1 ⊗ e1 ∧ e3,
ρ(g)(e1 ⊗ e2 ∧ e3) = c23e1 ⊗ e2 ∧ e3,

ρ(g)(e3 ⊗ e1 ∧ e2) =
−b3
c3

(e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3) + e3 ⊗ e1 ∧ e2.

According to (1.2) the torsion functions transform as

T̃ 1
13 = c3T

1
13, T̃ 1

23 = c23T
1
23, T̃ 3

13 = T 3
13 +

b3
c3
.

Step 2: G2-Structure B2−→R3 Take τ1 = e3 ⊗ e1 ∧ e2. Using (1.3) results in the G2-
Structure B2 → R3 with principal subbundle

B2 = {(x, ξx) ∈ B1 | T 3
13(ξ) = 0}. (2.8)

Replacing in (1.4), the corresponding Lie structure group G2 and its Lie algebra g2 are:

G2 =

{1 0 0
0 c3 0
0 0 c3

∣∣∣∣∣ c3 6= 0

}
⇐⇒ g2 =

{0 0 0
0 γ3 0
0 0 γ3

}. (2.9)

With this Lie algebra and principal subbundle the structure equations aredθ1

dθ2

dθ3

 =

0 0 0
0 γ3 0
0 0 γ3

 ∧
θ1θ2
θ3

+

T 1
23 T 1

13 0
T 2
23 T 2

13 T 2
12

T 3
23 0 1

θ2 ∧ θ3θ1 ∧ θ3
θ1 ∧ θ2

 . (2.10)

In order to reduce the subbundle we need to compute the orbits of the G2-action:

1. A basis for g2 is:
g2 = {e2 ⊗ e2 + e3 ⊗ e3}.

2. Thus a basis for g2 ⊗ R3 is:

g2 ⊗ R3 = {e2 ⊗ e2 ⊗ ei + e3 ⊗ e3 ⊗ ei}i=1,2,3.

3. The action of the Spencer operator δ in each element of the basis is given by:

δ : g2 ⊗ R3 −→ Λ2(R3)⊗ R3

e2 ⊗ e2 ⊗ e1 + e3 ⊗ e3 ⊗ e1 7−→ −e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3

e2 ⊗ e2 ⊗ e2 + e3 ⊗ e3 ⊗ e2 7−→ −e3 ⊗ e2 ∧ e3
e2 ⊗ e2 ⊗ e3 + e3 ⊗ e3 ⊗ e3 7−→ e2 ⊗ e2 ∧ e3,

hence:

δ(g2 ⊗ R3) = 〈e2 ⊗ e1 ∧ e2 + e3 ⊗ e1 ∧ e3, e3 ⊗ e2 ∧ e3, e2 ⊗ e2 ∧ e3〉.
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4. This implies that

T 2 :=
Λ2(R3)⊗ R3

δ(g2 ⊗ R3)
= 〈e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3, e1 ⊗ e1 ∧ e2, e1 ⊗ e1 ∧ e3,

e1 ⊗ e2 ∧ e3, e2 ⊗ e1 ∧ e3, e3 ⊗ e1 ∧ e2〉.

and the structure function is:

C : B2−→T 2

ξ 7−→T 2
12(ξ)(e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3) + T 1

12(ξ)e1 ⊗ e1 ∧ e2 + T 1
13(ξ)e1 ⊗ e1 ∧ e3

T 1
23(ξ)e1 ⊗ e2 ∧ e3T 2

13(ξ)e2 ⊗ e1 ∧ e3T 3
12(ξ)e3 ⊗ e1 ∧ e2.

5. In order to compute the orbits of T 2 calculate the G2-action in the generators: Let
g ∈ G2.

ρ(g)(e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3) = e2 ⊗ e1 ∧ e2 − e3 ⊗ e1 ∧ e3,
ρ(g)(e1 ⊗ e1 ∧ e2) = e1 ⊗ e1 ∧ e2,
ρ(g)(e1 ⊗ e1 ∧ e3) = c3e1 ⊗ e1 ∧ e3,
ρ(g)(e1 ⊗ e2 ∧ e3) = c23e1 ⊗ e2 ∧ e3,
ρ(g)(e2 ⊗ e1 ∧ e3) = e2 ⊗ e1 ∧ e3,
ρ(g)(e3 ⊗ e1 ∧ e2) = e3 ⊗ e1 ∧ e2.

According to (1.2) the torsion functions transform as

T̃ 1
13 = c3T

1
13, T̃ 1

23 = c23T
1
23, T̃ 2

13 = T 2
13.

Before performing the last reduction we need to consider three cases:

1. T 1
13 = T 1

23 = 0 in this case it is not necessary to reduce further.

2. T 1
23 = 0 and T 1

13 6= 0 in this case it is necessary to reduce one more time to get a
G−structure where G = {e} (also noted e−structure).

3. T 1
23 6= 0 in this case one more reduction is required but the resulting G−Structure is

not trivial.

The idea now is to use the resulting structure equations to find normal forms for the
coframes and frames in M . Recalling that the structure equations dθa = ωab ∧ θb + T abcθ

b ∧ θc
are defined for coframes in the principal subbundles given by each reduction it is necessary
to express them in terms of coframes in M using the pullback of the section π.

Since the system of equations is highly underdetermined there are many frames and
coframes that satisfy the corresponding structure equations in M (all equivalent), if a simple
solution is not clear then a general form is assumed and conditions over the coordinate
functions are deduced from the structure equations, finally the simplest functions that satisfy
this conditions are chosen.

Case 1: T 1
13 = T 1

23 = 0
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Since the torsion functions T 2
23, T

2
12 and T 3

23 do not appear in the orbits of the action they
are not affected by the reduction so they are free to take any value, thus for simplicity we
can make them vanish. Hence the structure equations aredθ1

dθ2

dθ3

 =

0 0 0
0 γ3 0
0 0 γ3

 ∧
θ1θ2
θ3

+

0 0 0
0 T 2

13 0
0 0 1

θ2 ∧ θ3θ1 ∧ θ3
θ1 ∧ θ2

 . (2.11)

These forms are defined on the lifted space B2, thus in order to find the corresponding forms
in M consider their pullbacks via the section σ : M → B2:

dη1 = 0,

dη2 = γ̄3 ∧ η2 + T̄ 2
13η

1 ∧ η3,
dη3 = γ̄3 + T̄ 2

12η
1 ∧ η2.

Since η1 is exact we can chose a coordinate x1 on M such that η1 = dx1. From the structure
equations dη3 ≡ 0 mod {η3, dx1} so it is not exact and must be a combination of η3 and
dx1. Taking the two remaining coordinates the simplest form that satisfies these conditions
is

η3 = dx2 − x3dx1.

Finally the third structure equation implies that

η2 = dx3 +Bdx1 + C(dx2 − x3dx1).

For some functions B and C on M , from the structure equations it follows that

γ̄2 = Cdx1 +D(dx2 − x3dx1),

where D is another function in M and

C =
1

2
∂3B, D =

1

2
∂233B.

In summary the coframing is given by the one-forms:

η1 = dx1,

η2 = dx3 +Bdx1 +
1

2
∂3B(dx2 − x3dx1),

η3 = dx2 − x3dx1.

Now, it is easy to calculate the corresponding vector fields of the dual framing:

v1 =
∂

∂x1
+ x3

∂

∂x2
−B ∂

∂x3
,

v2 =
∂

∂x3
,

v3 =
∂

∂x2
− 1

2
∂3B

∂

∂x3
.
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Setting J = −B, the distribution is given by:

F = v1 + span(v2) =
( ∂

∂x1
+ x3

∂

∂x2
− J ∂

∂x3

)
+ span

( ∂

∂x3

)
.

Finally, from the structure equations

T 2
13 = ∂2J −

1

2
(∂213J + x3∂32J + J∂233J) +

1

4
(∂3J)2.

Case 2: T 1
23 = 0 and T 1

13 6= 0
In this case since T 1

13 6= 0 it is possible to continue the reduction, recall that we had the
orbit

ρ(g)(e1 ⊗ e1 ∧ e3) = c3e1 ⊗ e1 ∧ e3.

Thus let τ2 = e1 ⊗ e1 ∧ e3. Using (1.3) results in the G3-Structure B3 → R3 with principal
subbundle

B3 = {(x, ξx) ∈ B2 | T 1
13(ξ) = 1}. (2.12)

Replacing in (1.4), the corresponding Lie structure group G3 and its Lie algebra g3 are:

G3 =

{1 0 0
0 1 0
0 0 1

} ⇐⇒ g3 =

{0 0 0
0 0 0
0 0 0

}. (2.13)

With this Lie algebra and principal subbundle the structure equations aredθ1

dθ2

dθ3

 =

0 0 0
0 0 0
0 0 0

 ∧
θ1θ2
θ3

+

 0 1 0
T 2
23 T 2

13 T 2
12

T 3
23 0 1

θ2 ∧ θ3θ1 ∧ θ3
θ1 ∧ θ2

 . (2.14)

As it was done before use the section π : M → B3 to pullback this forms to obtain the
structure equations in M :

dη1 = η1 ∧ η3,
dη2 = T̄ 2

12η
1 ∧ η2 + T̄ 2

13η
1 ∧ η3 + T̄ 2

23η
2 ∧ η3,

dη3 = η1 ∧ η2 + T̄ 2
12η

1 ∧ η3. (2.15)

Now, note that η1 is a closed one-form, i.e. dη1 ≡ 0 mod η1 but is not exact, so in principle
we can take η1 in only one coordinate and make the function not defined in x2 = 0 so that
it is not exact. Thus, take the coordinates x1 and x2 and define

η1 =
1

x2
dx1.

