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1 Introduction

1 Problem Description and Context

According to Colombian Mining and Energy Ministry, for the year of 2015[2], approximately 460, 000
families in Colombia do not have access to electric energy. That means 3.04% of the population is not
covered by the national energy network. Despite it is low percentage, the country is behind in electric
energy coverage, in comparison with other regional countries such as Brazil, Costa Rica and Chile, which
achieve a network coverage above 99%[3] . On the other hand, rural population suffers a 12.17% of
deficit against a 0.28% of urban population, which demonstrate that rural population are the ones been
affected by the coverage deficit.

In order to counteract this situation, Cundinamarca’s region in association with Pontificia Universidad
Javeriana, started a project whose main objective is the electrification of rural schools, using a photo-
voltaic system designed by a research team at the university (Figure 1). In figure 2 a block diagram of
the system is shown. A DC-DC converter is used to maintain a positive and negative DC voltage rail and
to charge the battery bank using the power coming from the solar panels. The DC-AC converter produce
a 120 VRMS , 60 Hz sine voltage wave used by the loads inside the schools.

Figure 1: PV system on preliminary tests

Figure 2: PV system block diagram
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Since the power system is isolated and depends exclusively of solar energy and due to the unpredictable na-
ture of the solar irradiation and power consumption, the charge of the batteries could be totally consumed,
therefore, a control system that manages the power consumption inside the school is needed, mainly
to maintain a minimum charge1 in the battery bank, so the lifetime of the bank is not compromised2
and energy is reserved for priority loads. It is important to mention that, the control system must be
easily implementable in a low-cost micro-controller, which means, the algorithms must not required big
computation times and be flexible enough so it can be applied when other conditions are given (different
schools for example). This requirements were taken into account for the design of themanagement system.

1 Objectives

To solve the problem exposed in the previous section the following general and specific objectives were
defined:

• General: Design a predictive control system, implementable in an embedded system, that manage
the enable and disable of the loads.

• Construct and validate a model of the power system that allow the estimation of the input and
output power.

• Implement an algorithm to estimate the SoC of the batteries whose RMS3 error is below a 5 %.

• Design a predictive control system that manage the enable and disable of the loads inside the school,
so a minimum SoC is guarantee.

• Implement the controller in an embedded system, and validates its functioning using an emulation
system so the minimum SoC of the battery is maintain.

1 Problem Solution and Control Architecture

In figure 3 the general control architecture is shown. The signals available from the PV system (Process),
are the voltage and current of the battery bank (Vb(k), Ib(k)), the DC input voltage and current (Vin, Iin)
and the output voltage and current (Vout, Iin). Using both input and output signals power generated (Pin)
and load consumption (Ql) are calculated to be used in the management system.

The Estimator block used the battery voltage and current, to estimate the SoC of the battery bank,
blocks Pinest and Qlest used past data of Pin and Ql respectively, to estimate the next N samples of
power. The control signal Uload(k), is an nload4 logic signal which enable or disable the loads inside the
school. Finally the controller is a simplified MPC that chooses, based on the actual SoC and the power
predictions, which loads should be disable in order to maintain a minimum SoC.

It should be noted that a current sensor to calculate the individual consumption of each load could be
used, nevertheless, costs of implementation can be significantly increased due to the high costs of AC
current sensor as well as the loss of flexibility in the implementation of the control.

The book is organized as follows: In chapter 2 the battery model is explained, and the SoC estimator
is derived based on the battery model. In chapter 3 the PV system model is explained, as well as the
algorithm to estimate the horizon of power generated and power consumed. With all the auxiliary signals
the MPC controller is derived. Finally the hardware in the loop environment is described and the control
results are shown.

1Also known as state of charge [%], from now on written as SoC
2Lead-acid batteries lifetime is inversely proportional to the depth of discharge
3root mean square
4number of groups of loads
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Figure 3: General control architecture
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2 Battery Bank Modelling and State of Charge Estimation

This chapter describes the mathematical model used for the battery bank and the SoC estimation al-
gorithm. An equivalent circuit was chosen ([4], [5]), since it enables the use of continuous difference
equation; therefore a Kalman filter can be apply to estimate the SoC[6]. Other types of models like
switched and hybrid models do not permit this, due to numerical discontinuities that occur when a tran-
sition between different states is made.

