Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
dc.contributor.advisor | Barrera Ferro, Oscar David | spa |
dc.contributor.author | Romero Romero, Julián Darío | spa |
dc.contributor.evaluator | Gonzalez Neira, Eliana Maria | spa |
dc.date.accessioned | 2024-06-05T18:42:15Z | |
dc.date.available | 2024-06-05T18:42:15Z | |
dc.date.created | 2024-06-01 | spa |
dc.description.abstract | Outpatient care constitutes the primary healthcare service across different countries. Appoint- ment scheduling within this care setting faces the significant challenge of patient no-shows, which is detrimental to service quality, leading to treatment delays and economic losses for healthcare centers. With the rise of artificial intelligence, the combination of strategies such as overbooking and machine learning (ML) models has emerged as a promising approach. However, there are concerns regarding group bias (GB) and its potential to result in unfair services, perpetuating historical barriers and disparities that society is striving to eliminate. In the ML-enabled overbooking framework proposed in this study, we demonstrate the presence of socioeconomic GB due to the under-representation of a socioeconomically vulnerable population within the dataset, and how this worsens the service quality for the vulnerable group. We illustrate how including post-modeling strategies in the two proposed overbooking methodologies can com- pletely mitigate this effect, ensuring fairness in the framework that combines overbooking and ML | spa |
dc.description.abstractenglish | Outpatient care constitutes the primary healthcare service across different countries. Appoint- ment scheduling within this care setting faces the significant challenge of patient no-shows, which is detrimental to service quality, leading to treatment delays and economic losses for healthcare centers. With the rise of artificial intelligence, the combination of strategies such as overbooking and machine learning (ML) models has emerged as a promising approach. However, there are concerns regarding group bias (GB) and its potential to result in unfair services, perpetuating historical barriers and disparities that society is striving to eliminate. In the ML-enabled overbooking framework proposed in this study, we demonstrate the presence of socioeconomic GB due to the under-representation of a socioeconomically vulnerable population within the dataset, and how this worsens the service quality for the vulnerable group. We illustrate how including post-modeling strategies in the two proposed overbooking methodologies can com- pletely mitigate this effect, ensuring fairness in the framework that combines overbooking and ML | spa |
dc.description.degreelevel | Pregrado | |
dc.description.degreename | Ingeniero (a) Industrial | |
dc.format | ||
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Pontificia Universidad Javeriana | |
dc.identifier.reponame | reponame:Repositorio Institucional - Pontificia Universidad Javeriana | |
dc.identifier.repourl | repourl:https://repository.javeriana.edu.co | |
dc.identifier.uri | http://hdl.handle.net/10554/67529 | |
dc.language.iso | spa | |
dc.publisher | Pontificia Universidad Javeriana | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.program | Ingeniería Industrial | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | info:eu-repo/semantics/openAccess | |
dc.rights.licence | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.local | De acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización. De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis o Trabajo de Grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontifica Universidad Javeriana por tales aspectos. Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor. De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Machine Learning | |
dc.subject | Algorithm Fairness | |
dc.subject | Metaheuristics | |
dc.subject | Appointment Scheduling | |
dc.subject | Sim- ulation | |
dc.subject | Bias | |
dc.subject.armarc | Ingeniería industrial - Tesis y disertaciones académicas | |
dc.subject.armarc | Aprendizaje de máquinas | spa |
dc.subject.armarc | Metaheurística | spa |
dc.subject.armarc | Logística empresarial | spa |
dc.subject.keyword | Machine Learning | |
dc.subject.keyword | Algorithm Fairness | |
dc.subject.keyword | Metaheuristics | |
dc.subject.keyword | Appointment Scheduling | |
dc.subject.keyword | Sim- ulation | |
dc.subject.keyword | Bias | |
dc.title | Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias | spa |
dc.title.english | Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- attachment_0_Machine-Learning-Overbooking,-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdf
- Tamaño:
- 1.37 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Documento