Then the first structure function implies that

dη1 =
1

(x2)2
dx1 ∧ dx2 =

1

x2
η1 ∧ dx2 = η1 ∧ η3,
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hence

η3 =
1

x2
dx2 mod dx1.

Also note that dη3 6= 0 mod η3, the easiest way to guarantee this is to make the function in
the x1 coordinate depend on x3 so that dη3 has components in the three coordinates while
η3 not. And the simplest function is the linear one, so we make

η3 =
1

x2

(
dx2 − x3

x2
dx1
)
.

With η1 and η3 we can use the structure equations to arrive at

η2 =
1

x2

(
dx3 +

1

x2
Bdx1 +

1

x2
C
(
dx2 − x3

x2
dx1
))
,

for some functions B and C on M .
The structure equations also imply that C = 1

2
(x2∂3B − x3). In summary the coframe is

η1 =
1

x2
dx1,

η2 =
1

x2

(
dx3 +

1

x2
Bdx1 +

1

x2
1

2
(x2∂3B − x3)

(
dx2 − x3

x2
dx1
))
,

η3 =
1

x2

(
dx2 − x3

x2
dx1
)
.

The dual framing is

v1 = x2
∂

∂x1
+ x3

∂

∂x2
−B ∂

∂x3
,

v2 = x2
∂

∂x3
,

v3 = x2
∂

∂x2
− 1

2
(x2∂3B − x3)

∂

∂x3
.

Let J = −B. Then the distribution is given by

F = v1 + span(v2) =
(
x2

∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3

)
+ span

( ∂

∂x3

)
.

Finally from the structure equations

T 2
12 =

1

2x2
(x2∂3J − 3x3),

T 2
13 =

1

4(x2)2

(
3(x2)2 − 6x2J + 4(x2)2∂2J + 2x2x3∂3J − 2(x2)3∂213J

− 2(x2)2x3∂223J + (x2)2(∂3J)2 − 2(x2)2J∂233J
)
,

T 2
23 =

1

2
(1− x2∂233J).
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Case 3: T 1
23 6= 0

Since T 1
23 6= 0 it is possible to continue the reduction, in this case the corresponding orbit

of interest is
ρ(g)(e1 ⊗ e2 ∧ e3) = c23e1 ⊗ e2 ∧ e3.

Thus let τ2 = e1 ⊗ e2 ∧ e3. Using (1.3) results in the G3-Structure B3 → R3 with principal
subbundle

B3 = {(x, ξx) ∈ B2 | T 1
23(ξ) = 1}.

Replacing in (1.4), the corresponding Lie structure group G1 and its Lie algebra g1 are:

G3 =

{1 0 0
0 ±1 0
0 0 ±1

∣∣∣∣∣ det(g) = 1

}
⇐⇒ g3 =

{0 0 0
0 0 0
0 0 0

}.
With this Lie algebra and principal subbundle the structure equations aredθ1

dθ2

dθ3

 =

0 0 0
0 0 0
0 0 0

 ∧
θ1θ2
θ3

+

 1 T 1
13 0

T 2
23 T 2

13 T 2
12

T 3
23 0 1

θ2 ∧ θ3θ1 ∧ θ3
θ1 ∧ θ2

 . (2.16)

As before use the section π : M → B3 to pullback this forms to obtain the structure equations
in M :

dη1 = T̄ 1
13η

1 ∧ η3 + η2 ∧ η3,
dη2 = T̄ 2

12η
1 ∧ η2 + T̄ 2

13η
1 ∧ η3 + T̄ 2

23η
2 ∧ η3,

dη3 = η1 ∧ η2 + T̄ 2
12η

1 ∧ η3 + T̄ 3
23η

2 ∧ η3.

Since dη1 6= 0 mod η1 as in case 2 we make

η1 = dx1 − x3dx2.

Now set T 1
13 = B, then the first structure equation implies that

(Bη1 + η2) ∧ η3 = dx2 ∧ dx3.

Consequently,

η2 = (−B(dx1 − x3dx2)λ−1dx2 + C(Hdx2 − dx3)),

η3 = λ(Hdx2 − dx3).

For functions λ, C and H on M (λ 6= 0).
The third structure equation implies −λ2∂1H = 1 so ∂1H < 0 and

λ =
1√
−∂1H

.
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In summary the coframing is

η1 = dx1 − x3dx2,
η2 = −

√
−∂1Hdx2 −B(dx1 − x3dx2)− C(Hdx2)− dx3,

η3 =
1√
−∂1H

(Hdx2 − dx3).

The dual framing is

v1 =
∂

∂x1
− B√
−∂1H

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v2 =
1√
−∂1H

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v3 = −
√
−∂1H

∂

∂x3
+ C

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
.

Let J = −B√
−∂1H

, the distribution is

F =
( ∂

∂x1
− B√
−∂1H

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

))
+ span

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
Finally replacing in the structure equations we get the following relations:

C =
1

2∂1H

√
−∂1H

((
∂1H∂3H −H∂213H − ∂212H

)
J

− (1 + x3J)∂211H − (∂2J + x3∂1J +H∂3J)∂1H

)
,

T 2
12 =

1

2
(∂2J + x3∂1J +H∂3J + J∂3H),

T 2
13 =C2∂1H − ∂1H∂3J + J2∂1H +

1

2
√
−∂1H

(
2C
(
∂1H∂2J + J∂212H + ∂211H

+ 2x3∂1H∂1J + x3J∂211H + 2HJ∂213H − 2J∂1H∂3H
)

− 2x3J∂1C∂1H − 2∂1C∂1H − 2HJ∂3C∂1H − 2J∂2C∂1H

)
,

T 2
23 =−

(
∂2C + x3∂1C +H∂3C + C∂3H

)
− 1

2
√
−∂1H

(
∂213H + 2J∂1H

)
,

T 3
23 =

1

2∂1H
√
−∂1H

(
x3∂211H − 2∂1H∂3H + ∂212H +H∂213H

)
.

Theorem 2.1.2 (Normal form classification of rank-1 strictly affine distributions on 3-man-
ifolds). Let F be a rank-1, strictly-affine, bracket-generating or almost bracket-generating
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point-affine distribution of constant type on a 3-dimensional manifold M . If the structure
functions corresponding to the distribution F are homogeneous, then F is locally point-affine
equivalent to

F = v1 + span(v2), (2.17)

where the vectors v1 and v2 are one of the following:

• If F is almost bracket-generating, then there are two options:

– Case 1:

v1(x) =
∂

∂x1
+ x3

∂

∂x2
+ (c2x

2 + c3x
3)

∂

∂x3
,

v2(x) =
∂

∂x3
.

– Case 2:

v1(x) =
∂

∂x1
+ x3

∂

∂x2
+ c3x

3 ∂

∂x3
,

v2(x) =
∂

∂x3
.

• If F is bracket-generating and LF2 is Frobenius, then there is one case:

– Case 3:

v1(x) = x2
∂

∂x1
+ x3

∂

∂x2
+ x2

(
3

2

(x3
x2

)
+ c1

)
∂

∂x3
,

v2(x) = x2
∂

∂x3
.

• If F is bracket-generating and LF2 is not Frobenius, then there are three cases:

– Case 4:

v1(x) =
∂

∂x1
+ c1

(
x3

∂

∂x1
+

∂

∂x2
+ ε(x1 + c2x

3)
∂

∂x3

)
,

v2(x) = ε

(
x3

∂

∂x1
+

∂

∂x2
+ ε(x1 + c2x

3)
∂

∂x3

)
.

– Case 5:

v1(x) =
∂

∂x1
+

c1 cos(c3x
1)√

εc3(c3(x3)2 + c4)

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v2(x) = ε
(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
.

Where H =

(
(c3(x

3)2 + c4) tan(c3x
1) + F20(x

2)
√
c3(x3)2 + c4

)
.
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– Case 6:

v1(x) =
∂

∂x1
+

c1 cos(c3x
1)√

εc3(c3(x3)2 − c4)

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v2(x) = ε
(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
.

Where H =

(
(−c3(x3)2 + c4) tan(c3x

1) + F20(x
2)
√
c3(x3)2 − c4

)
.

Proof. Start with the three cases of Theorem 2.1.1:

• First Case: the distribution F is

F =

(
∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
,

where J is an arbitrary function on M . The corresponding coframe is

η1 = dx1,

η2 = (1 + x3∂3J)dx1 − ∂3Jdx2 + dx3,

η3 = −x3dx1 + dx2.