2 Battery equivalent circuit

Cb

−

+

VSoC Ib

+
− Voc(SoC)

Ro

Rs

Cs

Ib

Load

+

−

Vb

Figure 4: Battery equivalent circuit model

An equivalent circuit model of a battery is taken from figure 4. The capacitor Cb, models the rated
capacity of the battery, the resistor Ro, represents the battery opposition to energy flow and the RC
network (Rs and Cs) models the dynamic response of the battery. Finally the voltage controlled source
Voc(SoC), models the nonlinear relationship between the state of charge, and the open-circuit voltage.
Applying voltage, current and element laws for the circuit shown in figure 4, the following equations were
obtain:

Vb = Voc(SoC)− Ib ·Ro − Vs (1)

Ib =
Vs
Rs

+ Cs · V̇s (2)

Ib = −Cb · ˙SoC (3)

Rearranging terms:

V̇s =
Vs
Rs

+ Cs ·Rs (4)

˙SoC = − Ib
Cb

(5)

In order to discretize the model, Euler approximation is used:

df

dt
=
f(k + 1)− f(k)

∆t
= ḟ(t) (6)

f(k + 1) = ḟ(t) · Ts + f(k) (7)

Using equation 7 to discretize equations 4 and 5 the following is obtain:

Vs(k + 1) =
Ts
Cs
· Ib(k) +

(
1− Ts

Rs · Cs

)
· Vs(k) (8)

SoC(k + 1) = SoC(k)− Ts
QT · 36

· Ib(k) (9)
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Notice that the capacitance Cb, is replaced in equation 9, in terms of the rated capacity of the battery (QT

[Ah]), so the following state space is defined:

[
SoC(k)
Vs(k)

]
=

[
1 0

0
(

1− Ts
Rs·Cs

)] · [SoC(k)
Vs(k)

]
+

[
− Ts

QT ·36
Ts
Cs

]
· Ib(k) (10)

y = Vb(k) = Voc(SoC(k))− Ib(k) ·Ro − Vs(k) (11)

To simplify the notation the state space is written as:

x(k + 1) = Ab · x(k) +Bb · Ib(k) (12)
Vb(k) = Voc(k, SoC)− Ib(k) ·Ro − Vs(k) (13)

2 Open circuit map and hysteresis modelling

The SoC − Voc relationship in lead-acid batteries is not only non-linear, but also presents a high hys-
teresis phenomenon (figure 5 ). Note that (figure 4), when the battery current is equal to zero (load =
∞) and the capacitor Cs is completely discharge, the battery voltage Vb is equal to Voc. So to obtain
the outer curves of figure 5, a map could be constructed by applying a current pulse to the battery,
and enough time is waited so the voltage is stable and Vb = Voc. The state of charge variation due
to the applied current pulse is obtained by equation 9. Finally a linear regression can be used to find
a function that describes the charging (upper boundaryUub) and discharging (lower boundaryUlb) curves.

Figure 5: Voc v.s SoC

The procedure described above, provides the curves when no variation of current direction occur from
0% to 100% of the SoC and vice versa. However, inside curves produced by partial charge and discharge,
remain unknown. The following mathematical modeling is based on Thele hysteresis model [7].

The Voc(k) can be expressed as5:

Voc(k) = Ulb(SoC) + Uhyst(k) (14)

5Voc(k, SoC) dependency of SoC will be ignored in the notation from now on
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Where Uhyst is an hysteresis voltage produced by a partial charge or discharge of the battery. Note that
Voc is bounded by Ulb and Uub, so:

Uhystε[0, Uhyst−max] (15)
Uhyst−max = Uub(SoC)− Ulb(SoC) (16)

On the other hand, the current sum in an inner hysteresis cycle is named Qhyst, which is the charge in
[Ah] given or received by the battery, while the Voc is evolving inside the lower and upper boundaries
shown in figure 5 (dotted trajectories). Likewise Uhyst, Qhyst only change when inner hysteresis occur,
therefore it is bounded by Qhyst = 0, and Qhyst = Qmax

hyst , which is the amount of charge necessary for
Voc to pass from Ulb to Uub. The following equations resumed the stated above:

Qhyst(k) = Qhyst(k)− Ib · Ts
3600

(17)

Qhyst(k)ε[0, Qmax
hyst ] (18)

