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Abstract—This paper present a novel predictive control system,
implementable in an embedded system, that manage consumption
of an isolated photovoltaic system. To solve the problem a model
of the power system that allow the estimation of the input and
output power was obtained, as well an algorithm to estimate the
SoC1 of the batteries.

Index Terms—state of charge, model predictive controller,
Extended Kalman Filter.

I. INTRODUCTION

Since isolated photovoltaic power systems depends exclu-
sively of solar energy and due to the unpredictable nature of
the solar irradiation and power consumption, the charge of
the batteries could be totally consumed, therefore, a control
system that manages the power consumption inside the school
is needed, mainly to maintain a minimum charge2 in the
battery bank, so the lifetime of the bank is not compromised3

and energy is reserved for priority loads. It is important to
mention that, the control system must be easily implementable
in a low-cost micro-controller.

II. PROBLEM SOLUTION AND CONTROL ARCHITECTURE

In figure 1 the general control architecture is shown.
The signals available from the PV system (Process), are
the voltage and current of the battery bank (Vb(k), Ib(k)),
the DC input voltage and current (Vin, Iin) and the output
voltage and current (Vout, Iin). Using both input and output
signals power generated (Pin) and load consumption (Ql) are
calculated to be used in the management system.

The Estimator block used the battery voltage and current,
to estimate the SoC of the battery bank, blocks Pinest and
Qlest used past data of Pin and Ql respectively, to estimate
the next N samples of power. The control signal Uload(k), is
an nload4 logic signal which enable or disable the loads inside
the school. Finally the controller is a simplified MPC that
chooses, based on the actual SoC and the power predictions,
which loads should be disable in order to maintain a minimum
SoC.

1state of charge
2Also known as state of charge [%], from now on written as SoC
3Lead-acid batteries lifetime is inversely proportional to the depth of

discharge
4number of groups of loads

Fig. 1. General control architecture

It should be noted that a current sensor to calculate
the individual consumption of each load could be used,
nevertheless, costs of implementation can be significantly
increased due to the high costs of AC current sensor as well
as the loss of flexibility in the implementation of the control.

III. BATTERY BANK MODELLING AND STATE OF CHARGE
ESTIMATION

This chapter describes the mathematical model used for
the battery bank and the SoC estimation algorithm. An
equivalent circuit was chosen [4],[5]), since it enables the
use of continuous difference equation; therefore a Kalman
filter can be apply to estimate the SoC [6]. Other types of
models like switched and hybrid models do not permit this,
due to numerical discontinuities that occur when a transition
between different states is made.

A. Battery equivalent circuit

An equivalent circuit model of a battery is taken from figure
2. The capacitor Cb, models the rated capacity of the battery,
the resistor Ro, represents the battery opposition to energy
flow and the RC network (Rs and Cs) models the dynamic
response of the battery. Finally the voltage controlled source
Voc(SoC), models the nonlinear relationship between the state
of charge, and the open-circuit voltage. Applying voltage,
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Fig. 2. Battery equivalent circuit model

current and element laws for the circuit shown in figure 2,
the following equations were obtain:

Vb = Voc(SoC)− Ib ·Ro − Vs (1)

Ib =
Vs
Rs

+ Cs · V̇s (2)

Ib = −Cb · ˙SoC (3)

Rearranging terms:

V̇s =
Vs
Rs

+ Cs ·Rs (4)

˙SoC = − Ib
Cb

(5)

In order to discretize the model, Euler approximation is
used:

df

dt
=
f(k + 1)− f(k)

∆t
= ḟ(t) (6)

f(k + 1) = ḟ(t) · Ts + f(k) (7)

Using equation 7 to discretize equations 4 and 5 the
following is obtain:

Vs(k + 1) =
Ts
Cs
· Ib(k) +

(
1− Ts

Rs · Cs

)
· Vs(k) (8)

SoC(k + 1) = SoC(k)− Ts
QT · 36

· Ib(k) (9)

Notice that the capacitance Cb, is replaced in equation 9, in
terms of the rated capacity of the battery (QT [Ah]), so the
following state space is defined:

[
SoC(k)
Vs(k)

]
=

[
1 0

0
(

1− Ts

Rs·Cs

)] · [SoC(k)
Vs(k)

]
+

[
− Ts

QT ·36
Ts

Cs

]
· Ib(k)

(10)
y = Vb(k) = Voc(SoC(k))− Ib(k) ·Ro − Vs(k) (11)

To simplify the notation the state space is written as:

x(k + 1) = Ab · x(k) +Bb · Ib(k) (12)
Vb(k) = Voc(k, SoC)− Ib(k) ·Ro − Vs(k) (13)