The corresponding structure equations are not homogeneous, hence a modification
needs to be made, take

v2 = G-1/2(x)
∂

∂x3
.

Then the frame becomes

v1 =
∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3
,

v2 = G-1/2 ∂

∂x3
,

v3 = G-1/2 ∂

∂x2
− (v1(G

-1/2)−G-1/2∂3J)
∂

∂x3
.

With corresponding coframe

η1 = dx1,

η2 =
(
x3G(G-1/2∂3J − v1(G-1/2))− JG-1/2

)
dx1 +G

(
v1(G

-1/2)−G-1/2∂3J
)

dx2 +G-1/2dx3,

η3 = −x3G-1/2dx1 +G-1/2dx2.

Now determine the coordinate transformations that preserve this coframe, let (x̃1, x̃2, x̃3)
be new coordinates related to the old ones by:

x1 = φ1(x̃
1, x̃2, x̃3), x2 = φ2(x̃

1, x̃2, x̃3), x3 = φ3(x̃
1, x̃2, x̃3).
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The first covector gives

η1 = dx1 = η̃1 = dx̃1 =⇒ x1 = x̃1 + a.

The third covector

η3 = −x3G-1/2dx1 +G-1/2dx2

= −φ2G
-1/2dx̃1 +G-1/2(∂1φ2dx̃

1 + ∂2φ2dx̃
2 + ∂3φ2dx̃

3)

= −x̃3G̃-1/2dx̃1 + G̃-1/2dx̃2.

Hence ∂3φ2 = 0 =⇒ x2 = φ2(x̃
1, x̃2), also G̃-1/2 = G-1/2∂2φ2. Finally in a similar way

making η2 = η̃2 and using the previous results gives

φ3 = ∂1φ2 + x̃3∂2φ2,

∂3J̃ = ∂3J = (∂2φ)−1(2∂222φ2x̃
3 + 2∂212φ2). (2.18)

Rename φ2 = φ. The third structure equation gives

dη3 =
∂3G

2G
3
2

η2 ∧ η3 mod η1.

Hence ∂3G

2G
3
2

must be a constant −c1. There are two cases depending on whether c1 is
zero or nonzero.

1. If c1 = 0 then ∂3G = 0 thus G(x1, x2, x3) = G0(x
1, x2). The allowed local change

of coordinates imply that

∂2φ(x̃1, x̃2) =
1

G0(x̃1 + a, φ(x̃1, x̃2))
.

It is possible to normalize G̃0(x̃
1, x̃2) = 1. In order for this relation to hold under

coordinate transformation G̃
1
2 = G

1
2∂2φ implies that ∂2φ = 1 hence

φ(x̃1, x̃2) = x̃2 + φ0(x̃
1).

If G(x1, x2, x3) = 1 then the third structure equations becomes

dη3 = η1 ∧ η2 + ∂3Jη
1 ∧ η3.

Hence ∂3J = c3 and so J(x1, x2, x3) = x3 + J0(x
1, x2). The second structure

equation for dη2 gives
dη2 = ∂2J0η

1 ∧ η2.
Hence ∂2J0 = c2 and J0(x

1, x2) = x2 + J1(x
1). Replacing in (2.18) gives

J̃1(x̃
1) = J1(x̃

1 + a)− (φ′′0(x̃1)− c3φ′0(x̃1)− c2φ0(x̃
1)).

The normalization J̃1(x̃
1) = 0 is preserved for functions φ0(x̃

1) that satisfy

0 = φ′′0(x̃1)− c3φ′0(x̃1)− c2φ0(x̃
1). (2.19)

In the end the coordinate transformations that preserve the structure equations
are

x1 = x̃1 + a, x2 = x̃2 + φ0(x̃
1), x3 = x̃3 + φ′0(x̃

1).

Where φ′0 satisfies (2.19).
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2. If c1 6= 0 then

G(x1, x2, x3) =
1

(c1x3 +G0(x1, x2))2
.

The allowed change of coordinates must satisfy

∂1φ(x̃1, x̃2) =
1

c1
G0(x̃

1 + a, φ(x̃1, x̃2)).

Normalizing G0 = 0 this condition is preserved if φ(x̃1, x̃2) = φ0(x̃
1). This implies

that G(x1, x2, x3) = (c1x
3)−2 and the third structure equation becomes

dη3 = η1 ∧ η2 − (x3)−1(2J − x3∂3J)η1 ∧ η3 − c1η2 ∧ η3.

Hence (x3)−1(2J − x3∂3J) = c3, which translates into

J(x1, x2, x3) = c3x
3 + J0(x

1, x2)(x3)2.

For a function J0(x
1, x2). The second structure equation becomes

dη2 = −x3∂1J0η1 ∧ η3.

If−x3∂1J0 equals a constant then ∂1J0 = 0 hence J(x1, x2, x3) = c3x
3+J1(x

2)(x3)2

for a function J1(x
2). Replacing in (2.18) yields

J̃1(x̃
2) = J1(φ0(x̃

2))φ′0(x̃
2)− φ′′0(x̃2)

φ′0(x̃
2)
.

Hence the local coordinates can be chosen so that

x1 = x̃1 + a, x2 = bx̃2 + c, x3 = bx̃3 + c.

• Second Case: the distribution F is

F =

(
x2

∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3

)
+ span

(
∂

∂x3

)
,

where J is an arbitrary function on M .

This case follows the same steps as the previous one, but this time it is possible to take
the structure equations directly from the frame given by the distribution.

The canonical frame is:

v1 = x2
∂

∂x1
+ x3

∂

∂x2
+ x2J

∂

∂x3
,

v2 = x2
∂

∂x3
,

v3 = x2
∂

∂x2
+
(

(x2)2∂3J − x3
) ∂

∂x3
.
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The corresponding canonical coframe is:

η1 =
1

x2
dx1,

η2 =
1

x2
dx3 − J

x2
dx1 −

(
∂3J −

x3

(x2)2

)(
dx2 − x3

x2
dx1
)
,

η3 =
1

x2
dx2 − x3

(x2)2
dx1.

The corresponding structure equations are

dη1 = η1 ∧ η3,
dη2 = T 2

13η
1 ∧ η3 + T 2

23η
2 ∧ η3,

dη3 = η1 ∧ η2 + T 3
13η

1 ∧ η3.

The allowed transformations are

x1 = φ(x̃1), x2 = φ′(x̃1)x̃2, x3 = φ′(x̃1)x̃3 + φ′′(x̃1)(x̃2)2

where φ′(x̃1) 6= 0.

These transformations imply that

J̃(x̃1, x̃2, x̃3) = J(x1, x2, x3)− 1

φ′(x̃1)

(
φ′′′(x̃1)(x̃2)2 + 3φ′′(x̃1)x̃3

)
The last structure equation gives

T 2
12 = x2∂3 − 3

x3

x2
,

Making T 2
12 = a for homogeneity translates into

J(x1, x2, x3) =
3

2

(x3
x2

)2
+ a

x3

x2
+ J0(x

1, x2),

for some function. Similarly the second structure equation implies that

T 2
13 = x2∂2J0 − 2J0 − a

x3

x2
.

In order for T 2
13 to be a constant we make a = 0, resulting in

x2∂2J0 − 2J0 = −2c1,

for some constant c1. Thus,

J0(x
1, x2) = c1 + J1(x

1)(x2)2
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for some function J1(x
1), and

J(x1, x2, x3) =
3

2

(x3
x2

)2
+ c1 + J1(x

1)(x2)2.

At last, replacing in the allowed transformation gives

J̃1(x̃
1) = φ′(x̃1)2J1(φ(x̃1))− φ′′′(x̃1)

φ′(x̃1)
+

3

2

φ′′(x̃1)

(φ′(x̃1))2

Thus, normalizing J̃1(x̃
1) = 0 results in the following differential equation,

φ′′′(x̃1)

φ′(x̃1)
− 3

2

φ′′(x̃1)

(φ′(x̃1))2
= 0,

whose solution is,

φ(x̃1) =
ax̃1 + b

cx̃1 + d
,

So finally the allowed transformations are

x1 =
ax̃1 + b

cx̃1 + d
, x2 =

ad− bc
(cx̃1 + d)2

x̃2, x3 =
ad− bc

(cx̃1 + d)2
x̃3 − 2c(ad− bc)

(cx̃1 + d)3
(x̃2)2.

• Third Case: the distribution F is

F =

(
(1 + x3J)

∂

∂x1
+ J

∂

∂x2
+ JH

∂

∂x3

)
+ span

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)

where J and H are arbitrary functions on M satisfying ∂H
∂x1
6= 0. This case follows the

same procedure as before but is much more longer, for details see [2].
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2.2 Rank-2 Distributions in 3-Manifolds

Theorem 2.2.1 (Local classification of rank-2 strictly affine distributions on 3-manifolds).
Let F be a rank 2 strictly affine point-affine distribution of constant type on a manifold M
of dimension 3. Then:

1. If F is almost bracket-generating, then in a sufficiently small neighborhood of any
point x ∈ M , there exist local coordinates (x1, x2, x3) such that

F =

(
∂

∂x1

)
+ span

(
∂

∂x2
,
∂

∂x3

)
.