Note that, whenQhyst(k) = 0, charge is not given by an inner hysteresis cycle so, Uhyst(k) = 0, therefore
Voc(k) = Ulb(SoC). On the other hand if Qhyst = Qmax

hyst , charge given by an hysteresis cycle is satu-
rated, so Uhyst = Umax

hyst and Voc = Ulb(SoC) + Umax
hyst = Uub(SoC). Consequently, Uhyst boundaries

are already known, however, how it evolves between those boundaries is left to determine. In figure 6
a full inner hysteresis cycle6 is shown and two additional parameters are introduced ∆U char

hyst−max and
∆Udis

hyst−max, which are the maximum voltage deviation from the center of the hysteresis curve. Notice

that the maximum deviation occurred when Qhyst =
Qmax

hyst

2 .

Figure 6: Uhyst v.s Qhyst

Assuming that all the hysteresis parameters mentioned are known, coordinates A, B and C of figure 6
can be calculated, therefore a second order polynomial regression can be applied to find the function that
describes Uhyst evolution. The remaining problem, regards in how inner partial hysteresis behave. To
illustrate this issue, figure 7 shows two possible inner partial hysteresis curves. The sequence starts in A

6By full, it is meant that a complete transition from Ulb to Uub or vice versa is made
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with Uhyst = 0 andQhyst = 0. Since the battery is charging, then the voltage increases following A-C-B
trajectory. When charging is finished at C, then the voltage decreases following C-D’-A trajectory, until
it reaches E (current direction change again). From E, charging occur again, and the voltage follows the
E-F-B trajectory.

According to Thele [] experimentation proved that inner curves are linearly related with the outer curves
by a factor dependent of Qhyst. This fact, enable to calculate the intermediate points (D, D’ and F,
F’), Therefore, a second order lineal regression could be used to describe the actual behavior of Uhyst.
Note that every inner charge or discharge, tend to finish in A or B respectively. Applying some basic
geometrical facts the following equations could be find

∆Udis
hyst = ∆Udis

hyst−max ·
Qhyst

Qmax
hyst

(19)

∆U char
hyst = ∆U char

hyst−max ·
Qmax

hyst −Qhyst

Qmax
hyst

(20)

Figure 7: Uhyst v.s Qhyst 2

To clarify the previous model, the following algorithm describes how Uhyst is calculated as Qhyst is
changing due to the charging and discharging of the battery in the sequence shown in figure 7:

1. The sign of current is identified so the battery is charging, then the final point (reference) will
be B = [Qmax

hyst , U
max
hyst ]. The middle point M is calculated using ∆Udis

hyst, that in this case is
∆U char

hyst−max (because Qhyst = 0).

2. Knowing A, B and M coordinates, f(Qhyst) is found, using a linear regression as describes
previously.

3. As long as the current direction does not change, Uhyst is calculated from f(Qhyst) found in the
previous step.

9



4. When a change of direction occur in C, a new function needs to be calculated, C is the starting
point, A = [0, 0] the reference point and D’ is the middle point which is calculated using equation
[].

5. Finally in point E a change of current direction is sensed, then the previous procedure is repeated
using B as reference and F’ as middle point.

2 Battery parameter identification and model validation

The remaining electrical parameters of the battery can be obtained as follows:

1. Ro: Find the instant variation of the battery voltage ∆Vb from an instant current variation ∆Ib.
Then compute Ro = ∆Vb

∆Ib
.

2. Rs and Cs: The RC network define a non-observable state, so it must be identified using time
constants. For an instant current variation∆Ib , a voltage variation will occur. The instant variation,
is determine by the series resistor Ro, then the transient response, correspond to the RC network
(τ = 5 ·R · C).

Therefore, the electrical parameters could be found with the experiment described to obtain the SoC v.s
Voc map. In order to validate the model, a computational benchmark of a battery (Matlab) is used. This
benchmark include different real behaviors such as internal resistance and rated capacity variation due
to current rate and temperature. In figure 8 the voltage response to a 4 A current pulse is shown. Note
that as soon as the current is zero, an instant voltage variation occur, due to Ro. The dynamic response
(voltage stabilization) correspond to the RC network.