B. Open circuit map and hysteresis modelling

The SoC−Voc relationship in lead-acid batteries is not only
non-linear, but also presents a high hysteresis phenomenon
(figure 3 ). Note that (figure 2), when the battery current is
equal to zero (load = ∞) and the capacitor Cs is completely
discharge, the battery voltage Vb is equal to Voc. So to obtain
the outer curves of figure 3, a map could be constructed by
applying a current pulse to the battery, and enough time is
waited so the voltage is stable and Vb = Voc. The state of
charge variation due to the applied current pulse is obtained
by equation 9. Finally a linear regression can be used to find
a function that describes the charging (upper boundary Uub)
and discharging (lower boundary Ulb) curves.

Fig. 3. Voc v.s SoC

The procedure described above, provides the curves when
no variation of current direction occur from 0% to 100% of
the SoC and vice versa. However, inside curves produced by
partial charge and discharge, remain unknown. The following
mathematical modeling is based on Thele hysteresis model [7].

The Voc(k) can be expressed as5:

Voc(k) = Ulb(SoC) + Uhyst(k) (14)

Where Uhyst is an hysteresis voltage produced by a partial
charge or discharge of the battery. Note that Voc is bounded
by Ulb and Uub, so:

Uhystε[0, Uhyst−max] (15)
Uhyst−max = Uub(SoC)− Ulb(SoC) (16)

On the other hand, the current sum in an inner hysteresis
cycle is named Qhyst, which is the charge in [Ah] given
or received by the battery, while the Voc is evolving inside
the lower and upper boundaries shown in figure 3 (dotted
trajectories). Likewise Uhyst, Qhyst only change when inner
hysteresis occur, therefore it is bounded by Qhyst = 0, and

5Voc(k, SoC) dependency of SoC will be ignored in the notation from
now on



Qhyst = Qmax
hyst, which is the amount of charge necessary for

Voc to pass from Ulb to Uub. The following equations resumed
the stated above:

Qhyst(k) = Qhyst(k)− Ib · Ts
3600

(17)

Qhyst(k)ε[0, Qmax
hyst] (18)

Note that, when Qhyst(k) = 0, charge is not given
by an inner hysteresis cycle so, Uhyst(k) = 0, therefore
Voc(k) = Ulb(SoC). On the other hand if Qhyst = Qmax

hyst,
charge given by an hysteresis cycle is saturated, so
Uhyst = Umax

hyst and Voc = Ulb(SoC) + Umax
hyst = Uub(SoC).

Consequently, Uhyst boundaries are already known, however,
how it evolves between those boundaries is left to determine.
In figure 4 a full inner hysteresis cycle6 is shown and
two additional parameters are introduced ∆U char

hyst−max and
∆Udis

hyst−max, which are the maximum voltage deviation from
the center of the hysteresis curve. Notice that the maximum
deviation occurred when Qhyst =

Qmax
hyst

2 .

Fig. 4. Uhyst v.s Qhyst

Assuming that all the hysteresis parameters mentioned are
known, coordinates A, B and C of figure 4 can be calculated,
therefore a second order polynomial regression can be applied
to find the function that describes Uhyst evolution. The
remaining problem, regards in how inner partial hysteresis
behave. To illustrate this issue, figure 5 shows two possible
inner partial hysteresis curves. The sequence starts in A with
Uhyst = 0 and Qhyst = 0. Since the battery is charging,
then the voltage increases following A-C-B trajectory. When
charging is finished at C, then the voltage decreases following
C-D’-A trajectory, until it reaches E (current direction change
again). From E, charging occur again, and the voltage follows
the E-F-B trajectory.

According to Thele [] experimentation proved that inner
curves are linearly related with the outer curves by a factor

6By full, it is meant that a complete transition from Ulb to Uub or vice
versa is made

dependent of Qhyst. This fact, enable to calculate the inter-
mediate points (D, D’ and F, F’), Therefore, a second order
lineal regression could be used to describe the actual behavior
of Uhyst. Note that every inner charge or discharge, tend to
finish in A or B respectively. Applying some basic geometrical
facts the following equations could be find

∆Udis
hyst = ∆Udis

hyst−max ·
Qhyst

Qmax
hyst

(19)

∆U char
hyst = ∆U char

hyst−max ·
Qmax

hyst −Qhyst

Qmax
hyst

(20)

Fig. 5. Uhyst v.s Qhyst 2

To clarify the previous model, the following algorithm
describes how Uhyst is calculated as Qhyst is changing due
to the charging and discharging of the battery in the sequence
shown in figure 5:

1) The sign of current is identified so the battery is
charging, then the final point (reference) will be B =
[Qmax

hyst, U
max
hyst ]. The middle point M is calculated using

∆Udis
hyst, that in this case is ∆U char

hyst−max (because
Qhyst = 0).