2. If F is bracket-generating and LF is completely integrable, then in a sufficiently small
neighborhood of any point x ∈ M , there exist local coordinates (x1, x2, x3) such that

F =

(
x2

∂

∂x1
− J1

∂

∂x2

)
+ span

(
∂

∂x2
,
∂

∂x3

)
,

where J1 is an arbitrary function on M .

3. If F is bracket-generating and LF2 is not completely integrable, then in a sufficiently
small neighborhood of any point x ∈ M , there exist local coordinates (x1, x2, x3) such
that

F =

(
(1 + x3J3)

∂

∂x1
+ J3

∂

∂x2
− J2

∂

∂x3

)
+ span

(
x3

∂

∂x1
+

∂

∂x2
,
∂

∂x3

)
,

where J2 and J3 are arbitrary functions on M .

Proof. The proof follows the same steps as Theorem 2.1.1, namely start with a local framing
(v1, v2, v3) on M , the distinguished vector field will be v1 and the vectors v2, v3 will generate
the distributions, that is:

F = v1 + span(v2, v3).

In order for another local framing (ṽ1, ṽ2, ṽ3) to be equivalent it must generate the same
distribution, which implies that

ṽ1 = v1, ṽ2 = b2v2 + c2v3, ṽ3 = b3v2 + c3v3,

where b2c3 6= c2b3.
These conditions extend to the coframings (η1, η2, η3) and (η̃1, η̃2, η̃3) in M by:η̃1η̃2

η̃3

 =

1 0 0
0 b2 b3
0 c2 c3

−1η1η2
η3

 . (2.20)
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The problem of classifying equivalent coframings in M can be solved using the Cartan reduc-
tion method in the lifted space B(M) via the map g−1dπ as in (1.1) with the corresponding
principal bundle B0 with structure group G0 defined by:

B0 = {(x, ξx) ∈ B(M ) | x ∈ R3, ξx ∈ Fx(T ∗R3), i.e., ξx = (θ1x, θ
2
x, θ

3
x)
T},

G0 =

{1 0 0
0 b2 b3
0 c2 c3

∣∣∣∣∣ b2c3 6= c2b3

}
.

Next, follow the same steps as Theorem 2.1.1 (see section 1.2):

1. Set i = 0

2. Find a basis for gi, the Lie algebra of Gi.

3. Extend to a basis of gi ⊗ R3.

4. Using the Spencer operator δ find a base for δ(gi ⊗ R3).

5. Write a base for T i and the structure function C.

6. Compute the orbits of T i.

7. There are two options:

(a) If theGi-action on T i is trivial the reduction is finished, and the resulting structure
equations give the normal frame and coframe.

(b) If the Gi-action on T i is not trivial, then compute the transformations of the struc-
ture functions that preserve a normal form and the Gi+1-Structure Bi+1−→R3,
set i = i+ 1 and go to step 2.

A different proof is given in [1].

Theorem 2.2.2 (Normal form classification of rank-2 strictly affine distributions on 3-man-
ifolds). Let F be a rank-2, strictly-affine, bracket-generating or almost bracket-generating
point-affine distribution of constant type on a 3-dimensional manifold M . If the structure
equations of F are homogeneous, then F is locally point-affine equivalent to

F = v1 + span(v2, v3). (2.21)

Where the vectors v1, v2 and v3 are one of the following:

• Case 1:

v1(x) =
∂

∂x1
, v2(x) =

∂

∂x2
, v3(x) =

∂

∂x3
.

• Case 2:

v1(x) = x2
∂

∂x1
+ x2

∂

∂x2
, v2(x) = x2

∂

∂x2
, v3(x) =

∂

∂x3
,
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• Case 3:

v1(x) = (1 + c3x
3)

∂

∂x1
+

∂

∂x2
+

∂

∂x3
, v2(x) = x3

∂

∂x1
+

∂

∂x2
, v3(x) =

∂

∂x3
.

Proof. Start analyzing each one of the three cases in Theorem 2.2.1:

• Case 1: the canonical frame corresponding to the associate distribution is

v1 =
∂

∂x1
, v2 =

∂

∂x2
, v3 =

∂

∂x3
.

The corresponding coframe is

η1 = dx1, η2 = dx2, η3 = dx3.

The corresponding structure equations are trivial

dη1 = 0, dη2 = 0, dη3 = 0. (2.22)

Equations (2.22) imply that the distribution F is homogeneous with structure func-
tions T ijk = 0. If (η̃1, η̃2, η̃3) are the one-forms associated with the coordinate system
(x̃1, x̃2, x̃3) then the structure equations (2.22) are preserved by transformations of the
form

x1 = x̃1 + c1, x2 = x̃2 + c2, x3 = x̃3 + c3.

• Case 2: In this case proceeding as before and starting with the canonical frame

v1 = x2
∂

∂x1
− J1

∂

∂x2
,

v2 =
∂

∂x2
,

v3 =
∂

∂x3
,

will result in the following coframe

η1 =
1

x2
dx1,

η2 =
J1
x2

dx1 + dx2,

η3 = dx3.

Computing the wedge products η1 ∧ η2, η1 ∧ η3 and η2 ∧ η3 the first structure equation
becomes

dη1 =
1

x2
η1 ∧ η2.
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It is clear that the structure functions cannot be constant, hence it is necessary to
consider other frames. The simplest case is

v1 = x2
∂

∂x1
− J1

∂

∂x2
,

v2 = β2
2

∂

∂x2
+ β3

2

∂

∂x3
,

v3 = β2
3

∂

∂x2
+ β3

3

∂

∂x3
. (2.23)

Where in principle β2
2 , β2

3 , β3
2 and β3

3 are functions of x1, x2 and x3 such that v2 and
v3 remain linearly independent. The corresponding coframe is

η1 =
1

x2
dx1,

η2 =
J1β

3
3

x2∆β
dx1 +

β3
3

∆β
dx2 − β2

3

∆β
dx3,

η3 = − J1β
3
2

x2∆β
dx1 − β3

2

∆β
dx2 − β2

2

∆β
dx3,

where ∆β = β3
3β

2
2 − β2

3β
3
2 . Now, since βji are functions of x1, x2 and x3, calculating

directly the differentials of the coframe one-forms is too long. Instead, first calculate
the wedge products

η1 ∧ η2 =
β3
3

x2∆β
dx1 ∧ dx2 − β2

3

x2∆β
dx1 ∧ dx3,

η1 ∧ η3 =
−β3

2

x2∆β
dx1 ∧ dx2 +

β2
2

x2∆β
dx1 ∧ dx3,

η2 ∧ η3 =
J1

x2∆β
dx1 ∧ dx3 +

1

∆β
dx2 ∧ dx3.

Consider a general structure equation

dηi = γi12dx
1 ∧ dx2 + γi13dx

1 ∧ dx3 + γi23dx
2 ∧ dx3, (2.24)

= T i12η
1 ∧ η2 + T i13η

1 ∧ η3 + T i23η
2 ∧ η3.

Replacing the wedge products η1 ∧ η2, η1 ∧ η3 and η2 ∧ η3 the following equations are
obtained by comparing the coefficients:

T i12 = x2(β2
2γ

i
12 + β3

2γ
i
13)− J1β3

2γ
i
23,

T i13 = x2(β2
3γ

i
12 + β3

3γ
i
13)− J1β3

3γ
i
23,

T i23 = γi23∆β.

For i = 1

dη1 =
−1

(x2)2
dx1 ∧ dx2 =⇒ γ112 =

1

(x2)2
, γ113 = 0, γ123 = 0.
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Hence

T 1
12 = x2β2

2

1

(x2)2
, T 1

13 = x2β2
3

1

(x2)2
, T 1

23 = 0. (2.25)

In order for the structure to be homogeneous the structure functions must be constant.
Let T 1

12 = τ 112, and T 1
13 = τ 113, where τ 112 and τ 113 are constants, then

β2
2 = x2τ 112, β2

3 = x2τ 113. (2.26)

Although the functions β2
2 and β2

3 are known, the direct calculation of dη2 and dη3 is
still very long given that β3

3 and β3
2 are arbitrary functions of x1, x2 and x3. In order

to simplify the calculation assume that β3
3 and β3

2 are constants β3
3 = b33 and β3

2 = b32.
In this case

∆β = x2(τ 112b
3
3 − τ 113b32) = x2b

Hence the one-forms η2 and η3 become

η2 =
J1b

3
3

(x2)2b
dx1 +

b33
x2b

dx2 − τ 113
b

dx3,

η3 =
−J1b32
(x2)2b

dx1 − b32
x2b

dx2 +
τ 112
b

dx3,

and

dη2 =
−b33
b
∂2

( J1
(x2)2

)
dx1 ∧ dx2 − b33

(x2)2b
(∂3J1)dx

1 ∧ dx3,

dη3 =
b32
b
∂2

( J1
(x2)2

)
dx1 ∧ dx2 +

b32
(x2)2b

(∂3J1)dx
1 ∧ dx3.