Figure 8: Battery Voltage Response

In figure 9 a series of pulses were made so the battery is completely discharge from a 100 % of SoC,
and charged again, to obtain the map of figure 10. With this points a linear regression was made using a
truncated Fourier 6th-order function:
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U(SoC) = a0 + a1 · cos(ω · SoC) + b1 · cos(ω · SoC)

+ a2 · cos(2 · ω · SoC) + b2 · cos(2 · ω · SoC)

+ a3 · cos(3 · ω · SoC) + b3 · cos(3 · ω · SoC)

+ a4 · cos(4 · ω · SoC) + b4 · cos(4 · ω · SoC)

+ a5 · cos(5 · ω · SoC) + b5 · cos(5 · ω · SoC)

+ a6 · cos(6 · ω · SoC) + b6 · cos(6 · ω · SoC)

Figure 9: Battery Voltage Response

Figure 10: SoC v.s Voc
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To obtain the hysteresis parameters, four inner full hysteresis trajectories were found, as shown in figure
11. Traslading toQhyst-Uhyst space (figure 12) the parameters of figure 13 were obtain. Notice that there
is a considerable difference between the parameter found for 10 % and the others, and since the batteries
are not meant to work on that range, the final parameters were obtain by taking the mean of 85%, 60%
and 35% (figure 14). Another option, if considerable differences were obtain for all SoC ranges, is to
interpolate the parameters as a function of SoC.

Figure 11: Inner Hysteresis Trajectories

Figure 12: Uhyst Full Hysteresis Trajectories
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Figure 13: Hysteresis parameters obtain for different state of charge ranges

Figure 14: Hysteresis parameters

Finally to validate the hysteresis model, a test of current pulses was made (Figure 15), obtaining a battery
voltage RMS error of 0.03 V , and a SoC error of 0.04 %.
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Figure 15: Test Voltage Model

Figure 16: Test SoC Model

2 State of Charge estimator

This section is organized as follows. The SoC estimation algorithm is derived based on an extended
Kalman filter and the single battery model of equations 12, 13 and the hysteresis model explained in the
previous section. Then, applying a current profile, the state of charge tracking is validated for a single
battery. It is important to mention that, the hysteresis model defines a new state Uhyst, which defines a
non-linear and time-variant model. However, it is a parameter that depends considerably from the SoC
and that is commonly saturated, therefore it is treated as a parameter that is calculated online.
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Retaking the circuit model equations:

x(k + 1) = Ab · x(k) +Bb · Ib(k) (21)

Vb(k) = Voc(SoC)− Ib(k) ·Ro − Vs(k) (22)

Note that the state equations are linear (without considering saturation). On the other hand, the output
equation contain a nonlinear term (Voc), so linearization of the output equation is needed:

Vb(k) = Voc(SoC)− Vs −Ro · Ib(k) : F (SoC, Vs) (23)

V̄b(k) = C · x(k) +D · u(k) (24)

Then

D =

[
∂F (SoC, Vs)

∂Ib

]
= −Ro (25)

C =

[
∂F

∂SoC
,
∂F

∂Vs

]
=

[
∂F

∂SoC
,−1

]
(26)

C =

[
∂Voc(SoC)

∂SoC
,−1

]
(27)

Decomposing Voc(SoC):

Voc(SoC) = Ulb(SoC) + Uhyst(Qhyst) (28)

Notice that, when Uhyst is saturated on its top boundary Voc(SoC) = Uub(SoC). when Uhyst is zero,
then Voc(SoC) = Ulb. On the other hand, note that a variation of SoC produce a proportional variation
of Qhyst, as long as it is not saturated, so we can define:

∂Voc
∂SoC

=



∂Ulb(SoC)
∂SoC if Qhyst = 0

∂Uub(SoC)
∂SoC if Qhyst = Qmax

hyst

∂Uhyst(SoC)
∂SoC + ∂Ulb(SoC)

∂SoC if 0 < Qhyst < Qmax
hyst

(29)

Therefore, the SoC estimation algorithm can be resumed as follows:

1. Initialize algorithm with initial guesses for states and additional parameters:
SoC = SoCIni

Vs = Vs−Ini

Qhyst = Qhyst−Ini

Uhyst = Uhyst−Ini

Q = QIni

R = R
Ib = 0
Cpar = [0, 0, 0]T : Coefficients of 2-nd order polynomial (Inner hysteresis function).