2) Knowing A, B and M coordinates, f(Qhyst) is found,
using a linear regression as describes previously.

3) As long as the current direction does not change, Uhyst

is calculated from f(Qhyst) found in the previous step.
4) When a change of direction occur in C, a new function

needs to be calculated, C is the starting point, A = [0, 0]
the reference point and D’ is the middle point which is
calculated using equation [].

5) Finally in point E a change of current direction is sensed,
then the previous procedure is repeated using B as
reference and F’ as middle point.

C. Battery parameter identification and model validation

The remaining electrical parameters of the battery can be
obtained as follows:

1) Ro: Find the instant variation of the battery voltage ∆Vb
from an instant current variation ∆Ib. Then compute
Ro = ∆Vb

∆Ib
.



2) Rs and Cs: The RC network define a non-observable
state, so it must be identified using time constants. For
an instant current variation ∆Ib , a voltage variation will
occur. The instant variation, is determine by the series
resistor Ro, then the transient response, correspond to
the RC network (τ = 5 ·R · C).

Therefore, the electrical parameters could be found with
the experiment described to obtain the SoC v.s Voc map. In
order to validate the model, a computational benchmark of
a battery (Matlab) is used. This benchmark include different
real behaviors such as internal resistance and rated capacity
variation due to current rate and temperature. In figure 6 the
voltage response to a 4 A current pulse is shown. Note that as
soon as the current is zero, an instant voltage variation occur,
due to Ro. The dynamic response (voltage stabilization)
correspond to the RC network.

Fig. 6. Battery Voltage Response

In figure 7 a series of pulses were made so the battery
is completely discharge from a 100 % of SoC, and charged
again, to obtain the map of figure 8. With this points a
linear regression was made using a truncated Fourier 6th-order
function:

U(SoC) = a0 + a1 · cos(ω · SoC) + b1 · cos(ω · SoC)

+ a2 · cos(2 · ω · SoC) + b2 · cos(2 · ω · SoC)

+ a3 · cos(3 · ω · SoC) + b3 · cos(3 · ω · SoC)

+ a4 · cos(4 · ω · SoC) + b4 · cos(4 · ω · SoC)

+ a5 · cos(5 · ω · SoC) + b5 · cos(5 · ω · SoC)

+ a6 · cos(6 · ω · SoC) + b6 · cos(6 · ω · SoC)

Fig. 7. Battery Voltage Response

Fig. 8. SoC v.s Voc

To obtain the hysteresis parameters, four inner full
hysteresis trajectories were found, as shown in figure 9.
Traslading to Qhyst-Uhyst space (figure 10) the parameters
of figure 11 were obtain. Notice that there is a considerable
difference between the parameter found for 10 % and the
others, and since the batteries are not meant to work on
that range, the final parameters were obtain by taking the
mean of 85%, 60% and 35% (figure 12). Another option, if
considerable differences were obtain for all SoC ranges, is
to interpolate the parameters as a function of SoC.



Fig. 9. Inner Hysteresis Trajectories

Fig. 10. Uhyst Full Hysteresis Trajectories

Fig. 11. Hysteresis parameters obtain for different state of charge ranges

Fig. 12. Hysteresis parameters

Finally to validate the hysteresis model, a test of current
pulses was made (Figure 13), obtaining a battery voltage RMS
error of 0.03 V , and a SoC error of 0.04 %.

Fig. 13. Test Voltage Model

Fig. 14. Test SoC Model

D. State of Charge estimator

This section is organized as follows. The SoC estimation
algorithm is derived based on an extended Kalman filter
and the single battery model of equations 12, 13 and the
hysteresis model explained in the previous section. Then,
applying a current profile, the state of charge tracking is
validated for a single battery. It is important to mention
that, the hysteresis model defines a new state Uhyst, which
defines a non-linear and time-variant model. However, it is a
parameter that depends considerably from the SoC and that
is commonly saturated, therefore it is treated as a parameter
that is calculated online.