Thus from (2.24)

γ212 =
−b33
b
∂2

( J1
(x2)2

)
, γ213 =

−b33
(x2)2b

(∂3J1), γ223 = 0,

γ312 =
b32
b
∂2

( J1
(x2)2

)
, γ313 =

b32
(x2)2b

(∂3J1), γ323 = 0.

Replacing in the structure functions

T 2
12 = −x2

(
x2τ 112

b33
b
∂2

( J1
(x2)2

)
+ b32

b33
(x2)2b

(∂3J1)

)
, (2.27)

T 2
13 = −x2

(
x2τ 113

b33
b
∂2

( J1
(x2)2

)
+ b33

b33
(x2)2b

(∂3J1)

)
, (2.28)

T 2
23 = 0, (2.29)

T 3
12 = x2

(
x2τ 112

b32
b
∂2

( J1
(x2)2

)
+ b32

b32
(x2)2b

(∂3J1)

)
, (2.30)

T 3
13 = x2

(
x2τ 113

b32
b
∂2

( J1
(x2)2

)
+ b33

b32
(x2)2b

(∂3J1)

)
, (2.31)

T 3
23 = 0. (2.32)

29



Thanks to the symmetry of the equations, the structure functions T 2
12, T

2
13, T

3
12 and T 3

13

will be equal to constants if

(x2)2κl∂2

( J1
(x2)2

)
+
χl
x2
∂3J1 = cl, (2.33)

where κl, χl and cl are constants that satisfy:

1. For l = 1, κ1 = −τ 112b33(b−1), χ1 = b32b
3
3(b
−1), hence replacing (2.33) into (2.27)

implies T 2
12 = c1.

2. For l = 2, κ2 = −τ 113b33(b−1), χ2 = b33b
3
3(b
−1), hence replacing (2.33) into (2.28)

implies T 2
13 = c2.

3. For l = 3, κ3 = τ 112b
3
2(b
−1), χ3 = b32b

3
2(b
−1), hence replacing (2.33) into (2.30)

implies T 3
12 = c3.

4. For l = 4, κ4 = τ 113b
3
2(b
−1), χ4 = b33b

3
2(b
−1), hence replacing (2.33) into (2.31)

implies T 3
13 = c4.

Equation (2.33) can be written as

κl∂2J1 −
2J1κl
x2

+
χl∂3J1
x2

= cl.

Since it is a sum of three terms if each one is constant then the sum will be constant.
If the second term of the left hand side is constant then

J1 = x2Ĵ1 =⇒ ∂2J1 = Ĵ1, ∂3J1 = 0,

and the resulting structure equations become homogeneous, as desired.

In summary if J1 = x2Ĵ1 then (2.33) is satisfied and the structure functions (2.27),
(2.28), (2.30) and (2.31) become constants. On the other hand (2.26) imply that the
structure functions on (2.25) are constants and since the structure functions (2.29) and
(2.32) are already constants the structure equations (2.24) become homogeneous.

Now, normalize the constants Ĵ1 = −1, τ 112 = 1, τ 113 = 0, τ 32 = 0 and τ 33 = 1 the final
frame is

v1 = x2
∂

∂x1
+ x2

∂

∂x2
,

v2 = x2
∂

∂x2
,

v3 =
∂

∂x3
.

The corresponding coframe is

η1 =
1

x2
dx1,

η2 =
−1

x2
dx1 +

1

x2
dx2,

η3 = dx3,
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the associated structure functions are

T 1
12 = 1, T 1

13 = 0, T 1
23 = 0,

T 2
12 = −1, T 2

13 = 0, T 2
23 = 0,

T 3
12 = 0, T 3

13 = 0, T 3
23 = 0,

hence the structure equations are homogeneous as desired. Finally in order to calculate
the coordinate transformations that preserve the coframe, let (x̃1, x̃2, x̃3) be another
coordinate system related to (x1, x2, x3) by

x1 = φ1(x̃
1, x̃2, x̃3),

x2 = φ2(x̃
1, x̃2, x̃3),

x3 = φ3(x̃
1, x̃2, x̃3).

Making η1 = η̃1 results in

x1 = φ1(x̃
1), x2 = x̃2∂1φ1(x̃

1).

Replacing in η2 and using η2 = η̃2 it is obtained

∂11φ1 = 0, ∂2φ3 = 0, ∂3φ3 = 1,

which imply that ∂1φ1 = K1 6= 0. Finally η3 = η̃3 gives

(∂1φ3)(∂1φ1) = 0,

and at last the allowed transformations are of the form

x1 = K1x̃
1, x2 = K1x̃

2, x3 = x̃3 +K2.

• Case 3: Start with the canonical frame

v1 = (1 + x3)
∂

∂x1
+ J3

∂

∂x2
− J2

∂

∂x3
,

v2 = x3
∂

∂x1
+

∂

∂x2
,

v3 =
∂

∂x3
.

The corresponding coframe is

η1 = dx1 − x3dx2,
η2 = −J3dx1 + (1 + J3x

3)dx2,

η3 = J2dx
1 − x3J2dx2 + dx3.
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Computing the structure equations yield the following structure functions:

T 1
12 = J2,

T 1
13 = J3,

T 1
23 = 1,

T 2
12 = ((∂2J3) + x3(∂1J3))− J2((∂3J3)(1 + x3) + J3),

T 2
13 = −J3((∂3J3)(1 + x3))− J2

3 ,

T 2
23 = −((∂3J3)(1 + x3) + J3),

T 3
12 = J2

2 + x3J2(∂3J2)− ((∂2J2) + x3(∂1J2)),

T 3
13 = J2J3 − x3(∂3J2)J3 − (∂3J3),

T 3
23 = J2 + x3(∂3J2).

The first two equations simplify the analysis, since they imply that J2 = c2 and J3 = c3,
which consequently results in the following structure equations

dη1 = c2η
1 ∧ η2 + c3η

1 ∧ η3 + η2 ∧ η3,
dη2 = −c2c3η1 ∧ η2 − c23η1 ∧ η3 − c3η2 ∧ η3,
dη3 = c22η

1 ∧ η2 + c1c2η
1 ∧ η3 + c2η

2 ∧ η3.

Thus the structure is homogeneous and the normal form is obtained with c2 = −1 and
c3 = 1.

The next step is to determine the coordinate transformations that preserve the coframe.
If (x̃1, x̃2, x̃3) is another coordinate system related with (x1, x2, x3) by the following
equations

x1 = φ1(x̃
1, x̃2, x̃3), x2 = φ2(x̃

1, x̃2, x̃3), x3 = φ3(x̃
1, x̃2, x̃3).

Then each one-form gives three equations that must be satisfied:

η1 = η̃1 =⇒


∂1φ1 = φ3∂1φ2 + 1,

∂2φ1 = φ3∂2φ2 − x̃3,
∂3φ1 = φ3∂3φ2,

(2.34)

η2 = η̃2 =⇒


(1 + c3φ3)∂1φ2 = c3∂1φ1 − c3,
(1 + c3φ3)∂2φ2 = (1 + c3x̃

3) + c3∂2φ1,

(1 + c3φ3)∂3φ2 = c3∂3φ1,

(2.35)

η3 = η̃3 =⇒


∂1φ1 = φ3∂1φ2 + (∂1φ3)(c2)

−1,

∂2φ1 = −x̃3 + φ3∂2φ2 − (∂2φ3)(c2)
−1,

∂3φ1 = (c2)
−1 + φ3∂3φ2 − (∂3φ3)(c2)

−1.

(2.36)

Comparing equations 2.34 and 2.36 results in the following equations:

∂1φ3 = c2, ∂2φ3 = 0, ∂3φ3 = 1.
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Hence
x3 = φ3(x̃

1, x̃2, x̃3) = x̃3 + c2x̃
2.

Replacing this result into (2.34) and (2.35) yield the following equations

∂1φ1 = 1, ∂2φ1 = c2x̃
2, ∂3φ1 = 0,

∂1φ2 = 0, ∂2φ2 = 1, ∂3φ2 = 0,

which in turn imply that the complete allowed transformations are:

x1 = x̃1 +
1

2
c2(x̃

2)2 + a1, x2 = x̃2 + a2, x3 = x̃3 + c2x̃
2.

Normalize c2 = 1 and c3 = 1 to obtain the normal frame

v1 = (1 + x3)
∂

∂x1
+

∂

∂x2
− ∂

∂x3
,

v2 = x3
∂

∂x1
+

∂

∂x2
,

v3 =
∂

∂x3
.

The allowed transformations are

x1 = x̃1 +
1

2
(x̃2)2 + a1, x2 = x̃2 + a2, x3 = x̃3 + x̃2.
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Chapter 3

Examples

3.1 Three States, One Control

Consider the following dynamical system:

ṙ = cos θ + z sin θ,

θ̇ =
1

r

(
z cos θ − sin θ

)
,

ż = c2r sin θ + c3z + u.