2. Read actual current Ib and voltage Vb. Determine if the direction of the current has change Idir = 1
or not Idir = 0 .

15



3. Using Ib, predict the states and Qhyst evolution:

x(k + 1) = Ab · x(k) +Bb · Ib(k)

Qhyst(k + 1) = Qhyst(k)− Ib(k)·Ts

3600

Saturate SoC(k + 1) and Qhyst(k + 1) if previous defined boundaries are exceeded.

4. Project the co-variance matrix:

Pp(k + 1) = Ab ∗ Pp(k) ∗AT
b +Q

5. If Qhyst is saturated pass to step 9. If not, calculate the hysteresis parameters:
∆Udis

hyst = ∆Udis
hyst−max ·

Qhyst

Qmax
hyst

∆U char
hyst = ∆U char

hyst−max ·
Qmax

hyst−Qhyst

Qmax
hyst

Umax
hyst (SoC +Qmax

hyst) = Uub(SoC +Qmax
hyst)− Ulb(SoC +Qmax

hyst)

6. If current direction does not change (Idir = 0), then the function for Uhyst has not changed so pass
to step 8. If current direction change (Idir = 1) occur pass calculate the new coefficients as follows:

If the battery is charging (Ib < 0):

Pref =
[
Qmax

hyst , U
max
hyst

]
Pini = [0, 0]

m =
Umax
hyst−Uhyst

Qmax
hyst−Qhyst

b = Uhyst −Qhyst ·m

Qmid = Qhyst +
(Qmax

hyst−Qhyst)

2

Umid = m ·Qmid + b+ ∆U char
hyst

Pmid = [Qmid, Umid]

Cpar = fitpoly2

If the battery is discharging (Ib >= 0):

Pref = [0, 0]

PIni =
[
Qmax

hyst , U
max
hyst

]
m =

Uhyst

Qhyst

b = 0

Qmid =
Qhyst

2

Umid = m ·Qmid −∆Udis
hyst

Pmid = [Qmid, Umid]

Cpar = fitpoly2

7. Calculate Uhyst and ∂Voc(SoC)
∂SoC as follows:

Uhyst = Cpar−1 ·Q2
hyst + Cpar−2 ·Qhyst + Cpar−3

∂Voc(SoC)
∂SoC = ∂Ulb(SoC)

∂SoC + 2 · Cpar−1 ·Qhyst + Cpar−2

8. Calculate Uhyst and ∂Voc(SoC)
∂SoC as follows:

Uhyst =

{
0 if Qhyst = 0

Umax
hyst if Qhyst = Qmax

hyst

16



∂Voc(SoC)
∂SoC =


∂Ulb(SoC)

∂SoC if Qhyst = 0

∂Uub(SoC)
∂SoC if Qhyst = Qmax

hyst

9. Modify C matrix as follows:
C =

[
∂Voc(SoC)

∂SoC ,−1
]

10. Estimate the battery voltage as follows:
Voc = Uhyst + Ulb

V est
b = Voc − Ib ·Ro − xp[2]

11. States and covariance matrix are corrected, using measured Vb:
K = Pp · CT ·

(
C · Pp · CT +R

)−1

xp = xp +K ·
(
Vb − V est

b

)
Pp = (I −K · C) · Pp

12. Go to step 2.

Applying a current profile, the state of charge was estimated using the previous algorithm (Figure 17),
with a white measure noise with a variance of σV = 150mV and σI = 10mA for the battery voltage and
current respectively, obtaining an RMS tracking error of 3.52 % for a 5.5 day simulation

Figure 17: SoC estimation for single battery
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3 PV System Model and Model Predictive Controller

3 PV system model and power estimation

Tomodel the photovoltaic system, a correct functioning of the low level controllers is assumed, so a linear
balance of energy is obtain. The MPPT7 controller, guarantee a maximum power Pmax is being taken
from the solar panels, with an efficiency ηDC−DC . The Pmax parameter is specified in STC8, therefore
it must be normalized, so the power generated by the PV system is:

Pgen =
Pmax ·Npanels · ηDC−DC

1000
·R(t) (30)

Taking into account the DC-AC converter efficiency:

Pbat(t) =
Q(t)

ηDC−AC
− Pgen (31)

Pbat(t) =
Q(t)

ηDC−AC
−
Pmax ·Npanels · ηDC−DC

1000
·R(t) (32)

To estimate the power horizon (consumption and generation), a persistent9 model is used. In figure 18 the
prediction algorithm is illustrated. Notice that the power prediction of the second horizon (Np to 2Np),
is equal to the real power of the first (0 to Np). Also notice that for the first Np time samples, there is no
control action.