Retaking the circuit model equations:

x(k + 1) = Ab · x(k) +Bb · Ib(k) (21)

Vb(k) = Voc(SoC)− Ib(k) ·Ro − Vs(k) (22)

Note that the state equations are linear (without considering
saturation). On the other hand, the output equation contain a



nonlinear term (Voc), so linearization of the output equation is
needed:

Vb(k) = Voc(SoC)− Vs −Ro · Ib(k) : F (SoC, Vs) (23)

V̄b(k) = C · x(k) +D · u(k) (24)

Then

D =

[
∂F (SoC, Vs)

∂Ib

]
= −Ro (25)

C =

[
∂F

∂SoC
,
∂F

∂Vs

]
=

[
∂F

∂SoC
,−1

]
(26)

C =

[
∂Voc(SoC)

∂SoC
,−1

]
(27)

Decomposing Voc(SoC):

Voc(SoC) = Ulb(SoC) + Uhyst(Qhyst) (28)

Notice that, when Uhyst is saturated on its top bound-
ary Voc(SoC) = Uub(SoC). when Uhyst is zero, then
Voc(SoC) = Ulb. On the other hand, note that a variation
of SoC produce a proportional variation of Qhyst, as long as
it is not saturated, so we can define:

∂Voc
∂SoC

=



∂Ulb(SoC)
∂SoC if Qhyst = 0

∂Uub(SoC)
∂SoC if Qhyst = Qmax

hyst

∂Uhyst(SoC)
∂SoC + ∂Ulb(SoC)

∂SoC if 0 < Qhyst < Qmax
hyst

(29)

Applying a current profile, the state of charge was estimated
using the previous algorithm (Figure 15), with a white measure
noise with a variance of σV = 150mV and σI = 10mA
for the battery voltage and current respectively, obtaining an
RMS tracking error of 3.52 % for a 5.5 day simulation

Fig. 15. SoC estimation for single battery

IV. PV SYSTEM MODEL AND MODEL PREDICTIVE
CONTROLLER

A. PV system model and power estimation

To model the photovoltaic system, a correct functioning of
the low level controllers is assumed, so a linear balance of
energy is obtain. The MPPT7 controller, guarantee a maximum
power Pmax is being taken from the solar panels, with an
efficiency ηDC−DC . The Pmax parameter is specified in STC8,
therefore it must be normalized, so the power generated by the
PV system is:

Pgen =
Pmax ·Npanels · ηDC−DC

1000
·R(t) (30)

Taking into account the DC-AC converter efficiency:

Pbat(t) =
Q(t)

ηDC−AC
− Pgen (31)

Pbat(t) =
Q(t)

ηDC−AC
− Pmax ·Npanels · ηDC−DC

1000
·R(t)

(32)

To estimate the power horizon (consumption and
generation), a persistent9 model is used. In figure 16
the prediction algorithm is illustrated. Notice that the power
prediction of the second horizon (Np to 2Np), is equal to the
real power of the first (0 to Np). Also notice that for the first
Np time samples, there is no control action.

Fig. 16. Power prediction

B. Model predictive control algorithm

Fig. 17. Depth of Discharge Curve (image taken from [1])

7Maximum Power Point Tracking
8Standard Test Conditions
9A persistent model is a model that maintains the previous version of itself



Battery lifetime could be measure by the number of charge-
discharge cycles, can be done until a significant deterioration
of the battery is achieved. In figure 17 the depth of dis-
charge versus lifetime is shown for a 8G40 Deka Solar gel
battery. This behavior defines the importance of maintaining a
minimum quantity of charge in the battery, so a minimum
lifetime is guarantee. Therefore, it is necessary to reduced
the consumption inside the school, which can be accomplish
by disabling a group of loads [8], affecting the user comfort.
Taking into account this facts, the controller’s objective is to
maintain a minimum SoC = SoCmin while minimizing the
load disabling inside the school.

Fig. 18. General control architecture

Recalling the control architecture shown previously (figure
18), note that the control signals (Uload) produce a possible
consumption reduction Qr(Uload(k)), then the optimal control
problem is defined:

minimize
Uload(k)

J =

Np∑
k=1

α ·Qr(Uload(k))2 (33)

subject to: SoC(k) ≤ SoCmin (34)
0 ≤ Qr(k) ≤ Qmax

r (k) (35)
SoC(k + 1) = F (Uload(k), k) (36)

Where Qmax
r (k) is equal to the consumption prediction for

the day Qlest. To simplify the problem, the SoC restriction is
replaced for a penalization term, inside the objective function
as shown in equation 37

minimize
Uload(k)

J =

Np∑
k=1

α ·Qr(Uload(k))2 + S(SoC(Uload))

(37)
subject to: SoC(k + 1) = F (Uload(k), k)

(38)

Since the problem is an integer quadratic problem (binary),
moreover the need to implement simple algorithms, a
simplified optimal control problem is defined:

minimize
Qr(k)

J =

Np∑
k=1

α ·Qr(k)2 + S(SoC(k)) (39)

subject to: SoC(k + 1) = F (Qr(k), k) (40)

Notice that the binary control signals Uload(k), are replaced
for a direct consumption reduction Qr(k). With the optimal
signal Q∗

r(k) an additional algorithm is used to choose which
Uload(k) produce a consumption reduction near to the desired
Q∗

r(k). In figure 19, the modified control architecture of the
MPC is shown. The MPC block calculates the necessary
consumption Qr to minimize the objective function of
equation 40 and the ”Load Selection” block, chooses which
loads must be disabled or enabled.