Where the state vector x = (r, θ, z) takes values in the state space M = [0,∞)× [0, 2π)×R.
We would like to know if this dynamic system corresponds to one of the cases of theorem
2.1.2. First of all it is necessary to check that the associated affine distribution

F =

((
cos θ + z sin θ

) ∂
∂r

+
1

r

(
z cos θ − sin θ

) ∂
∂θ

+
(
c2r sin θ + c3z

) ∂
∂z

)
+ span

(
∂

∂z

)
,

satisfies all the hypothesis of the theorem:

1. The distribution F is strictly affine: Suppose it is not, then there exists a state x̄ =
(r̄, θ̄, z̄) such that v1(x̄) = 0 this would imply

cos θ̄ + z̄ sin θ̄ = 0, (3.1)

1

r̄

(
z̄ cos θ̄ − sin θ̄

)
= 0, (3.2)

c2r̄ sin θ̄ + c3z̄ = 0. (3.3)

From (3.2)
z̄ cos θ̄ = sin θ̄, (3.4)

replacing in (3.1) it is obtained

cos θ̄(1 + z̄2) = 0,

which can only be satisfied if cos θ̄ = 0. Replacing in (3.4) also implies that sin θ̄ = 0,
but there is no θ̄ that can satisfy both equations, hence the distribution is strictly
affine.
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2. The distribution F is bracket-generating or almost bracket-generating of constant type:
We start with the original distribution F and from then construct the flag of subsheaves

F = F1 ⊂ F2 ⊂ · · · ⊂ TM,

using the definition F i+1 = F i +[F ,F i].

(a) F1 = v1 + span(v2).

(b) F2 = F1 +[F ,F1], where

[F ,F1] = [v1 + λ2v2, v1 + β2v2] = [v1, v1]︸ ︷︷ ︸
0

+(β2 − λ2) [v1, v2]︸ ︷︷ ︸
v3

+β2λ2 [v2, v2]︸ ︷︷ ︸
0

,

thus the only new vector is v3 = [v1, v2]:

v3 = sin θ
∂

∂r
+

1

r
cos θ

∂

∂θ
+ c3

∂

∂z
,

and F2 = v1 + span(v2, v3).

(c) F3 = F2 +[F ,F2], where

[F ,F2] = [v1 + λ2v2, v1 + β2v2 + β3v3]

= [v1, v1]︸ ︷︷ ︸
0

+(β2 − λ2) [v1, v2]︸ ︷︷ ︸
v3

+β3 [v1, v3]︸ ︷︷ ︸
v4

+β2λ2 [v2, v2]︸ ︷︷ ︸
0

λ2β3 [v2, v3]︸ ︷︷ ︸
v5

,

hence the new vectors are v4 = [v1, v3] and v5 = [v2, v3]:

v4 = c3 sin θ
∂

∂r
+
c3
r

cos θ
∂

∂θ
+ (c2 + c23)

∂

∂z
,

v5 = 0.

Note that v4 = c3v3 + c2v2, hence F∞ = ∪i≥1F i = F2 since taking further
iterations will not yield new linearly independent vector fields:

v6 = [v1, v4] = c3[v1, v3] + c2[v1, v2] = c1v4 + c2v3,

v7 = [v2, v4] = c3[v2, v3] + c2[v2, v2] = 0,

v8 = [v3, v4] = c3[v3, v3] + c2[v3, v2] = 0,

From the above calculations it follows that the step of the distribution F is 2 and the
growth vector is (1, 2).

Since dim(F∞) = 2 and dim(TM ) = 3 the distribution is not bracket-generating, but
it may be almost bracket-generating. For this it is necessary to check that for each
x ∈ M and any ξ(x) ∈ Fx, span(ξ(x), (LF∞)x) = TxM = R3.

First compute the direction distribution of F∞:

LF∞ = {ξ1 − ξ2 | ξ1, ξ2 ∈ F∞}.
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Taking into account that F∞ = v1 + λ2v2 + λ3v3 it follows

LF∞ = {v1 + β2v2 + β3v3 | β2, β3 ∈ R} t {α2v2 + α3v3 | α2, α3 ∈ R},

Now, for each x ∈ M , vector field ξ(x) ∈ Fx can be written as ξ(x) = v1(x) + λ2v2(x)
and since the vector field v1 is linearly independent from v2 and v3 which are contained
in LF∞ it follows that dim(span(ξ(x), (LF∞))) = 3, implying that the distribution F
is almost bracket generating.

Finally since the growth vector is constant for any x ∈ M , and dim(span(ξ(x), (LF∞)x))
is also constant for all x ∈ M the distribution F is of constant type.

3. The distribution F is homogeneous. As usual, first consider the frame

v1 =
(

cos θ + z sin θ
) ∂
∂r

+
1

r

(
z cos θ − sin θ

) ∂
∂θ

+
(
c2r sin θ + c3z

) ∂
∂z
,

v2 =
∂

∂z
,

v3 = sin θ
∂

∂r
+

cos θ

r

∂

∂θ
+ c3

∂

∂z
,

which yields the coframe

η1 = cos θdr − r sin θdθ,

η2 = −
(
c2r sin θ cos θ + c3 sin θ

)
dr + r

(
c2r sin2(θ)− c3 cos θ

)
dθ + dz,

η3 =
(

sin θ − z cos θ
)
dr + r

(
cos θ + z sin θ

)
dθ.

Next compute the derivatives:

dη1 = 0,

dη2 = c2rdr ∧ dθ,

dη3 = cos θdr ∧ dz − r sin θdθ ∧ dz,

then we compute the wedge products

η1 ∧ η2 = −c3rdr ∧ dθ + cos θdr ∧ dz − r sin θdθ ∧ dz

η1 ∧ η3 = rdr ∧ dθ,

η2 ∧ η3 = −r(c3z + c2r sin θ)dr ∧ dθ + (z cos θ − sin θ)dr ∧ dz − r(cos θ + z sin θ)dθ ∧ dz.

Finally the structure equations become

T 1
12 = 0,
T 2
12 = 0,
T 3
12 = 1,

T 1
13 = 0,

T 2
13 = c2,
T 3
13 = c3,

T 1
23 = 0,
T 2
23 = 0,
T 3
23 = 0,

hence the structure equations are homogenenous.
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Given that the distribution F satisfies the hypothesis of Theorem 2.1.2 it must be point-
affine equivalent to one of the normal forms. In order to find the point affine equivalence it
is convenient first to rename the variables.

The original variables (r, θ, z) will be renamed (y1, y2, y3), the state space manifold Y ,
the distribution FY and the vector fields w1, w2, w3. On the other hand the normal variables
will be noted as usual (x1, x2, x3), the normal manifold X , the normal distribution FX and
the corresponding vector fields v1, v2, v3. With the preceding notation the distributions FX
and FY are point affine equivalent if there exists a diffeomorphism φ : X → Y such that

φ∗(v1(x)) = w1(φ(x)), φ∗(v2(x)) = λ22(x)w2(φ(x)). (3.5)

Let
v1 = f 1

1
∂
∂x1

+ f 2
1

∂
∂x2

+ f 3
1

∂
∂x3
,

v2 = f 1
2

∂
∂x1

+ f 2
2

∂
∂x2

+ f 3
2

∂
∂x3
,

v3 = f 1
3

∂
∂x1

+ f 2
3

∂
∂x2

+ f 3
3

∂
∂x3
,

w1 = g11
∂
∂y1

+ g21
∂
∂y2

+ g31
∂
∂y3
,

w2 = g12
∂
∂y1

+ g22
∂
∂y2

+ g32
∂
∂y3
,

w3 = g13
∂
∂y1

+ g23
∂
∂y2

+ g33
∂
∂y3
,

Be the frames in X and Y , then (3.5) become

3∑
i=1

∂φj

∂xi
(x)f j1 (x) = gj1(φ(x)), j = 1, 2, 3

3∑
i=1

∂φj

∂xi
(x)f j2 (x) = λ22(x)gj2(φ(x)), j = 1, 2, 3 (3.6)

Given that the distribution is almost bracket-generating Theorem 2.1.2 implies that the
dynamical system is point-affine equivalent to case 1 or case 2. Start with case 1, using the
new notation for the distribution FY the vector fields become:

v1 =
∂

∂x1
+ x3

∂

∂x2
+ (c2x

2 + c3x
3)

∂

∂x3
,

v2 =
∂

∂x3
,

w1 =
(

cos(y2) + y3 sin(y2)
) ∂

∂y1
+

1

y1
(
y3 cos(y2)− sin(y2)

) ∂

∂y2
+
(
c2y

1 sin(y2) + c3y
3
) ∂

∂y3
,

w2 =
∂

∂y3
.
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Replacing in (3.5) results in the following system of partial differential equations

∂φ1

∂x1
+
∂φ1

∂x2
x3 +

∂φ1

∂x3
(c2x

2 + c3x
3) = cos(φ2) + ψ3 sin(φ2),

∂φ2

∂x1
+
∂φ2

∂x2
x3 +

∂φ2

∂x3
(c2x

2 + c3x
3) =

1

ψ1

(
φ3 cos(φ2)− sin(φ2)

)
,

∂φ3

∂x1
+
∂φ3

∂x2
x3 +

∂φ3

∂x3
(c2x

2 + c3x
3) = c2φ

1 sin(φ2) + c3φ
3,

∂φ1

∂x3
= 0,

∂φ2

∂x3
= 0,

∂φ3

∂x3
= λ22(x).