Figure 18: Power prediction

7Maximum Power Point Tracking
8Standard Test Conditions
9A persistent model is a model that maintains the previous version of itself
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3 Model predictive control algorithm

Figure 19: Depth of Discharge Curve (image taken from [1] )

Battery lifetime could bemeasure by the number of charge-discharge cycles, can be done until a significant
deterioration of the battery is achieved. In figure 19 the depth of discharge versus lifetime is shown for a
8G40 Deka Solar gel battery. This behavior defines the importance of maintaining a minimum quantity
of charge in the battery, so a minimum lifetime is guarantee. Therefore, it is necessary to reduced the
consumption inside the school, which can be accomplish by disabling a group of loads[8], affecting
the user comfort. Taking into account this facts, the controller’s objective is to maintain a minimum
SoC = SoCmin while minimizing the load disabling inside the school.

Figure 20: General control architecture

Recalling the control architecture shown previously (figure 20), note that the control signals (Uload)
produce a possible consumption reduction Qr(Uload(k)), then the optimal control problem is defined:
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minimize
Uload(k)

J =

Np∑
k=1

α ·Qr(Uload(k))2 (33)

subject to: SoC(k) ≤ SoCmin (34)
0 ≤ Qr(k) ≤ Qmax

r (k) (35)
SoC(k + 1) = F (Uload(k), k) (36)

Where Qmax
r (k) is equal to the consumption prediction for the day Qlest. To simplify the problem, the

SoC restriction is replaced for a penalization term, inside the objective function as shown in equation 37

minimize
Uload(k)

J =

Np∑
k=1

α ·Qr(Uload(k))2 + S(SoC(Uload)) (37)

subject to: SoC(k + 1) = F (Uload(k), k) (38)

Since the problem is an integer quadratic problem (binary), moreover the need to implement simple
algorithms, a simplified optimal control problem is defined:

minimize
Qr(k)

J =

Np∑
k=1

α ·Qr(k)2 + S(SoC(k)) (39)

subject to: SoC(k + 1) = F (Qr(k), k) (40)

Notice that the binary control signals Uload(k), are replaced for a direct consumption reduction Qr(k).
With the optimal signal Q∗

r(k) an additional algorithm is used to choose which Uload(k) produce a
consumption reduction near to the desired Q∗

r(k). In figure 21, the modified control architecture of the
MPC is shown. TheMPC block calculates the necessary consumption Qr to minimize the objective
function of equation 40 and the "Load Selection" block, chooses which loads must be disabled or enabled.

An additional simplification is made, in order to guarantee a low computation time. The optimum solution
Q∗

r(k) is found by solving SoC(k + 1) = F (Qr(k), k) for several signals Qi
r(k) (for Np sample times).

With the different pair of signals
[
Qi

r(k), SoC(k)i
]
the objective function is evaluated and the minimum

solution is found. The Qi
r(k) signals are choose by scaling the power prediction as follows:

Qi
r(k) =


Qlest

0.9 ·Qlest
...

0.1 ·Qlest

0 ·Qlest


So a total of 11 predictions are made to find the optimal response, in each control computation.
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Figure 21: Simplified control architecture

To penalize the SoC restriction an inverse SoC response to Qr is needes so the following function is
defined:

S(SoC) = β · (SoC − 100)2 + Slin(SoC) (41)

Slin(SoC) =

·msoc · SoC + bsoc if SoC ≤ SoCcorner

0 if SoC ≤ SoCcorner

(42)

where: msoc =
−γ

SoCcorner − SoCmin
(43)

bsoc = −msoc · SoCcorner (44)

Where γ is a weight parameter. Note that the quadratic term does not include the desired SoCmin, so a
linear function is used as a barrier; when SoC(k) is less or equal to SoCcorner the barrier is activated.
On the other hand γ acts as a tuning parameter, with a higher γ the barrier is more restrictive and the
penalization is higher . In figure 22 the shape of the S(SoC) terms are shown.
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Figure 22: S(SoC)

The load selection block use the following procedure to choose the loads that must be disable (When
Qr > 0):

1. The information for each group of loads is organized as follows:


n1
prio Q1

n U1
load ID1

load

n2
prio Q2

n U2
load ID2

load
...