An additional simplification is made, in order to guarantee a
low computation time. The optimum solution Q∗

r(k) is found
by solving SoC(k + 1) = F (Qr(k), k) for several signals
Qi

r(k) (for Np sample times). With the different pair of signals[
Qi

r(k), SoC(k)i
]

the objective function is evaluated and the
minimum solution is found. The Qi

r(k) signals are choose by
scaling the power prediction as follows:

Qi
r(k) =


Qlest

0.9 ·Qlest

...
0.1 ·Qlest

0 ·Qlest


So a total of 11 predictions are made to find the optimal

response, in each control computation.

Fig. 19. Simplified control architecture

To penalize the SoC restriction an inverse SoC response to
Qr is needes so the following function is defined:



S(SoC) = β · (SoC − 100)
2

+ Slin(SoC) (41)

Slin(SoC) =

·msoc · SoC + bsoc if SoC ≤ SoCcorner

0 if SoC ≤ SoCcorner

(42)

where: msoc =
−γ

SoCcorner − SoCmin
(43)

bsoc = −msoc · SoCcorner (44)

Where γ is a weight parameter. Note that the quadratic term
does not include the desired SoCmin, so a linear function is
used as a barrier; when SoC(k) is less or equal to SoCcorner

the barrier is activated. On the other hand γ acts as a tuning
parameter, with a higher γ the barrier is more restrictive and
the penalization is higher . In figure 20 the shape of the
S(SoC) terms are shown.

Fig. 20. S(SoC)

The load selection block use the following procedure to
choose the loads that must be disable (When Qr > 0):

1) The information for each group of loads is organized
as follows:


n1
prio Q1

n U1
load ID1

load

n2
prio Q2

n U2
load ID2

load
...

...
...

...
nnloads
prio Qnloads

n Unloads

load IDnloads

l



Where nprio is an integer that indicates the priority of
the loads. Qn is the nominal consumption for the group
of loads. Uload indicates the actual state of the control
signal for the group of loads (enable (1) or disable (0)
). IDl, is the number assigned to identified the group
of loads.

2) The disabled loads are excluded from the list.
3) The matrix rows are sorted by priority (nprio).

4) A column with the accumulated consumption for the
loads and a column with the power deviation from Q∗

r

are added.
5) The loads whose consumption deviation is smallest are

selected and the control signal Uload is updated.

A similar procedure is followed when Q∗
r = 0 and loads

must be enabled. To clarify the procedure an example is
presented with 5 loads and Q∗

r = 310 [W ]:

1) The information matrix is constructed
[nprio, Qn, Uload, IDload] :


5 60 0 1
1 120 1 2
4 180 1 3
3 120 0 4
2 100 1 5



2) Loads that are already disabled by the control system
are excluded: 1 120 1 2

4 180 1 3
2 100 1 5



3) Sort the matrix by load priority:4 180 1 3
2 100 1 5
1 120 1 2



4) Add an extra column with the accumulated nominal
consumption and consumption reduction deviation (Q∗

r−
Qi

n): 4 180 1 3 180 130
2 100 1 5 280 30
1 120 1 2 400 90



5) Because the minimum consumption deviation is ob-
tained by disabling loads 3 and 5, then:

Uload =


0
1
0
0
0



The MPC algorithm can be resumed as follows:



1) Using the power consumption prediction Qlest, calculate
the signals:

Qi
r(k) =


Qlest

0.9 ·Qlest

...
0.1 ·Qlest

0 ·Qlest


2) For every consumption reduction Qi

r(k) calculate the
SoC(k)i response (using Pinest, Qlest and the actual
estimated SoC as well).

3) For every pair of signals,
[
Qi

r(k), SoC(k)i
]

evalu-
ate the objective function J and choose the pair
[Q∗

r(k), SoC(k)∗] that minimize J .
4) Using the optimal signal Q∗

r(k), choose the load control
signal Uload as shown previously.

The result of the MPC algorithm and the SoC estimation
for the battery bank is shown in figure 21

Fig. 21. Control Results
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