Luckily, years of mathematical education and training allow us to see through this seem-
ingly difficult system of partial differential equations the obvious truth; which is that the
coordinate transformation

φ : X −→ Y

(x1, x2, x3) 7−→


√

(x1)2 + (x2)2

tan−1
(
x2

x1

)
x3

 ,

will solve the system of partial differential equations. Implying that the dynamical system

ṙ = cos θ + z sin θ,

θ̇ =
1

r

(
z cos θ − sin θ

)
,

ż = c2r sin θ + c3z + u.

It is point-affine equivalent to the system

ẋ1 = 1,

ẋ2 = x3,

ẋ3 = c2x
2 + c3x

3 + u.

3.2 Magnetic Levitator

A magnetic levitator is a system that uses the magnetic force to suspend a metallic ball.
A current ic(t) is passed though an electromagnet generating a magnetic field B that acts
on the steel ball generating a magnetic force Fc. This magnetic force acts on the steel ball
opposing the weight. The net force moves the ball in the vertical position [9].
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The system can be divided into two parts, the first one is the electromagnet that can be
modeled as a first order LR circuit

vc(t) = (Rc +Rs)ic(t) + Lc
d

dt
ic(t), (3.7)

where vc(t) is the input voltaje, Rc is the coil resistance, Rs is the series resistance and Lc is
the coil inductance. The magnetic force acting on the ball is

Fc =
Kmic(t)

2

2x2b
,

where Km is a positive constant and xb is the distance from the ball to the electromagnet.
The total vertical force acting on the ball is

Ft = −Fc + Fg = −Kmic(t)
2

2x2b
+ gMb,

and by Newton’s second law it is equal to the mass of the ball Mb times the acceleration ẍb,
thus

ẍb(t) = − Kmic(t)
2

2Mbxb(t)2
+ g. (3.8)

Combining (3.7) and (3.8) and making ẋb = vb the following system is obtained:

dic
dt

= −ic
( R
Lc

)
+ vc

( 1

Lc

)
,

dvb
dt

= − Kmi
2
c

2Mbx2b
+ g,

dxb
dt

= vb,

with state variables ic(t) the current in the coil, vb(t) the vertical velocity of the ball and
xb(t) the vertical position of the ball. The input of the system is the voltage of the coil
vc(t), and the parameters are R = Rc + Rs, the sum of the coil resistance Rc and the series
resistance Rs, Lc the coil inductance, Mb is the mass of the ball, and g the gravity.

The state variables ic(t), vb(t) and xb(t) form the state vector x(t). Notice that there is
a singularity if xb = 0, this happens because the magnetic force is inverse proportional to
the square of the distance between the ball and the coil, in order to avoid this problem the
state variable xb is restricted to me positive, to ensure this the coil current ic cannot be zero.
Hence the state space corresponds to the open subset of R3 given by:

M = (0,∞)× R×(0,∞). (3.9)

Now, write the dynamical system in an explicitly affine form i̇c(t)v̇b(t)
ẋb(t)


︸ ︷︷ ︸

ẋ(t)

=

 γ1x
1

γ3(x
1)2(x3)−2 + g

x2


︸ ︷︷ ︸

v0(x)

+

γ20
0


︸ ︷︷ ︸
v1(x)

vc(t)︸︷︷︸
u(t)

(3.10)

39



Thus the associated distribution F on the manifold M has fibers Fx given by:

Fx = {v0(x) + λ1v1(x) | λ1 ∈ R} (3.11)

As before check the three hypothesis of the theorem:

1. The distribution F is strictly affine: Suppose that there exists a x̄ such that v0(x̄) = 0

γ1x̄
1 = 0,

γ3(x̄
1)2(x̄3)−2 + g = 0,

x̄2 = 0

It is clear that the first equation implies x̄1 = 0 which is contradictory with the second
equation given that g 6= 0, hence the distribution is strictly affine.

2. The distribution F is bracket-generating or almost bracket-generating of constant type:
We start with the original distribution F and from then construct the flag of subsheaves

F = F1 ⊂ F2 ⊂ · · · ⊂ TM,

using the definition F i+1 = F i +[F ,F i].

(a) F1 = v1 + span(v2).

(b) F2 = F1 +[F ,F1], where

[F ,F1] = [v1 + λ2v2, v1 + β2v2] = [v1, v1]︸ ︷︷ ︸
0

+(β2 − λ2) [v1, v2]︸ ︷︷ ︸
v3

+β2λ2 [v2, v2]︸ ︷︷ ︸
0

,

thus the only new vector is v3 = [v1, v2]:

v3 = γ1γ2
∂

∂x1
+ 2γ3γ2x

1(x3)−2
∂

∂x2
,

and F2 = v1 + span(v2, v3).

(c) F3 = F2 +[F ,F2], where

[F ,F2] = [v1 + λ2v2, v1 + β2v2 + β3v3]

= [v1, v1]︸ ︷︷ ︸
0

+(β2 − λ2) [v1, v2]︸ ︷︷ ︸
v3

+β3 [v1, v3]︸ ︷︷ ︸
v4

+β2λ2 [v2, v2]︸ ︷︷ ︸
0

λ2β3 [v2, v3]︸ ︷︷ ︸
v5

,

hence the new vectors are v4 = [v1, v3] and v5 = [v2, v3]:

v4 = γ21γ2
∂

∂x1
+ 4x2γ2γ3x

1(x3)−3
∂

∂x2
+ 2γ3γ2x

1(x3)−2
∂

∂x3
,

v5 = −2γ3γ
2
2(x3)−2

∂

∂x2
.

From the above calculations it follows that the step of the distribution F is 3, the
growth vector is (1, 2, 3) and F is bracket generating.
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3. The distribution F is homogeneous:

Start with the frame:

v1 = γ1x
1 ∂

∂x1
+

(
γ2

(
x1

x3

)2

+ g

)
∂

∂x2
+ x3

∂

∂x3
,

v2 = γ2
∂

∂x2
,

v3 = γ1γ2
∂

∂x1
+ 2γ2γ3

x1

(x3)2
∂

∂x3
,

whose corresponding coframe is:

η1 =
1

x2
dx3,

η2 =
1

γ2
dx1 − γ1(x

3)2

2γ2γ3x1
dx2 +

( γ1x1
2γ2x2

+
gγ1(x

3)2

2γ2γ3x1x2
− γ1x

1

γ2x2

)
dx3,

η3 =
(x3)2

2γ2γ3x1
dx2 −

( x1

2γ2x2
+

g(x3)2

2γ2γ3x1x2

)
dx3.

After taking the derivatives and the wedge products the resulting structure equations
are

dη1 = T 1
13η

1 ∧ η3,
dη2 = T 2

13η
1 ∧ η3 + T 2

23η
2 ∧ η3,

dη3 = T 3
12η

1 ∧ η3 + T 3
13η

1 ∧ η3 + T 3
23η

1 ∧ η3,

where the structure functions are:

T 1
13 =

2γ2γ3x
1

(x3)2x2
,

T 2
13 = γ21 +

gγ1
x2

+
2γ1x

2

x3
− γ1γ3(x

1)2

x2(x3)2
,

T 2
23 =

γ1γ2
x1

,

T 3
12 = 1,

T 3
13 =

2x2

x3
− γ2(x

1)2

x2(x3)2
− g

x2
,

T 3
23 = −γ2

x1
.

It is clear from the structure functions that the distribution is not homogeneous.

Since the final hypothesis is not satisfied the theorem can not be applied and the magnetic
levitator dynamical system is not point affine equivalent to any of the normal forms of
Theorem 2.1.2.
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Appendix A

Transformation of the torsions

This a more direct and long way to calculate the reduction in each step, this is the method
used in [1]. It is added for completion but since it is not part of any proof only the first step
is calculated:

We have the following coframe transformation: If (θ̃1, θ̃2, θ̃3)T and (θ1, θ2, θ3)T are coframes
for the principal subbundle B0 then they are related by the Lie group asθ̃1θ̃2

θ̃3

 =

1 0 a3
0 b2 b3
0 0 c3

−1θ1θ2
θ3

⇐⇒

θ1 = θ̃1 + a3θ̃

3,

θ2 = b2θ̃
2 + b3θ̃

3,

θ3 = c3θ̃
3.