...
...

...
nnloads
prio Qnloads

n Unloads
load IDnloads

l



Where nprio is an integer that indicates the priority of the loads. Qn is the nominal consumption
for the group of loads. Uload indicates the actual state of the control signal for the group of loads
(enable (1) or disable (0) ). IDl, is the number assigned to identified the group of loads.

2. The disabled loads are excluded from the list.

3. The matrix rows are sorted by priority (nprio).

4. A column with the accumulated consumption for the loads and a column with the power deviation
from Q∗

r are added.

5. The loads whose consumption deviation is smallest are selected and the control signal Uload is
updated.

A similar procedure is followed when Q∗
r = 0 and loads must be enabled. To clarify the procedure an

example is presented with 5 loads and Q∗
r = 310 [W ]:

1. The information matrix is constructed [nprio, Qn, Uload, IDload] :


5 60 0 1
1 120 1 2
4 180 1 3
3 120 0 4
2 100 1 5


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2. Loads that are already disabled by the control system are excluded:1 120 1 2
4 180 1 3
2 100 1 5



3. Sort the matrix by load priority: 4 180 1 3
2 100 1 5
1 120 1 2



4. Add an extra column with the accumulated nominal consumption and consumption reduction
deviation (Q∗

r −Qi
n): 4 180 1 3 180 130

2 100 1 5 280 30
1 120 1 2 400 90



5. Because the minimum consumption deviation is obtained by disabling loads 3 and 5, then:

Uload =


0
1
0
0
0



The MPC algorithm can be resumed as follows:

1. Using the power consumption prediction Qlest, calculate the signals:

Qi
r(k) =


Qlest

0.9 ·Qlest
...

0.1 ·Qlest

0 ·Qlest


2. For every consumption reduction Qi

r(k) calculate the SoC(k)i response (using Pinest, Qlest and
the actual estimated SoC as well).

3. For every pair of signals,
[
Qi

r(k), SoC(k)i
]
evaluate the objective function J and choose the pair

[Q∗
r(k), SoC(k)∗] that minimize J .

4. Using the optimal signal Q∗
r(k), choose the load control signal Uload as shown previously.

The result of the MPC algorithm and the SoC estimation for the battery bank is shown in figure 23
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Figure 23: Control Results

24



4 Implementation

This chapter describes the implementation process. Before evaluating the strategy on the real plant, an
emulator is developed, in order to test the control algorithm in a hardware in the loop (HIL) architecture.
Through the first section a brief description of the emulation set-up is explained, as well as the implemen-
tation procedure. Finally time compression to speed up the emulation is shown along with the control
system results.

4 Emulation and Hardware in the loop

Figure 24: Hardware in the loop set up (block diagram)

In figure 24 the HIL set-up to test the controller implementation is shown. For the emulation environment
Matlab/Simulink software was used. To interface the benchmark with the controller, a Q8-USB Quanser
data acquisition device was used. Data from IDEAM serves as input data for the radiation profile. The
consumption data was based on the school loads list, that was obtained from [8] and with the direct
interaction with one of the school teachers. A randomize function was created, so the consumption varies
from day to day.

The controller was implemented on a Raspberry Pi 3 model B+ using Python programming language.
Due to the lack of an analog-digital converter on the Raspberry an additional circuit was used with an
MCP3208 ADC, that communicates with the Raspberry using an SPI protocol. In order to synchronize
the data acquisition between the controller and the benchmark, a sync signal that activates every time
data is saved in memory, is send to the benchmark.

On the other hand, to speed up the emulation, a time compression is used so the control system could
be evaluated and adjusted faster. In order to decide the compression time, is it necessary to evaluate the
computation time of the algorithms. Starting with the plant prediction and retaking the state space model
defined in chapter 2, the A matrix for the battery model is defined as:

A =

[
1 0

0
(

1− Ts
Rs·Cs

)] (45)
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Using the eigenvalues, it could be proof that the model is stable with a sample time Ts ≤ 1s. Therefore
to find the SoC response for one day (time horizon) 3600 · 24 = 86400 computations are required (3600
seconds per hour times 24 hours per day). Taking into account that for every control calculation, the
system must be predicted 11 times (chapter 3), then a total of 11 · 3600 · 24 = 950400 computations are
required. To simplify the algorithm so a bigger time compression could be made, the following circuit
simplification is proposed:

Cb

−

+

VSoC Ib

+
− Voc(SoC)

Ro

Ib

Load

+

−

Vb

Figure 25: Simplified battery equivalent circuit model

Therefore the unstable state is assumed to be near to zero. The advantage of this simplified model, is
that fewer matrix operations are required and the sample time could be increase further than 1s without
destabilizing the controller. Taking Ts = 12·60 s the number of computations are reduced to 24·3600

24·60 = 60
computations (which make the algorithm at least 15840 times faster). In figure 26 both SoC responses
are shown, with an RMS error of 0.12%.

Figure 26: SoC response for simplified model v.s complete model

In figure 27 computation times for each single algorithm are shown. Taking into account the processing
capability of the Raspberry Pi and the benchmark, the time values shown in figure 28 were chosen. Notice
that a 1.8s is used for every control calculation, which is more than twice the computation time found
previously. Therefore, to emulate 6 days, a total of 10.8 hours are needed, which gives a compression
factor of 13.33.
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Algorithm Max Computation time [s] # of Computations per cycle Total Computation time [s]
Filter calculation 0.078 1 0.078

Prediction 0.068 11 0.7480

Objective function 0.00012 11 0.0013

Total 0.8273

Figure 27: Computation times for algorithms running on the Raspberry Pi 3

Time Constant Value[s] Description
dtem 0.006 Emulation time step
T em
s 0.08 Equivalent time sample for every dtem
dt 1.8 Sample time for the Raspberry Pi
Ts 24 Equivalent sample time for every dt

Figure 28: Time values for the HIL set-up

4 Implementation Results

To evaluate the control system, it is necessary to synchronize the benchmark acquisition, with the control
system sampling. It is important to mention that the signal is being processed online by identifying
the rising edge. The signals inside the benchmark are sampled using a fixed step. So to obtained the
synchronized signals, only the values from the data are taken when sync = 1, after the emulation is
finished (Matlab doesn’t permit asynchronous sampling). In figure 29 benchmark and Raspberry pi
synchronized battery signals are shown.

Figure 29: Signal samples obtained by syncronizing the sampling

Finally using the values of figure 30 to tune the controller and the Kalman filter the controller is test as
shown in figure 31
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Tuning Parameter Value

Q

[
0.35 0

0 0.005

]
R 4100

α 1.5

β 1.2

γ 9500

Figure 30: Tuning parameters

Figure 31: Controller test in the benchmark
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5 Conclusions and Future Work

The battery model used in the control system, permits a SoC estimation with an error less than 5 %, even
when high hysteresis is present in the battery behavior. The controller, solves a very complex problem,
using simple algorithms and low computation times, which lead to the possibility of implementing the
controller in a low cost embedded system.

On the other hand the Raspberry Pi, is probably not the best choice to implement the controller for a
field implementation. Mainly because it doesn’t have an available hardware timer, therefore every timing
procedure is made by software, which introduce a timing error in the sampling. In long term emulations
(or real implementation) an external RTC clock could be used to correct that issue10, however, since it is
a software based micro-controller, the computation times are quite unpredictable, which can generated
other implementation problems sush as RAM saturation.

The controller response depends strongly from the power estimations. Therefore a very aggressive
response in the loads enabling is commonly obtained when big errors of estimation occurred (on/off con-
troller). This could be corrected by adding a feed-forward law. On the other hand, the user consumption
in real implementation will evolved; in other words, the user will modified he’s behavior to minimize the
load enabling, which could reduced any occasional aggressive response.

A very practical HIL set-up was design so the control algorithm could be tested without using the real
plant and reducing substantially the time needed to test any modification in the controller/filter or the PV
system. Future work, may center their efforts in real implementation issues. For instance an actuator
design that use a latch relay to reduced considerably the power consumption could be tested. Finally
depending on the battery choose for the PV system, the model could be obtained by using an electronic
load and a voltage power source to produce a series of current pulses as shown in chapter 2.

10There are hardware interruptions available in the GPIO ports of the Raspberry
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