On the other hand we have two sets of structure equations:dθ1

dθ2

dθ3

 =

0 0 α3

0 β2 β3
0 0 γ3

 ∧
θ1θ2
θ3

+

T 1
23 T 1

13 T 1
12

T 2
23 T 2

13 T 2
12

T 3
23 T 3

13 T 3
12

θ2 ∧ θ3θ1 ∧ θ3
θ1 ∧ θ2

 , (A.1)

and dθ̃1

dθ̃2

dθ̃3

 =

0 0 α̃3

0 β̃2 β̃3
0 0 γ̃3

 ∧
θ̃1θ̃2
θ̃3

+

T̃ 1
23 T̃ 1

13 T̃ 1
12

T̃ 2
23 T̃ 2

13 T̃ 2
12

T̃ 3
23 T̃ 3

13 T̃ 3
12

θ̃2 ∧ θ̃3θ̃1 ∧ θ̃3
θ̃1 ∧ θ̃2

 . (A.2)

Now, dθa can be expressed in terms of the coframe {θ̃a}a=1,2,3 in two forms: first replace θa

in terms of {θ̃a}a=1,2,3 and then calculate the differential or use the corresponding structure
equation and replace the {θa}a=1,2,3 with {θ̃a}a=1,2,3.

Take for instance dθ1. Replace θ1 by θ̃1 + a3θ̃
3 and then operate the differential:

dθ1 = d(θ̃1 + a3θ̃
3)

= dθ̃1 + da3 ∧ θ̃3 + a3dθ̃
3.

Using the structure equations for {θ̃a}a=1,2,3

dθ1 =(−α̃3 + da3 − a3γ̃3) ∧ θ̃3 + (T̃ 1
23 + a3T̃

3
23)θ̃

2 ∧ θ̃3+
(T̃ 1

13 + a3T̃
3
13)θ̃

1 ∧ θ̃3 + (T̃ 1
12 + a3T̃

3
12)θ̃

2 ∧ θ̃3. (A.3)
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For the second form first use the structure equations for {θa} a = 1, 2, 3

dθ1 = −α3 ∧ η3 + T 1
23η

2 ∧ η3 + T 1
13η

1 ∧ η3 + T 1
12η

1 ∧ η2.

Now transform the one-forms according to the Lie Group

dθ1 = −c3α ∧ θ̃3 + (T 1
12b2c3 − T 1

12a3b2)θ̃
2 ∧ θ̃3 + (T 1

13c3 + T 1
12b3)θ̃

1 ∧ θ̃3 + T 1
12b2θ̃

1 ∧ θ̃2. (A.4)

Hence from equations A.3 and A.4 we have

(−α̃3 + da3 − a3γ̃3) ∧ θ̃3 + (T̃ 1
23 + a3T̃

3
23)θ̃

2 ∧ θ̃3 + (T̃ 1
13 + a3T̃

3
13)θ̃

1 ∧ θ̃3 + (T̃ 1
12 + a3T̃

3
12)θ̃

1 ∧ θ̃2

= −c3α ∧ θ̃3 + (T 1
12b2c3 − T 1

12a3b2)θ̃
2 ∧ θ̃3 + (T 1

13c3 + T 1
12b3)θ̃

1 ∧ θ̃3 + T 1
12b2θ̃

1 ∧ θ̃2.

Finally we can take the wedge product with θ̃1, θ̃2 and θ̃3 to get

(−α̃3 + da3 − a3γ̃3) ∧ θ̃3 ∧ η̃1 + (T̃ 1
23 + a3T̃

3
23)θ̃

2 ∧ θ̃3 ∧ η̃1

= −c3α ∧ θ̃3 ∧ η̃1 + (T 1
12b2c3 − T 1

12a3b2)θ̃
2 ∧ θ̃3 ∧ η̃1

(−α̃3 + da3 − a3γ̃3) ∧ θ̃3 ∧ η̃2 + (T̃ 1
13 + a3T̃

3
13)θ̃

1 ∧ θ̃3 ∧ η̃2

= −c3α ∧ θ̃3 ∧ η̃2 + (T 1
13c3 + T 1

12b3)θ̃
1 ∧ θ̃3 ∧ η̃2

(T̃ 1
12 + a3T̃

3
12)θ̃

1 ∧ θ̃2 ∧ η̃3 = T 1
12b2θ̃

1 ∧ θ̃2 ∧ η̃3

The last equation implies that T 1
12b2 = T̃ 1

12 + a3T̃
3
12.

Repeating this process with dθ2 we obtain:

(db2 − b2β̃2) ∧ θ2 + (db3 − b2β̃3 − b3γ̃3) ∧ θ̃3 + (b2T̃
2
23 + b3T̃

3
23)θ̃

2 ∧ θ̃3

+ (b2T̃
2
13 + b3T̃

3
13)θ̃

1 ∧ θ̃3 + (b2T̃
2
12 + b3T̃

3
12)θ̃

1 ∧ θ̃2

= −b2β2 ∧ θ̃2 − (b3β2 + c3γ3) ∧ θ̃3 + (T 3
12b2c3 − T 3

12a3b2)θ̃
2 ∧ θ̃3

+ (T 3
13c3 + T 3

12b3)θ̃
1 ∧ θ̃3 + T 3

12b2θ̃
1 ∧ θ̃2. (A.5)

Now taking the wedge product with θ̃1, θ̃2 and θ̃3:

(db2 − b2β̃2) ∧ θ2 ∧ θ̃1 + (db3 − b2β̃3 − b3γ̃3) ∧ θ̃3 ∧ θ̃1 + (b2T̃
2
23 + b3T̃

3
23)θ̃

2 ∧ θ̃3

= −b2β2 ∧ θ̃2 ∧ θ̃1 + (b3β2 + c3γ3) ∧ θ̃3 ∧ θ̃1 + (T 3
12b2c3 − T 3

12a3b2)θ̃
2 ∧ θ̃3,

(db3 − b2β̃3 − b3γ̃3) ∧ θ̃3 ∧ θ̃2 + (b2T̃
2
13 + b3T̃

3
13)θ̃

1 ∧ θ̃3 ∧ θ̃2

= (b3β2 + c3γ3) ∧ θ̃3 ∧ θ̃2 + (T 3
13c3 + T 3

12b3)θ̃
1 ∧ θ̃3 ∧ θ̃2,

(db2 − b2β̃2) ∧ θ2 ∧ θ̃3 + (b2T̃
2
12 + b3T̃

3
12)θ̃

1 ∧ θ̃2 = −b2β2 ∧ θ̃2 ∧ θ̃3 + T 3
12b2θ̃

1 ∧ θ̃2.

In this instance no information can be obtained from these equations.
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Now for dθ3

(dc3 − c3γ̃3) ∧ θ̃3 + c3T̃
3
23θ̃

2 ∧ θ̃3+
c3T̃

3
13θ̃

1 ∧ θ̃3 + c3T̃
2
12θ̃

1 ∧ θ̃2

= −c3γ3 ∧ θ̃3 + (T 3
12b2c3 − T 3

12a3b2)θ̃
2 ∧ θ̃3+

(T 3
13c3 + T 3

12b3)θ̃
1 ∧ θ̃3 + T 3

12b2θ̃
1 ∧ θ̃2.

(dc3 − c3γ̃3) ∧ θ̃3 ∧ θ̃1c3T̃ 3
23θ̃

2 ∧ θ̃3 ∧ θ̃1 = −c3γ3 ∧ θ̃3 ∧ θ̃1(T 3
12b2c3 − T 3

12a3b2)θ̃
2 ∧ θ̃3 ∧ θ̃1,

(dc3 − c3γ̃3) ∧ θ̃3 ∧ θ̃2c3T̃ 3
13θ̃

1 ∧ θ̃3 ∧ θ̃2 = −c3γ3 ∧ θ̃3 ∧ θ̃2(T 3
13c3 + T 3

12b3)θ̃
1 ∧ θ̃3 ∧ θ̃2,

c3T̃
2
12θ̃

1 ∧ θ̃2 ∧ θ̃3 = T 3
12b2θ̃

1 ∧ θ̃2 ∧ θ̃3.

The last equation implies c3T̃
2
12 = T 3

12b2. Hence we have two equations

c3T̃
2
12 = T 3

12b2, T 1
12b2 = T̃ 1

12 + a3T̃
3
12.

Which can be written as

T̃ 1
12 = b2T

1
12 −

a3b2
c3

T 3
12, T̃ 3

12 =
b2
c3
T 3
12. (A.6)

These equations express the transformation of the torsion functions due to the group action
on the coframe (from the coframe {θa}a=1,2,3 to the coframe {θ̃a}a=1,2,3).

Some torsion functions do not appear in these equations, this is because the action of the
group does not transform them into other torsion functions and as such cannot be reduced
yet.

Equations (A.6) imply that we can take any coframe in {θa}a=1,2,3 and using the group
action transform it into a coframe where T 1

12 = 0 and T 3
12 = 1. Thus we can use these

particular torsion functions to continue the analysis. In order to guarantee this condition
we need to make sure of to preserve these torsion functions, which can only be done making
a3 = 0 and b2 = c3. This is the Cartan reduction step, and in the following steps we can fix
T 1
12 = 0 and T 3

12 = 1 as long as a3 = 0 and b2 = c3.
This changes the structure equations and then the process repeats.
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